集成生化低电压芯片电泳系统的基础理论及关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微型全分析芯片系统是微型分析仪器发展的重要方向,以芯片电泳技术为主流的微型全分析系统(μ-TAS),以其高效、快速、微量、易自动化等优点,正以强劲的势头向生命科学等各相关领域渗透。特别是生化应用领域的集成微流控芯片电泳分析系统,已成为芯片技术的主要研究领域,高集成度化、微型化和便携化的芯片分析系统是人们目前研发的重点和热点。
     本博士学位论文针对目前微流控芯片电泳存在的系统分离电压高、检测系统分离、芯片与外界的接口匹配、芯片系统一体化集成加工技术等问题,提出低电压运动梯度场电泳理论、集成芯片电泳的低电压分离模型与控制方法。通过对电场和流场的模拟计算和分析,确定了低电压电泳芯片的整体结构,并对系统的进样、分离和检测进行了结构和参数优化的设计;提出了在芯片微通道上双检测器的集成思想;提出了实现集成生化低电压芯片电泳分离的控制方法,并研制了实现低电压运动梯度场的控制电路;提出了以SOI-MEMS加工技术实现含阵列微电极的硅基低电压电泳芯片的加工工艺方法,实现了芯片的一体化集成;采用氨基酸样品体系对研制出的集成生化低电压芯片电泳系统进行了实验,实验结果有效验证了本论文研制的集成生化低电压芯片电泳系统的可行性。
     本文主要工作如下:
     ①本文在查阅大量文献、资料和总结前期研究工作的基础上,在研究集成芯片电泳的低电压分离理论及其控制方法的基础上,提出集成低电压电泳芯片总体方案;
     ②通过集成低电压电泳芯片模型的建立,采用ANAS和ConvertorWare软件分析系统进行了集成低电压电泳芯片管道中电场和流场的模拟分析,确定低电压电泳芯片整体结构和主要参数;
     ③提出了在芯片分离微通道尾端进行非接触式高频电导检测和光学检测的双检测器集成的思想;实现了硅基电泳芯片非接触式高频电导检测方法;
     ④提出了实现集成生化低电压芯片电泳分离的控制方法,成功研制了实现低电压运动梯度场的控制电路;
     ⑤采用SOI-MEMS加工技术,探索了Si-PDMS电泳芯片加工兼容性,实现了芯片的一体化集成加工;
     ⑥采用氨基酸样品体系对集成生化低电压芯片电泳系统进行分离检测实验,验证了集成低电压电泳芯片系统和相应电路控制方法的有效性和实用性。
     本论文的工作得到了国家自然科学基金半导体集成芯片系统重大基础研究计划和重庆市自然科学基金重点项目的资助。
The Microfluidic microchip is the most importmant development of miniaturized total analytical system in the field of micro analytical instrument. As a branch of the development, the integrated electrophoresis microchip, with the characteristics of high performance, fast speed, low reagent comsumption and easy automation, is more and more frequently being employed in life science and other relevant fields and is becoming the focus in the research of microfluidic analytical system. The microfluidic analytical system with high integration, easy automation and convenient portability is being pursued by researchers all over the world.
     However, some difficulties still remain in microfluidic chip electrophoresis, such as high working voltage, separation of the large detecting system, inaccessible exterior connection, sophisticated fabricaton and so forth. This doctoral thesis develops on the basis of the proposed theory of, low voltage separate model and its controlling methodology. A theory of Moving Gradient Electric Field Electrophoresis on Microchip is porposed in this paper, and a low voltage separate model and its controlling methodology are discussed in detail as well. On this basis, an integrated bio-chemical low voltage electrophoresis microchip system is developed as a result. The overall structural design of the chip was optiumed by the simulation analysis of electric and fluidic in the microchannel on the chip. Operational parameters of sampling, separating and detecting process were also obtained and selected as a result. The concept of double detectors, high frequence connectless conductivity detector and photo-electric detector integrated on the designed chip were proposed. The circuit controlling methodology was put forword and discussed in detail. As a result, the controlling circuit was designed and produced, which was easy for using and controlling. Based on the SOI material, the MEMS fabricating process was proposed to make the low voltage micochip with electrode array. The integrating fabrication on the chip was successfully carried out, and the microchip with microchannels, controlling circuits and detectors was obtained. With the selecting amino acids sample system, electrophoresis on microchip was carried on the integrated microfluidic analytical system, and experimental results have shown that the system was effective and practical in use.
