微流体的电渗驱动及其相关技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微流控系统是20世纪90年代发展起来的一项高新技术,其主要以分析化学和分析生物化学为基础,以微机电加工技术为依托,以微管道网络为结构特征,是当前微全分析系统乃至芯片实验室发展的重点。在微流控系统中,微流体驱动技术是其中的一项关键技术,微流体驱动技术的好坏直接决定微流控系统的性能。尽管微流体驱动技术在过去的十余年得到了快速发展,但微流体驱动系统集成化和微流体驱动系统可靠性的提高仍然是微全分析系统的薄弱环节。交流电渗(AC electroosmosis, ACEO)是近几年发展起来的一项新技术,它以驱动电压低、芯片制作过程简单、容易与系统集成等优点而倍受学者青睐。目前国外对该技术研究还处于不断探索和完善阶段,而在国内关于该技术的研究成果报道甚少,因此展开对ACEO驱动微流体技术的研究具有重要的意义。
     本文从电渗驱动理论的基础出发,对直流电渗(DC electroosmosis, DCEO)和ACEO的驱动原理及双电层的产生的机理进行了详细的理论分析,揭示了其共同点和主要特征。经过设计毛细管DCEO微泵并进行实验,研究了DCEO流速与驱动电压、微通道结构的关系。针对ACEO中双电层的产生是由于电极极化产生的特征,从理论上推导了ACEO的流速公式。
     在研究非对称电极ACEO中,根据非对称电极ACEO驱动微流体实验现象,建立了非对称电极ACEO微流体驱动的物理模型。分析了非对称电极ACEO电场和流场特性及相互关系,研究了其边界条件的建立过程。对非对称电极ACEO驱动微流体流场进行了仿真,通过仿真与实验结果的对比分析,验证了理论研究的正确性。
     开展了行波电渗(Traveling wave electroosmosis,TWEO)驱动微流体的理论和实验研究。提出了一种新颖的用对称电极设计非对称电极ACEO驱动微流体芯片的方法,设计了驱动电路。阐述了粒子图像测速法在非对称电极ACEO和TWEO中的应用及实验数据处理方法,通过对比分析和实验研究,比较了两者芯片的加工过程,验证了在等效驱动电压的情况下,TWEO比ACEO驱动微流体具有更高的效率。
     以Gouy–Chapman–Stern双电层理论为基础,建立了TWEO驱动微流体非线性物理模型,经过线性变换,对TWEO驱动微流体进行了仿真分析,并对封闭通道内的Poiseuille流进行了分析。通过TWEO驱动微流体流场实验,验证了TWEO驱动微流体理论模型的正确性,获得了TWEO流场流线比ACEO流场流线更平坦结论。
     对TWEO驱动微流体流速影响因素进行实验及理论研究,研究了不同电导率溶液在TWEO中的容抗比例系数的确定方法和芯片电极的加工工艺,并对芯片电极材料、芯片基底材料、通道材料的选择进行了分析。对驱动不同电导率溶液的实验结果表明,电导率越小,出现最大速度峰值时的频率越小、速度峰值越大。并且通过改变电极参数可以达到改变电渗流流速及最大速度峰值时的频率的目的;同时,在低电势驱动下,在TWEO驱动微流体中,可以忽略电热效应、粒子介电泳运动等对实验测速的影响。
     综上所述,通过本文对电渗流微流体驱动基础理论和相关技术的研究,进一步证实了非对称电极ACEO驱动微流体具有输入信号电压低、芯片容易与系统集成等特点,比DCEO更具有工程应用的优越性。同时,理论及实验研究结果表明,TWEO比非对称电极ACEO在驱动微流体中更具有效率。因此,本论文的研究结果为电渗流技术的进一步深入研究和工程应用具有重要参考价值。
     本论文的研究得到了“高等学校学科创新引智计划项目(B07018)”的资助,同时受国家留学基金委“国家建设高水平大学公派研究生项目”资助(录取文号为留金出[2007]3020号)。
Microfluidics system developed on 1990s is a technology that has emphasis on micro-total-analysis-system (μ-TAS) and lab on a chip based on chemical analysis and biological analysis. It is fabricated on MEMS technology and characterized by microchannel net. Its performance is determined by the key technology of microflow pumping. Despite of the rapid development of microflow pumping technology in the past more than ten years, there are still weakness which limit the application of the microfluidics system, such as the difficulties of systematic integration and the low reliability of the system. To overcome these shortcomings, AC elctroosmosis (ACEO) technology has been developed in recent years for its advantages such as low driving voltage, simple fabrication process and facility of integration with system. Currently, the research of ACEO is at developing stage abroad, while there are few publications have been found in China. Therefore, it is of great significance to research microflow pumping with ACEO.
