液压伺服系统的摩擦力分析及补偿研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文的主要目的是对液压位置伺服系统低速运行时的摩擦力进行研究并实现摩擦负载补偿。在对国内外研究现状进行深入分析的基础上,提出了系统低速运行时摩擦力的动态补偿方法,并针对常见的电液位置伺服系统建立摩擦模型、设计摩擦观测器。通过仿真及实验验证了该摩擦模型及动态补偿方法的有效性。
    首先,本文从分析电液伺服系统各个组成环节来分析提高系统低速性能的方法。从分析结果得知影响伺服系统低速性能的主要因素是摩擦力。因此,要提高电液伺服系统的低速性能,必须对摩擦力进行补偿。本文在对摩擦机理深入了解的基础上,吸收了国内外在该领域的先进研究成果,总结了传统摩擦补偿方法的优点及不足,提出了基于新型摩擦模型(即LuGre摩擦模型)的动态补偿方法。
    其次,本文重点放在如何将新型摩擦模型应用到实际的电液位置伺服系统中,以实现对阀控液压缸电液位置伺服系统的摩擦力进行动态补偿,并应用MATLAB的Simulink仿真工具进行仿真,通过调节摩擦补偿环节的参数可得到良好的补偿效果。由于摩擦力主要影响电液位置伺服系统的低速跟踪精度和定位精度(即稳态误差),所以要考虑补偿前后这两个指标的变化情况,仿真测试信号选为低速斜坡信号和单位阶跃信号。仿真结果表明该新型摩擦模型和补偿技术具有良好的补偿效果,能够动态、适时的补偿摩擦力,为设计高精度、超低速电液伺服系统提供了有效的途径。
    最后,为实现实时控制设计了计算机数据采集及监控程序。本文是以Windows 98为操作平台,用Visual C++编程语言开发了可视化控制软件。使用证明,该软件人机交互性能好,操作简单,实用性强。实验研究结果表明,该控制补偿方法可以有效的补偿系统低速运行时的摩擦力,大大提高系统低速性能。
The main purpose of this paper is to study the friction force in hydraulic position servo system, especially when it is running at low velocity state, and to make effort to compensate it. According to the elaborate analysis on friction at home and abroad, a dynamic friction compensation method is proposed to compensate the system’s friction force at low velocity. A dynamic friction model is build and a friction observer is designed for ordinary position servo system. This friction model and compensation measure is effective, which is testified by doing experiment and simulation.
     Firstly, this paper studies every component of the servo system to improve the performance at low speed. From the analysis results, we learned that the main influence factor is friction force. Therefore, in order to improve the system low speed performance, it is necessary to compensate the friction force. Based on well knowing the friction mechanism, this paper absorbs advanced research results in this field, summarizes the strongpoint and insufficiency of traditional friction compensation methods, and proposes a dynamic friction compensation method according to a new friction model (LuGre friction model).
    Secondly, this paper emphasizes how to apply this new friction model to practical valve controlled cylinder position servo system and realize the dynamic friction compensation. The paper designs the compensation law and uses the MATLAB/Simulink tools to testify the compensation effect. Because the friction force mainly influences the track precision and the orientation precision of the servo system, it should consider these two targets changes between before and after compensation. Low-velocity ramp signal and step signal were chosen as simulation test signal. The simulation results indicate this new friction model has good compensation effects and can compensate friction force dynamically. This method provides an efficient way to design high precision, low speed electro-hydraulic servo system.
    Finally, in order to realize real time control, computer data acquisition and
    
    
    control program are designed. Using Windows 98 as its O.S., the control software is developed by using Visual C++ language. The results show that the software has strong application value and its interface is interactive and easy to operate. The experiment results indicate this friction compensation method can effectively compensate the friction and greatly improve the system character.
引文
关景泰. 机电液控制技术. 上海:同济大学出版社, 2003:4-5
    王春行. 液压伺服控制系统. 北京:机械工业出版社, 1989:189-190
    胡佑德, 马东升, 张莉松. 伺服系统原理与设计. 第二版. 北京:北京理工大学出版社, 1999:107-116
    卢长耿, 李金良. 液压控制系统的分析与设计. 北京:煤炭工业出版社, 1991:80-103
    张卯瑞, 梅晓榕, 庄显义. 高精度液压伺服系统改善低速性能的几项措施. 哈尔滨工业大学学报, 1998, 30(4):66-68
    宋俊. 电液伺服系统低速跳动问题的解析. 机床与液压. 1997, (2):40-42
    刘春芳, 吴盛林, 贾锦虹. 液压仿真转台中液压爬行现象分析及消除措施. 液压与气动, 2002, (5):18-19
    李新忠, 李兵, 葛思华. 提高电液位置伺服系统动态响应的措施. 机床与液压, 1995, (3):157-159
    王旭永, 付永领, 刘庆和. 电液马达位置伺服系统低速运动的初步试验研究. 机床与液压, 1994, (6):331-335
    李运华. 近代液压伺服系统控制策略的现状与展望. 液压与气动, 1995:1-6
    王占林. 近代液压控制. 北京:机械工业出版社, 1997:3-8
    黄静, 叶尚辉. 含摩擦环节伺服系统的分析及控制补偿研究. 机械科学与技术, 1999, 18(1):1-3
    Omer Keles, Yucel Ercan. Theoretical and Experimental Investigation of a Pulse-width Modulated Digital Hydraulic Position Control System. Control Engineering Practice, 2002, 10:645-654
    A. Dadone, L. Dambrosio, A. Lippolis. Experimental Results of One-Step-Ahead Adaptive Control Applied to Hydraulic Transmission. Department of Measurement and Control. 1995, 40(3):458-464
    K. Menon, K. Krishnamurthy. Control of Low Velocity Friction and Gear Backlash in A Machine Tool Feed Drive System. Mechatronics. 1999,
    