     The main investigations in this thesis are as the fellowing.
     ①On the basis of a large amount reference and pervious work, the theory of Moving Gradient Electric Field Electrophoresis on Microchip and relative controlling methodology were presented. The concept of total design of the integrated low voltage CE chip was proposed.
     ②The solid mode of the integrated low voltage CE chip was set up at first. Then, ANAS and ConvertorWare finite element software was applied to simulate the electric and fluidic fields in the icrochannel on the integrated low voltage CE chip. According to the simulation results, structural and operational parameters were optimized and selected.
     ③The double detectors, high frequence connectless conductivity detector and photo-electric detector, were proposed to integrate at the end of the separating channel on the designed CE chip. In this thesis, the high frequence connectless conductivity detecting electrodes were fabricated on the silicon CE chip.
     ④The circuit controlling methodology of low voltage CE separation and analysis was put forword and discribed in detail. On this basis, the controlling circuit was successfully designed and produced.
     ⑤According to the charactors of SOI material, the MEMS fabrication process was proposed to produce the integrated low voltage CE chip. Compatibility between Silicon and PDME in processing and bonding was investigated. The integrated microchip sample with microchannels, controlling circuit,detecting system and information obtaining system was figured out.
     ⑥Amino acids were selected as the sample to be applied in the experiments of the low voltage electrophoresis on the integrated microchip. The experimental results had shown that the integrated low voltage CE chip analytical systemand relative controlling methodology was effective and practical.
     The research work in this thesis was supported by National Nature and Science Fund and by Chongqing Nature and Science Fund.
引文
[1] Manz A, Becker B(Eds), Microsystem Technology in Chemistry and Life Sciences, Berlin: Springer, 1999, 3-4
    [2] [0] Bell T E, Gennissen PTJ, Demunter D., Porous silicon as a sacrificial material. Micromech.Microeng. 2000, 6 (4) :361-369.
    [3] [0]路敦武,黄惠杰,沈蓓军等,几种微机械系统组装技术, 功能材料与器件学, 1998, 4(2) :138-140
    [4] [0]刘晓斌,微机电系统的进展分析与研究,机械研究与应用,2002,15(1): 42
    [5] [0]温诗铸,关于微机电系统研究,中国机械工程,2003,14(2):159-163
    [6] [0]周兆英,杨兴,微/纳机电系统,仪表技术与传感器,2003,2:1-5
    [7] [0]孙克豪,钱劲,张立宪,余同希,赵亚溥,MEMS 器件的计算机辅助设计与模拟,机械强度,2001,23(4):488-494
    [8] [0]刘晓斌,微机电系统的进展分析与研究,机械研究与应用,2002,15(1):72-75
    [9] [0]Herr A E, Molho J I, Drouvalakis K A, On-Chip Coupling of Isoelectric Focusing and Free Solution Electrophoresis for Multidimensional Separations. Anal. Chem. 2003, 75(5): 1180– 1187.
    [10] [0]王亚珍,朱文坚,微机电系统技术及发展趋势,机械设计与研究,2004,20(1):10-13
    [11] [0][0]方肇伦,方群,微流控芯片发展与展望,现代科学仪器,2001,4:3-6
    [12] [0]朱涛,方晓红,孙亦梁, 高效毛细管电泳,化学进展,1994,6(3):229-243
    [13] [0]林柄承,毛细管电泳导论,北京:科学出版社,1996,11, pp12
    [14] [0]林柄承,丁永生,毛细管电泳十年进展(光盘版),2000,6
    [15] [0]Dang F., Shinohara S., Tabata O., Yamaoka Y., Kurokawa M., Shinohara Y., Ishikawa M., Baba Y.,Replica multichannel polymer chips with a network of sacrificial channels sealed by adhesive printing method,Lab on a Chip, 2005, 5, 472 – 478
    [16] [0]Dolnik V, Liu S, et al. Capillary electrophoresis on microchip. Electrophoresis., 2000, (21): 41-54
    [17] [0]Figeys D, Pinto D. Lab-on-a-chip : a revolution in biological and medical sciences. Anal. Chem., 2000 , (1):330-335
    [18] [0]Manz, A.; Miyahara, Y.; Miura, J.; Watanabe, Y.; Miyagi, H.; Sato,K. Design of an open-tubular column liquid chromatograph using silicon chip technology . Sensors and Actuators B, 1990.1: 249-255.
    [19] [0]van Lintel, H. T. G.; van de Pol, F. C. M.; Bouwstra, S. A piezoelectric micropump based onmicromachining of silicon. Sensors and Actuators, 1988, 15, 153-167.