     In the study, the theory and the mechanism, as well as the similarity and main features, of ACEO and DC electroosmotic (DCEO) were analyzed. With the design and the test of capillary DCEO pump, the driving voltages and microchannel structures impacting on pumping velocity of DCEO were investigated. In ACEO, the double electric layer is caused by electrode polarization. The velocity formula on ACEO was deduced from the comparison of the mechanism of ACEO and DCEO.
     In the study of asymmetry ACEO, the physical model of electric field and flow field was proposed based on ACEO pumping microflow experimental phenomenon. The electric and velocity fields with their boundary conditions were analyzed in the simulation. By comparing experimental and simulated results of velocity field of ACEO microflow pumping simulation, the theoretical model was verified.
     A new idea for the research of traveling wave electromosis (TWEO), that is, a new driving circuit for the chip used in a symmetry electrode array, was presented. The applications of particle image velocity (PIV) method for the measurement of velocity of moving particles and the method of image processing in ACEO and TWEO were discussed. According to the experimental and practical uses, the fabrication processes for ACEO and TWEO chip were compared. Under equivalent driving voltages, the experiments for ACEO and TWEO were studied. The results shows that compared with ACEO, TWEO was more efficient in driving particles.
     The nonlinear model of voltage distribution for TWEO pumping microflow was presented based on Gouy-Chapman-Stern double electric layer theory. With linear transform, TWEO was simulated. The Poiseuille flow in a closed microchannel was analyzed. The theoretical model of TWEO pumping microflow was verified experimentally. The simulated results show that the streamline of TWEO is smoother than that of ACEO.
     The factors that influencing characteristics of TWEO microflow pumping were explored experimentally and theoretically. The method for the determination of capacitance ratio coefficients in TWEO with different conductivity of solutions was proposed. Furthermore, the chip electrode fabrication process was shown. The selections of material for chip electrode, substrate and channel were discussed. The experimental results of pumping different conductivity solution show that for lower conductivity electrolyte, the bigger the peak velocity value is, the smaller the frequency for peak velocity is. It is concluded from experimental and theoretical analysis that the variation of structural parameters of electrode may change the electroosmosis velocity and the frequency on peak velocity value. For a low voltage, the effect of electrothermal, particle dielectrophoresis motion and other several factors on the measurement of flow velocity in TWEO microflow pumping can be ignored.
     On the above discussion, with the basis theory and technology of electroosmosis microflow pumping in this research, ACEO application in engineering has more advantages than DCEO, such as low voltage, facility of integration. Theoretical and experimental research results show that TWEO is more efficiency than ACEO. The experimental and theoretical results are beneficial to the practical application of electroosmosis microflow pumping.
     The study is sponsored by the Chinese 111 project (Grant Number: B07018) and China Scholarship council“National Project for Sending Graduated Students to Build High Level Universities”(Grant Number: [2007]3020).