    
    9:33-52
    S. Ramachandran, Peter Dransfield. Modeling, Analysis and Simulation of an Electrohydraulic Flight Control Actuation System Including Friction. Mechanical Engineering. 1993:203-208
    陶永华, 尹怡欣, 葛芦生. 新型PID控制及其应用. 北京:机械工业出版社, 2000:136-157
    Canudas de Wit C, Noel P, Aubin A. An Adaptive Friction Compensation in Robot Manipulators: Low Velocities. The International Journal of Robotics Research, 1991, 10(3):189-199
    Friedland B, Park Y.J. On Adaptive Friction Compensation. IEEE Transactions on Automatic Control, 1992, 37(10):1609-1612
    Armstrong-Helouvry B, Dupont P, Canudas de Wit C. A survey of Models, Analysis Tools and Compensation Methods for the Control of Mechines with Friction. Automatica, 1994, 30(7):1083-1138
    C.Canudas de Wit. A New Model for Control of Systems with friction. IEEE Transction on Automatic Control, 1995, 40(3):419-425
    刘春芳, 吴盛林, 赵克定, 等. 高精度液压仿真转台低速性能的实现. 机床与液压, 2002, (1):73-74
    熊元新, 谷云彪. 液压马达超低速平稳驱动控制方案的设计. 哈尔滨电工学院学报, 1996, 19(3):302-305
    赵连春, 刘利国, 许贤良. 阀控液压缸机构的负载压力和流量. 矿山机械, 1996, (3):12-14
    吴盛林, 刘春芳. 基于LuGre模型的电液伺服系统摩擦力矩动态补偿. 机床与液压, 2003, (2):67-69
    黄进, 叶尚辉, 陈其昌. 含摩擦环节的伺服系统的低速爬行研究. 机械设计, 1998, (10):39-41
    高钦和. 进油节流调速液压回路爬行现象的建模与仿真分析. 机床与液压. 2000, (5):83-84
    P. D. Tataryn, N. Sepehri, D. Strong. Experimental Comparison of Some Compensation Techniques for The Control of Manipulation with Stick-Slip Friction. Control Engineering Practice, 1996, 4(9):1209-1219
    
    J. Willems. Dissipative Dynamical Systems Part1: General Theory. Arch. Rational Mech. Aral, 1972, 40:321-351
    P. Lischinsky, C. Canudas de Wit, G. Morel. Friction Compensation for an Industrial Hydraulic Robot. IEEE Transactions on Automatic Control, 1999,(2)
    王旭永, 吴盛林, 刘庆和. 用变增益阀提高电液马达位置伺服系统低速性能的研究. 组合机床与自动化加工技术,1999, (3):14-15
    W. Bernzen. Nonlinear Control of Hydraulic Cylinders-Theoretical and Experimental Results. Department of Measurement and Control. 1995, 40(3):60-65
    Peng Xiwei, Wang Yu. Precision Point to point Control of Proportional Valve Controlled Motor with a Time-Varying Load. Journal of Beijing Institute of Technology, 1999, 8(3):288-293
    Armstrong B. Friction Experimental Determination, Modeling and Compensation. Proceedings of the IEEE International Conference on Robotics and Automation, 1988, (1)1422-1427
    PENG Xi-wei, ZHANG San-tong. Experimental Comparison Between PID Control and Friction Compensation Control for a Class of Nonlinear System with Friction. Journal of Beijing Institute of Technology, 2001, 10(4):389-394
    Haessig, B. Friedland. On the Modeling and Simulation of Friction. Journal of Dynamic Systems, Measurement and Control, 1991:354-362
    C. J. Radcliffe, S. C. Southward. A property of Stick-slip Friction Models Which Promotes Limit Cycle. Generation Proceedings: American Control Conference, 1990, 2:1198-1203
    贾志勇. 新型克服摩擦力的方法及其在高精度液压伺服系统的应用. 机械科学与技术, 1999, 18(1):45-48
    T. Wey. Modeling and Observer Design for Hydraulic Cylinders. Department of Measurement and Control, 1995, 40(3):66-71
    吴盛林, 刘春芳. 超低速高精度转台中摩擦力矩的动态补偿. 南京理工大学学报, 2002, 26(4):393-396
    