    [20] [0]Esashi, M.; Shoji, S.; Nakano, A. Normally closed microvalve and micropump fabricated on a silicon wafer. Sensors and Actuators, 1989, 20, 163-169.
    [21] [0] Van de Pol, F.C.M.; Wonnink, D.G.J.; Elwenspoek, M.; Fluitman,J. H. J. A thermo-pneumatic actuation principle fpr a microminiature pump and other micromechanical devices. Sensors and Actuators, 1989, 17, 139-143.
    [22] [0]Shoji, S.; Esashi, M.; Matsuo, T. Prototype miniature blood gas analyzer fabricated on a silicon wafer. Sensors and Actuators, 1988, 14, 101-107.
    [23] [0]Manz, A.; Graber, N.; Widmer, H. M. Miniaturized total chemical analysis systems: a novel concept for chemical sensing, driving systems, J. Micromech. Microeng. 17 (2002) 115–121. Sensors and Actuators, 1990, B1, 244-248.
    [24] [0]Harrison, D. J.; Fluri, K.; Seiler, K.; Fan, Z.; Effenhauser, C. S.; Manz, A. Micromachining a miniaturized capillary electrophoresis-based chemical analysis system on a chip. Science 1993, 261, 895-897.
    [25] [0]Lagally, E. T.; Scherer, J. R.; Blazej, R. G.; Toriello, N. M.; Diep, B. A.; Ramchandani, M.; Sensabaugh, G. F.; Riley, L. W.; Mathies, R. A. ,Integrated Portable Genetic Analysis Microsystem for Pathogen/Infectious Disease Detection,Anal. Chem.; 2004; 76(11); 3162- 3170.
    [26] [0]Pavel Kubá and Peter C. Hauser,Effects of the cell geometry and operating parameters on the performance of an external contactless conductivity detector for microchip electrophoresis, Lab on a Chip, 2005, 5, 407 - 415
    [27] [0]Jacobson, S. C.; Hergenroder, R.; Moore, A. W.; Ramsey, J. M. Precolumn reactions eith electrophoretic analysis integrated on a microchip. Anal. Chem. 1994, 66, 4127-4132
    [28] [0]Jacobson, S.C.; Koutny, L.B.; Hergenroder, R.; Moore, A. W.;Ramsey, J.M. Microchip capillary electrophoresis with an integrated postcolumn reactor. Anal. Chem. 1994, 66, 3472- 3476.
    [29] [0]Dethy J M, Ackermann B L, Delatour C et al. Demonstration of direct bioanalysis of drug in plasma using nanoeletrospray infusion from a silicon chip coupled with Tandem MS. Anal Chem., 2003, 75(4): 805-811
    [30] [0]Anderson R C, Su X, Bogdan G J, et al. A miniature integrated device for automated nultisep genetic assay. Nucl. Acids Res., 2000 , 28 : 60-67
    [31] [0] Xiao D Q, Thai V L, Wirth M J. Surface modification of the channels of poly(dimethylsiloxane) microfluidic chips with polyacrylamide for fast electrophoretic separations of proteins. Anal Chem., 2004, 76(7): 2055-2061
    [32] [0]Liu Y J, Ganser D, Schneider A et al. Microfabricated polycarbonate CE devices for DNA analysis. Anal. Chem., 2001. 73(11): 4196-4201
    [33] [0]Fan, Z. H.; Harrison, D. J. Micromachining of Capillary Electrophoresis Injectors and Separators on Glass Chips and Evaluation of Flow at Capillary Intersections. Anal. Chem. 1994, 66, 177-184.
    [34] [0]王楠,陈恒武,何巧红等,芯片胶束电动色谱分离荧光素异硫氰酸酯衍生的氨基酸,浙江大学学报,2004, 31(3):309-313
    [35] [0]Fuhr, G.; Wagner, B. In Proceedings of Micro Total Analysis Systems1994; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1994; pp 209-214.
    [36] [0]Burggraf, N.; Manz, A.; Verpoorte, E.; Effenhauser, C. S.; Widmer,H. M. A novel approach to ion separations in solution: synchronized cyclic capillary electrophoresis(SCCE). Sens. Actuators, B 1994, 20, 103-110.
    [37] [0]Raymond, D. E.; Manz, A.; Widmer, H. M. Continuous sample pretreatment using a free-flow electrophorsis device integrated onto a silicon chip. Anal. Chem. 1994,66, 2858-2865.