引文
1陈忠斌.生物芯片技术.化学工业出版社. 2005: 15-30
    2 D. Schrum, C. T. Culbertson. Microchip flow cytometry using electrokinetic focusing.Anal Chem. 1999,71(19):4173-4178
    3 V. Elisabeth. Microfluidic chips for clinical and forensic anslysis. Electrophoresis. 2002,23:677-712
    4刘鹏,邢婉丽.生物芯片技术--21世纪革命性的技术.生理通讯. 2000,19 (2):29-31
    5徐泰然. MEMS和微系统-设计与制造.机械工业出版社. 2004: 1-25
    6 C.-M. Ho. Micro-Electro-Mechanical-Systems (MEMS) and Fluid Flows. Annual Review of Fluid Mechanics. 1998,30:579-612
    7 M. Freemantle. Downsizing chemistry.C &EN. 1999,77(8):27-36
    8 M. Gad-el-Hak. The fluid mechanics of microdevices-The Freeman Scholar Lecture.J Fluids Eng. 1999,121:5-33
    9 H. A. Stone, A. D. Stroock, A. Ajdari. ENGINEERING FLOWS IN SMALL DEVICES: Microfluidics Toward a Lab-on-a-Chip. Annu Rev Fluid Mech. 2004,36:381-411
    10王沫然,李志信.基于MEMS的微泵研究进展.传感器技术. 2002,21(6):59-61
    11 D. J. Laser, J. G. Santiago. A review of micropumps. Journal of Micromechanics and Microengineering. 2004,14:R35-R64
    12 A. Manz, D. J. Harrison, E. M. J. Verpoorte, et al. Planar chips technology for miniaturization and integration of separation techniques into monitoring systems: capillary electrophoresis on a chip. Chromatogr. 1992,A593:253-258
    13 A. T. Woolley, A. J. DeMello, R. A. Mathies, D. Hadley, P. Landre, M. A. Northrup. Functional integration of PCR amplification and capillary electrophoresis in a microfabricated DNA analysis device. Anal Chem. 1996,68:4081-4086
    14 J. K. Handurina, T. E. McKnight, S. C. Jacobson, L. C. Waters, R. S. Foote, J. M. Ramsey. Integrated system for rapid PCR-based DNA analysis in microfluidic devices.Anal Chem. 2000,72:2995-3000
    15 M. T. Taylor, P. Nguyen, J. Ching, K. E. Petersen. Simulation of microfluidic pumping in a genomic DNA blood-processing cassette. Micromech Microeng.2003,13:201-208
    16 D. B. Tuckerman, R. F. W. Pease. High-performance heat sinking for VLSI. IEEE Electron Device Letters. 1981,2(5):126-129
    17 L. Jiang, J. Mikkelsen, J.-M. K. et al. Closed-loop electroosmotic microchannel cooling system for VLSI circuits. IEEE Transactions on Components and Packaging Technologies. 2002,25(3):347-355
    18 A. D. Stroock, S. K. W. Dertinger, Armand Ajdari, et al. Chaotic Mixer for Microchannels. Science. 2002,295(5):647-651
    19 M. W. Prins, W. J. Welters, J. W. Weekamp. Fluid Control in Multichannel Structures by Electrocapillary Pressure. Science. 2001,291(5502):277-280
    20 L. Zhang, J.-M. Koo, L. Jiang, et al. Measurements and modeling of two-phase flow in microchannels with nearly constant heat flux boundary conditions. Microelectromechanical Systems. 2002,11(1):12-19
    21 H. Jiang, H. Yang, Y. Wang, T. Jiang. Research on the Microfluidics Control Method Based on the EOF Technology. Materials Science Forum. 2006,532-533:65-68
    22 S. Shoji, M. Esashi. Microflow Devices and Systems. Journal of Micromechanics and Microengineering. 1994,4:157-171
    23冯焱颖,周兆英,叶雄英,汤扬华.微流体驱动与控制技术研究进展.力学进展. 2002,32(1):1-16
    24徐良基,贾春平,金庆辉,赵建龙,徐元森.基于微流控芯片的一种蛋白检测方法.功能材料与器件学报. 2005,11(1):117-121
    25 T. S. J. Lammerink, M. Elwenspoek, J.H.J. Fluitman. Integrated micro-liquid dosing system. Proceedings of MEMS’93, Fort Lauderdale, FL, USA, 1993:254-259
    26方肇伦.微流控分析芯片.科学出版社. 2003: 13-57
    27 D. Maillefer, H. van Lintel, G. Rey-Mermet, et al. A high-performance silicon micropump for an implantable drugdelivery system. Proceedings of MEMS '99, Orlando, FL, USA, 1999:541-546