    Karnopp. Computer Simulation of Stick-slip Friction in Mechanical Dynamic Systems. Journal of Dynamic Systems, Measurement and Control, 1985:100-103
    付永领, 裴忠才, 王利国. 电液伺服马达超低速性能的实验研究. 机械工程师, 2001(2):43-44
    谷云彪, 凌林本. 三轴转台执行机构起动摩擦特性的测试与研究. 中国惯性技术学报, 1999, 7(4):84-87
    王中华, 王兴松, 王群, 等. 新型摩擦模型的参数辨识及补偿实验研究.制造业自动化, 2001, 23(6):30-32
    赵常顺, 周智勇. 伺服系统干摩擦的加速度负反馈改善. 青岛大学学报, 2000, 15(2):43-45
    李书训, 姚郁, 马杰. 基于观测器的伺服系统低速摩擦补偿分析. 电机与控制学报, 2000, 4(1):27-30
    薛晓虎. 机械设备液压阀控马达回路动态特性的分析和研究. 现代机械, 2002, (3):70-74
    谢建英. 微型计算机控制技术. 北京:国防工业出版社, 1991:2-4
    冯勇. 现代计算机控制系统. 哈尔滨:哈尔滨工业大学出版社, 1997:23-26
    袁南儿, 王万良, 苏宏业. 计算机新型控制策略及其应用. 北京:清华大学出版社, 1998:89-91
    张豫文, 曹建文. Windows汇编语言及系统程序设计. 北京:北京大学出版社, 1995:78-85
    杨亮, 万玉丹, 魏晋鹏. Windows深入剖析—内核篇. 北京:清华大学出版社, 1997:89-94
    刘路放. Visual C++与面向对象程序设计教程. 北京:高等教育出版社, 2000:100-223
    彭莉辉, 吴鸿修. 基于ActiveX的多通道数据曲线编辑控件的实现. 计算机应用研究, 2000, (1):102-103
    何渝. 计算机常用数值算法与程序. 北京:人民邮电出版社, 2003:301-359
    周长发. 科学与工程数值算法(Visual C++版). 北京:清华大学出版社,
    
    
    2002:200-254
    边信黔, 付明玉. 利用VC++实现数据采集. 计算机应用, 2001, 21(8): 233-234
    D. J. Kruglinski, S. Wingo, G. Shepherd. Visual C++ 6.0技术内幕. 希望图书创作室译. 第五版. 北京:北京希望电子出版社, 2001:20-551
    程科, 陈庆芳. VC++环境下开发计算机测控系统的几个关键问题. 华东船舶工业学院学报(自然科学版), 2001, 15(2):58-62
    电脑编程技巧与维护杂志社. Visual C/C++编程精选集锦关键技术精解分册. 北京:科学出版社, 2003:4-7
    P. Albertos, J. Quevedo. PID Control. Control Engineering Practice, 2001, 9(11):1159-1161
    马明建, 周长城. 数据采集与处理技术. 西安:西安交通大学出版社, 1998: 234-300
    秦玉宪. 控制系统仿真. 北京:北京航空航天大学出版社, 1998:10-56
    薛定宇, 陈阳泉. 基于MATLAB/Simulink的系统仿真技术与应用. 北京:清华大学出版社, 2002:1-10
    徐昕, 李涛, 伯晓晨, 等. Matlab工具箱应用指南—控制工程篇. 北京:电子工业出版社, 2000:276-327
    王旭永. 电液位置伺服系统低速运动的仿真分析. 组合机床与自动化加工技术, 1995, (6):15-18
    王野牧, 王洁, 陈先惠, 等. 液压伺服闭环控制系统的SIMULINK仿真实现. 沈阳工业大学学报, 2000, 22(5)
    杨高波, 简清华. 基于Matlab/Simulink的仿真方法研究. 华东交通大学学报, 2000, 17(4):59-62
    张慧档, 陈延伟, 段爱玲. Matlab/Simulink软件在伺服系统设计仿真中的应用. 郑州轻工业学院学报(自然科学版), 2000, 15(2):27-29
    石红雁, 许纯新, 付连宇. 基于SIMULINK的液压系统动态仿真. 农业机械学报, 2000, 31(5):94-96
    薛定宇, 陈阳泉. 基于MATLAB/Simulink的系统仿真技术与应用. 北京:清华大学出版社, 2002:252-325

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700