    [38] [0]Jacobson, S. C.; Hergenroder, R.; Koutny, L. B.; Warmack, R. J.;Ramsey, J. M. Effects of Injection Schemes and Column Geometry on the Performance of Microchip Electrophoresis Devices .Anal. Chem. 1994, 66, 1107-1113.
    [39] [0]Joshua I. Molho, Amy E. Herr, Bruce P. Mosier, Juan G. Santiago, and Thomas W. Kenny. Optimization of Turn Geometries for Microchip Electrophoresis. Anal. Chem.2001, 73, 1350-1360
    [40] [0]Lung-Ming Fu,Ruey-Jen Yang,Gwo-Bin Lee. Analysis of geometry effects on band spreading of microchip electrophoresis. Electrophoresis 2002, 23, 602–612
    [41] [0]金亚,罗国安,王如骥,集成毛细管电泳芯片研究进展,色谱,2000,18,4,313-317
    [42] [0]Weiller BH, Ceriotti L, Shibata T. Analysis of lipoproteins by capillary zone electrophoresis in microfluidic devices : Assay development and surface roughness measurements. Anal. Chem., 2002, 74:1702-1711
    [43] [0]Cohen C B, Dixon E C, Jeong S. A microchip-based enzyme assay for protein kinase A. Anal. Biochem., 1999, 273(1):89-97
    [44] [0]Gao J, Xu J D, Locascio L E. Integrated microfluidic system enabling protein digestion, peptide separation, and protein identification. Anal. Chem., 2001, 73(11):2648-2655
    [45] Roper M G, Shackman J G, Dahlgren G M. Microfluidic chip for continuous monitoring of hormone secretion from live cells using an electrophoresis-based immunoassay. Anal. Chem., 2003, 75(18): 4711-4717
    [0]
    [46] [0]Jin L J, Giordano B C, Landers J P. Dynamic labeling during capillary or microchip electrophoresis for laser-induced fluorescence detection of protein-SDS complexes without Pre- or Postcolumn labeling. Anal. Chem., 2001, 73(20):4994-4999
    [47] [0]Wang Z L, Swinney K, Bomhop D J. Attomole sensitivity for unlabeled proteins and polypeptides with on-chip capillary electrophoresis and universal detection by interferometric backscatter. Electrophoresis., 2003, 24(5):865-873
    [48] [0]Bousse L, Mouradian S, Minalla A.,Protein sizing on a microchip. Anal. Chem., 2001, 73(6):1207-1212
    [49] [0]Hofmann O, Che D, Cruickshank K A. Adaptation of capillary isoelectric focusing to microchannels on a glass chip. Anal. Chem., 1999, 71(3):678-686
    [50] [0]Herr A E, Molho J I, Drouvalakis K A. On-chip coupling of isoelectric focusing and free solution electrophoresis for multidimensional separations. Anal. Chem., 2003, 75(5): 1180-1187
    [51] [0]Wen J, Lin Y H, Xiang F,et al. Microfabricated isoelectric focusing device for direct electrospray ionization-mass spectrometry. Eletrophoresis, 2000, 21(1):191-197.
    [52] [0]Mao Q, Pawliszyn J. Demonstration of isoelectric focusing on an etched quartz chip with UV absorption imaging detection. Analyst. 1999, 124(5):637-642
    [53] [0]Raisi F, Belgrader P, Borkholder D A et al. Microchip isoelectric focusing using a miniature scanning detection system. Electrophoresis, 2001, 22(11): 2291-2295.