    28 A. Manz,E. Verpoorte,D.E. Reymond et al.μ-TAS:Miniaturized total chemical analysis systems. Mesa-Monograph, Kluwer Academic Publishers. 1995: 5-27
    29 A. Tiselius. A New Apparatus for Electrophoretic Analysis of Colloidal Mixtures.Trans Faraday Soc. 1937,33:524-531
    30 R. B. M. Schasfoort, S. Schlautmann, L. Hendrikse, et al. Field-effect Flow Control for Microfabricated Fluidic Network. Science. 1999,286:942-945
    31 A. E. Herr, J. I. Molho, J. G. Santiago, et al. Electroosmotic Capillary Flow with Nonuniform Zeta Potential. Analytical Chemistry. 2000,72:1053-1057
    32 J. G. Santiago. Electroosmotic Flow in Microchannels with Finite Inertial and Pressure Force. Analytical Chemistry. 2001,73:2353-2365
    33 S. Devasenathipathy, J. G. Santiago, K. Takehara. Particle Tracking Techniques for Electrokinetic Microchannel Flows. Analytical Chemistry. 2002,74:3704-3713
    34 A. R. Minerick, A. E. Ostafin, H.-C. Chang. Electrokinetic Transport of Red Blood Cells in Micocapillaries. Electrophoresis. 2002,23:2165-2173
    35 A. Ramos, H. Morgan, N. G. Green. AC Electric-Field-Induced Fluid Flow in Microelectrodes. Journal of Colloid and Interface Science. 1999,217:420-422
    36 N. G. Green, A. Ramos, A. Gonzalez, H. Morgan, A. Castellanos. Fluid flow induced by non-uniform AC electric fields in electrolytic solutions on micro-electrodes. Part I: Experimental measurements. Phys Rev E. 2000,61:4011-4018
    37 N. G. Green, A. Ramos, H. Morgan. AC electrokinetics: A survey of sub-micrometre particle dynamics. J Phys D: Appl Phys. 2000,33:632-641
    38 A. Ramos, A. Gonza′lez, A. Castellanos, N. G. Green, H. Morgan. Pumping of liquids with ac voltages applied to asymmetric pairs of microelectrodes. Phy Rev E. 2003,67:056302
    39 S. Debesset, C. J. Hayden, C. Dalton, J. C. T. Eijkel, A. Manz. An AC electroosmotic micropump for circular chromatographic applications. Miniaturisation For Chemistry, Biology & Bioengineering. 2004,4:396-400
    40 J. Wu, G. Soni, D. Wang, C. D. Meinhart. AC Electrokinetic Pumps for Micro/NanoFluidics. Proceedings of 2004 ASME International Mechanical Engineering Congress and Exposition, New York, 2004:IMECE2004-61836
    41 L. H. Olesen, H. Bruus. AC Electrokinetic Micropumps: the Effect of Gemetrical Confinement, Faradaic Current Injection and Nonlinear Surface Capacitance. Phy Rev E. 2006,2(73):1-16
    42 J. Wu, Y. Ben, D. Battigelli, H.-C. Chang. Long-Range AC Electroosmotic Trapping and Detection of Bioparticles. Ind Eng Chem Res. 2005,44:2815-2822
    43 J. Wu. Parallel Plate Particle Trapping with Application to Cantilevers. Journal of Physics: Conference Series. 2006,34:709-714
    44 M. R. Bown, C. D. Meinhart. AC electroosmotic flow in a DNA concentrator. Microfluidics and Nanofluidics. 2006,2(6):513-523
    45 A. D. Strook, S. K. Dertinger, G. M. Whitesides, A. Ajdari. Patterning Flows Using Grooved Surfaces. Anal Chem. 2002,74:5306-5312
    46 W. C. Krutzch, P. Cooper. Introduction: classification and selection of pumps. McGraw-Hill Professional. 2001: 1.1-1.6
    47 W. J. Spenncer, W. T. Corbett, L. R. Dominguez, B.D.Shafer. An Electronically controlled piezoelectric insulin pump and valves. IEEE Transactions on Sonics and Ultrasonics. 1978,25(3):153-156
    48 M. C. Carrozza, N. Croce, B. Magnani, P. Dario. A piezoelectrically-driven stereolithography-fabricated micropump. J Micromech Microeng. 1995,5:177-179
    49 R. Linnemann, P. Woias, C. D. Senfft, J.A. Ditterich. A self-priming and bubble-tolerant silicon micropump for liquids and gases. Proceedings of MEMS’98, Heidelberg, Germany, 1998:532-537
    50 J. G. Smits. Piezoelectric micropump with the three valves working peristaltically. Sensors and Actuators.1990,A21-23:203-206
    51 F. C. M. v. d. Pol, H. T. G. v. Lintel, M. Elvenspoek, J.H.J. Fluitman. A thermopneumatic micropump based on micro-engineering techniques. Sensors and Actuators. 1990,A21-A23:198-202
    52 H. T. G. v. Lintel, F. C. M. v. d. Pol, S. Bouwstra. A piezoelectric micropump based on micromachining of silicon. Sensors and Actuators. 1998,15:153-167
    53 R. Zengerle, A. Richter, H. Sandmaierh. A micromembrane pump with electrostatic actuation. Proceedings of MEMS'92, Travemunde, Germany, 1992:19-24
    54 W. L. Benard, H. Kahn, A. H. Heuer, M. A. Huff. Thin-film shape-memory alloy actuated micropumps. Journal of Microelectromechanical Systems. 1998,7(2):245-251
    55 E. Makino, T. Mitsuya, T. Shibata. Fabrication of TiNi shape memory micropumps. Sensors and Actuators A: Physical. 2001,88(3):256-262
    56 D. Xu, L. Wang, G. Ding, Y. Z. e. al. Characteristics and fabrication of NiTi/Si diaphragm micropump.Sensors and Actuators A: Physical. 2001,93(1):87-92
    57 M. Khoo, C. Liu. A novel micromachined magnetic membrane microfluid pump. Proceedings of The 22nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Chicago, IL, USA, 2000:2394-2397
    58 S. F. Bart, L. S. Tavrow, M. Mehregany, J. H. Lang. Microfabricated electrohydrodynamic pumps. Sensors and Actuators A: Physical. 1990,21(1-3):193-197
    59 G. Fuhr, R. Hagedorn, T. Muller, et al. Pumping of water solutions in microfabricated electrohydrodynamicsystems. Proceedings of 5th IEEE International Workshop Micro Electromechanical System, Travemuende, Germany, 1992:25-30
    60 G. Fuhr, R. Hagedorn, T. Muller, et al. Microfabricated electrohydrodynamic (EHD) pumps for liquids ofhigher conductivity. Journal of Microelectromechanical Systems. 1992,1(3):141-146
    61 G. Fuhr, T. Schnelle, B. Wagner. Travelling Wave-Driven Microfabricated Electrohydrodynamic Pumps for Liquids. J Micromech Microeng. 1994,4:217-226
    62 G. Fuhr. From Micro Field Cages for Living Cells to Brownian Pumps for Submicron Particles. Proceedings of The 1997 International Symposium on Micromechatronics and Human Science, Nagoya, Japan, 1997:1-4
    63 S.-H. Ahn, Y.-K. Kima. Fabrication and Experiment of a Planar Micro Ion Drag Pump. Sensors and Actuators A: Physical. 1998,70(1-2):1-5
    64 P. H. Paul, D. W. Arnold, D. J. Rakestraw. Electrokinetic Generation of High Pressures Using Porous Microstructures. Kluwer Academic Publishers. 1998: 49-52
    65 J. C. Rife, M. I. Bell, J. S. H. e. al. Miniature valveless ultrasonic pumps and mixers. Sensors and Actuators. 2000,86(1-2):135-140
    66 J. Jang, S. S. Lee. Theoretical and experimental study of MHD (magnetohydrodynamic) micropump. Sensors and Actuators A: Physical. 2000,80(1):84-89
    67 A. V. Lemoff, A. P. Lee. An AC electrohydrodynamic micropump. Sensors and Actuators B: Chemical. 2000,63(3):178-185
    68 S. B?hm, B. Timmer, W. Olthuis, P. Bergveld. A closed loop controlled electrochemically actuated micro dosing system for in situ sensor calibration. Kluwer Academic Publishers. 2000: 347-350
    69 S. B?hm. The comprehensive integration of microdialysis membranes and silicon sensors. University of Twente. 2000: 53-75
    70 R. Zengerle, S. Kluge, M. Richter, A. Richter. A bidirectional silicon micropump. Prceedings of MEMS'95, Amsterdam, the Netherlands, 1995:517-521
    71 M. Koch, A. G. R. Evans, A. Brunnshcweiler. The dynamic micropump driven with a screen printed PZT actuator. Journal of Microtechnology andMicroengineering. 1998,8:119-122
    72程光明,刘国君,杨志刚.基于悬臂梁阀的微型压电泵的实验研究.机械科学与技术. 2005,24(10):1181-1221
    73刘国君,程光明,杨志刚.一种压电式精密输液微泵的试验研究.光学精密工程. 2006,14(6):612-616
    74刘国君,程光明,杨志刚.微型压电泵的实验研究.仪器仪表学报. 2006,27(4):336-340
    75刘国君,范尊强,董景石,杨志刚,程光明.用于胰岛素推注的压电微泵.吉林大学学报. 2007,37(2):372-376
    76 R.M. Moroney, R.M. White, R.T. Howe. Ultrasonically induced microtransport. Proceedings of MEMS'91, Nara, Japan,1991:277-282
    77 N.-T. Nguyena, A. H. Mengb, J. Blackb, R. M. White. Integrated flow sensor for in situ measurement and control of acoustic streaming in flexural plate wave micropumps. Sensors and Actuators A: Physical. 2000,79(2):115-121
    78 A. Asai, T. Hara, I. Endo. One-Dimensional Model of Bubble Growth and Liquid Flow in Bubble Jet Printers. Jpn J Appl Phys. 1987,26:1794-1801
    79 X. Geng, H. Yuan, H. N. Oguz, A. Prosperetti. Bubble-based micropump for electrically conducting liquids. Journal of Micromechanics and Microengineering. 2001,11(3):270-276
    80 C. H. Chen, J. G. Santiago. A Planar Electroosmotic Micropump. J Micro Electro Mech Syst. 2002,11:672-683
    81 S. Liu, Q. Pu, J. J. Lu. Electric field-decoupled electroosmotic pump for microfluidic devices. Journal of Chromatography A. 2003,1013:57-64
    82 N. J. Sniadecki. Field-Effect Flow Control in Microfluidics. the Faculty of the Graduate School of the University of Maryland. 2003: 128-147
    83 A. R. Minerick, A. E. Ostafin, H. C. Chang. Electrokinetic Transport of Red Blood Cells in Micocapillaries. Electrophoresis. 2002,23:2165-2173
    84陈令新,关亚风.单级高压微流量电渗泵的研究.分析化学. 2003,31(7):886-889
    85陈令新,关亚风.微流量输液泵.分析化学. 2003,31(6):749-754
    86陈令新,关亚风,马继平,舒馨,谭峰.填充床电渗泵的理论、控制与应用.科学通报. 2003,48(20):2127-2131
    87 L. Chen, J. Ma, B. Yang, F. Tan, Y. Guam. Fabrication and Characterization of a Multi-stage electroosmotic Pump for Liquid Delivery. Sensors and ActuatorsB: Chemical. 2005,104:117-123
    88 M. M. Gregersen. AC Asymmetric Electrode Micropumps. Department of Micro and Nanotechnology. Technical University of Denmark. 2005: 54-71
    89 M. M. Gregersen, L. H. Olesen, A. Brask, M. F. Hansen, H. Bruus. Flow reversal at low voltage and low frequency in a microfabricated ac electrokinetic pump. Phy Rev E. 2007,76:056305
    90 R. J. Hunter. Zeta Potential in Colloid Science: Principles and Applications. Academic Press. 1981: 20-40
    91 D. J. Harrison, A. Manz, P. G. Glavina. Electroosmotic pumping within a chemical sensor system integratedon silicon. Proceedings of 1991 International Conference on Solid-State Sensors and Actuators, San Francisco, CA, USA, 1991:792-795
    92 Z. H. Fan, D. J. Harrison. Micromachining of Capillary Electrophoresis Injectors and Separators on Glass Chips and Evaluation of Flow at Capillary Intersections. Anal Chem. 1994,66:177-184
    93舒馨,陈令新.毛细管等电聚焦和电渗泵驱动聚焦区带分离蛋白质.分析试验室. 2004,23(5):1-4
    94 J. O. M. Bockris, A. K. N. Reddy. Modern Electrochemistry. Plenum Press. 1973: 35-60
    95 S. S. Dukhin, V. N. Shilov. Dielectric Phenomena and the Double Layer in Disperse Systems and Polyelectrolytes. Wiley. 1974: 56-80
    96 J. Lyklema. Fundamentals of Interface and Colloid Science Vol II. Academic Press. 1995: 25-50
    97 O. Stern. The theory of the electrical double-layer. Z Elecktrochem. 1924,30:508-516
    98仲武,陈云飞.电渗流泵的机理分析.东南大学学报. 2003,33(3):307-341
    99仲武,陈云飞.毛细管电渗流微泵的流型及驱动.机械工程学报. 2006,42(2):22-26
    100陈令新,关亚风.电渗泵在微柱液相色谱上的应用.色谱. 2002,20(2):115-117
    101陈令新,关亚风.电渗泵中的电渗流控制.分析化学. 2003,31(5):619-623
    102 A. Ramos, H. Morgan, N. G. Green, A. Castellanos. AC Electrokinetics: A review of forces in microelectrode structures. J Phys D: Appl Phys. 1998,31:2338-2353
    103 A. González, A. Ramos. Fluid flow Induced by Non Uniform AC ElectricFields in Electrolytes on Microelectrodes II: A linear Double Layer Analysis. Phy Rev E. 2000,61(4):4019-4028
    104 N. G. Green, A. Ramos. Fluid flow Induced by Non Uniform AC Electric Fields in Electrolytes on Microelectrodes III: Observation of streamlines and numerical simulation. Phy Rev E. 2002,3(66):1-11
    105 B. P. Cahill, L. J. Heyderman, J. Gobrecht, A. Stemmer. Electro-osmotic streaming on application of traveling-wave electric fields. Phy Rev E. 2004,70:036305
    106 B. P. Cahill. AC Electro-osmotic Pumping for Microfluidic Systems. The Swiss Federal Institute of Technology. 2005: 13-18
    107 B. P. Cahill, L. J. Heydermanb, J. Gobrechtb, A. Stemmer. Electro-osmotic pumping on application of phase-shifted signals to interdigitated electrodes. Sensors and Actuators B: Chemical. 2005,110(1):157-163
    108 J. Wu. AC Electroosmotic Micropump by Asymmetric Electrode Polarization. J Appl Phys. 2008,103:024907
    109 J. Wu, Y. Ben, H. C. Chang. Particle Detection by Micro- Electrical Impedance Spectroscopy with Asymmetric-Polarization AC Electroosmotic Trapping. Microfluidics & Nanofluidics. 2005,1(2):161-167
    110 L. H. Olesen. AC Electrokinetic micropumps. Department of Micro and Nanotechnology, Technical University of Denmark. 2006: 9-112
    111 L. H. Olesen, F. Okkels, H. Bruus. A high-level programming-language implementation of topology optimization applied to steady-state Navier–Stokes flow. Int J Num Meth Eng. 2006,65:975-1001
    112 V. Studer, A. Pepin, Y. Chen, A. Ajdari. An integrated AC electrokinetic pump in a microfluidic loop for fast and tunable flow control. Analyst. 2004,129:944-949
    113 M. J. Mitchell, R. Qiao, N. R. Aluru. Meshless Analysis of Steady-State Electro-Osmotic Transport. Journal of microelectromechanical systems. 2000,9(4):435-449
    114姜洪源,杨胡坤,王扬.直流电渗流在微通道内的控制与仿真研究.微纳电子技术. 2008,45(3):166-169
    115 P. T. Vallano, V. T. Remcho. Modeling the Velocity Field of the Electroosmotic Flow in Charged Capillaries and in Capillary Columns Packed with Charged Particles: Interstitial and Intraparticle Velocities in Capillary Electro-chromatography Systems. Anal Chem. 2000,72:4255-4265
    116 N. A. Patankar, H. H. Hu. Numerical Simulation of Electroosmotic Flow. AnalChem. 1998,70:1870-1881
    117仲武,陈云飞.毛细管电渗流微泵的流体动力学的数值仿真.机械工程学报. 2004,40(2):73-77
    118张立翔,杨苛.流体结构互动理论及其应用[M].北京.科学出版社. 2004: 14-16
    119聂德明,林建忠,石兴.弯管电渗流场的数值模拟及研究.分析化学. 2004,32(8):988-992
    120聂德明,林建忠,王瑞金.电渗流场的数值模拟.第八届全国环境与工业流体力学会议,绵阳,中国力学学会, 2003:90-94
    121 A. J. Bard, L. R. Faulkener. Electrochemical Methods, Fundamentals and Applications. Wiley. 1980: 58-81
    122 H. P. Schwan. Electrode Polarization Impedance and Measurements in Biological Materials. Annals of the New York Academy of Sciences. 1968,148(1):191-209
    123 H. Yang, H. Jiang, H. Yan, C. Ma. Determination of the Accumulated Location of Microparticle Collection Caused by AC EO. Proceedings of ICIEA 2007, Harbin, China, 2007:251-254
    124 H. Morgan, N. G. Green. AC Electrokinetics: colloids and nanoparticles. Research Studies Press Ltd. 2003: 8-12
    125粘正勋,邱闻锋.介电泳动—承先启后的奈米操纵术.物理双月刊. 2004,23(6):492-497
    126姜洪源,闫宝森,杨胡坤, A. Ramos.交流电渗驱动机理及流速计算.中国机械工程. 2007,18(14):1672-1675
    127姜洪源,杨胡坤,王扬.交流电渗微泵流速影响因素的研究.传感技术学报. 2008,21(7):1089-1092
    128 D. C. Grahame. The Electrical Double Layer and the theory of Electrocapillary. Chem Rev. 1947,41:441-501
    129 D. Wang, M. Sigurdson, C. D. Meinhart. Experimental analysis of particle and fluid motion in ac electrokinetics. Experiments in Fluids. 2005,38:1-10
    130 P. Garcia-Sanchez, A. Ramos, N. G. Green, H. Morgan. Experiments on AC electrokinetic pumping of liquids using arrays of microelectrodes. IEEE Transactions on Dielectrics and Electrical Insulation. 2006,13(3):670-677
    131姜洪源,闫宝森,杨胡坤, A. Ramos.交流电渗微泵理论模型与数值仿真.哈尔滨工程大学学报. 2007,28(12):1367-1370
    132 C. Meinhart, S. Wereley, M. Gray. Volume illumination for two-dimensional particle image velocimetry. Meas Sci Technol. 2000,11(6):809-814
    133 C. Meinhart, S. Wereley, J. Santiago. PIV measurements of a microchannel flow. Exp in Fluids. 1999,27(5):414-419
    134 C. Meinhart, S. Wereley, J. Santiago. A PIV algorithm for estimating timeaveraged velocity fields. J Fluids Eng. 2000,122(2):285-289
    135 N. Loucaides, A. Ramos, G. E. Georghiou. Novel systems for configurable AC electroosmotic pumping. Microfluid Nanofluid. 2007,3:709-714
    136 H. Morgan, N. G. Green, M. P. Hughes, W. Monaghan, T. C. Tan. Large-area travelling-wave dielectrophoresis particle separator. J Micromech Microeng. 1997,7:65-70
    137 A. Ramos, H. Morgan, N. G. Green, A. González. Pumping of liquids with traveling-wave electroosmosis. J Appl Phys. 2005,97:084906
    138 A. Gonzalez, A. Ramos, A. Castellanos. Pumping of liquids using travelling wave electro-osmosis: a nonlinear analysis. Proceedings of 2005 IEEE International Conference on Dielectric Liquids, Coimbra, Portugal, 2005:221-224
    139崔海航,李战华,靳刚.一种PDMS薄膜型微阀的制备与性能分析.微细加工技术. 2004,3:70-75
    140刘长春,崔大付,王利.聚二甲基硅氧烷微流体芯片的制作技术.传感器技术. 2004,23(7):77-80
    141徐书洁,段玉岗,丁玉成,卢秉恒. PDMS微流控芯片复型模具的新型快速制作方法.机械工程学报2007,43(6):105-109
    142 N. G. Green, A. Ramos, A. Gonzáleza, A. Castellanos, H. Morgan. Electrothermally induced fluid flow on microelectrodes. Journal of Electrostatics. 2001,53(2):71-87
    143 A. Gonzáleza, A. Ramos, N. G. Green, H. Morgan, A. Castellanos. Electrothermal flows generated by alternating and rotating electric fields in microsystems. J Fluid Mech. 2006,564:415-433
    144 M. Lian, J. Wu, H. Jiang, H. Yang. Manipulation of nanoparticles by AC electrothermal effect in laboratory-on-a-chip applications. Journal of Southeast University(English Edition). 2007,23(4):534-539
    145 Y. Huang, X. B. Wang, J. A. Tame, R. Pethig. Electrokinetic behaviour of colloidal particles in traveling electric fields: studies using yeast cells. J Phys, D: Appl Phys. 1993,26:1528-1535
    146 X. B. Wang, Y. Huang, F. F. Becker, P. R. C. Gascoyne. A unified theory of dielectrophoresis and travelling wave diectrophoresis. J. Appl Phys. 1994,27:1571-1574
    147倪中华,朱树存.基于介电泳的生物粒子分离芯片.东南大学学报. 2005,35(5):724-728
    148 N. Islam, J. Wu. Microfluidic Transport by AC Electroosmosis. Journal of Physics: Conference Series. 2006,34:356-361

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700