    [54] [0]Macounov a K, Cabrera C R, Yager P. Concentration and separation of proteins in microfluidic channels on the basis of transverse IEF. Anal. Chem., 2001, 73(7):1627-1633
    [55] [0]Huang T M, Pawliszyn J. Microfabrication of a tapered channel for isoelectric focusing with thermally generated pH gradient. Electrophoresis., 2002, 23(20): 3504-3510
    [56] [0]He B, Ji J Y, Regnier F E. Capillary electrochromatography of peptides in a microfabricated system. J. Chromatogr. A., 1999, 853(1-2):257-262
    [57] [0]Shediac R, Ngola S M, Throckmorton D J et al. Reversed-phase electrochromatography of amino acids and peptides using porous polymer monoliths. J. Chromatogr. A., 2001, 925(1-2): 251-263
    [58] [0]Throckmorton D J, Shepodd T J, Singh A K. Electro-chromatography in microchips: reversed-phase separation of peptides and amino acids using photo patterned rigid polymer monoliths. Anal. Chem., 2002, 74(4):784-789
    [59] [0]Chen X X, Wu H K, Mao C D. A prototype two-dimensional capillary electrophoresis system fabricated in poly(dimethylsiloxane). Anal. Chem., 2002, 74:1772-1778
    [60] [0]Li Y, Buch J S, Rosenberger F, et al. Integration of Isoelectric Focusing with Parallel SodiumDodecyl Sulfate Gel Electrophoresis for Multidimensional Protein Separations in a Plastic Microfludic Network, Anal. Chem .,2004, 76(3): 742-748
    [61] [0]Xu Y, Zhang C X, Janasck D, et al. Sub-second isoelectric focusing in free flow using a microfluidic device.Lab on a Chip, 2003, 3(4): 224-227
    [62] [0]Rocklin R D, Ramsey R S, Ramsey J M, et al. A Microfabricated Fluidic Device for Performing Two-Dimensional Liquid-Phase Separations. Anal. Chem., 2000, 72(21): 5244-5249
    [63] [0]Ramsey J D, Jacobson S C, Clubertson C T, et al. High-Efficiency, Two-Dimensional Separations of Protein Digests on Microfluidic Devices , Anal., Chem., 2003, 75(15): 3758-3764
    [64] [0]M Abraham,W Ehrfeld, V Hessel, K P Kamper, M Lacher , Microsystem technology: between research and industrial application, Microelectronic Engineering,1998,41:47-52
    [65] [0]范军, 石晓强, 梁恒. 化学发光二维电泳检测微流控芯片系统. 高等学校化学学报,2004, 25(增刊):84-85.
    [66] [0]Shen Yan, Xu Qi, Han Futian, Song Fang, Fan Yu, Zhu Ning, Wu Guanyun, Lin Bingcheng. Application of capillary nongel sieving electrophoresis for gene analysis,Electrophoresis, 1999, 20(9): 1822-1828
    [67] [0]Ding Yongsheng, Zhu Xiaofeng, Lin Bingcheng. Capillary Electrophoresis Study of Human Serum Albumin Binding to Basic Drugs, Chromatography, 1999, 49(5/6):343-346[0][0][0]
    [68] [0]Manz A, Harrison D J, Verpoorte E et al. Planar chip technology of separation system: a developing perspective in chemical monitoring. Advances in Chromatography, 1993, 33:1-66
    [69] [0]Seller K, Fan Z H, Flurl K, Harrison D J. Electroosmotic pumping and valveless control of fluid flow within a manifold of capillaries on a glass chip. Anal. Chem., 1994, 66:3485-3491
    [70] [0]Nickolaj J. Petersen, Rikke P. H. Nikolajsen, Klaus B. Mogensen,J.P. Kutter, Effect of Joule heating on efficiency and performance for microchip-based and capillary based electrophoretic separation systems: A closer look, Electrophoresis 2004, 25, 253–269 253
    [71] [0]Kelly Swinney,Darryl J. Bornhop, Quantification and evaluation of Joule heating in on-chip capillary electrophoresis, Electrophoresis 2002, 23, 613–620
    [72] [0]Monning C A, Jorgenson J W. On-column sample gating for high-speed capillary zone electrophoresis. Anal Chem, 1991 , 63 (8) : 802 - 807.
    [73] [0]Harrison D Jed., Fluri K., Fan Z. H., Effenhauser C. S. , Manz A. Micromachining a miniaturized capillary electrophoresis-based chemical analysis system on a chip. Science, 1993,261:895~897
    [74] [0]Harrison D Jed, Fan Z, Fluri K, Seiler K. Integrated electrophoresis systems for biochemicalanalysis. Int. Technical Digest of the 1994 Solid State Sensor and Actuator Workshop. Hilton Head Island, SC, 1994.21-24
    [75] [0]Jiang X N, Huang X Y, Liu C Y, Zhou Z Y, Li Y, Yang Y. Micronozzle/diffuser flow and its application in microvalveless pumps. Sensors and Actuators A:Physical, 1998,70(1-2):101~108
    [76] [0]Schasfoort R B M, Schlautmann S, Hendrikse J,van den Berg A. Field-effect flow control foe micro-fabricated fluidic networks. Science,1999,286:942~945
    [77] [0]Bianchi F, Ferrigno R, Girault H H. Finite element simulation of an electroosmotic-driven flow division at a T-Junction of micro-scale dimensions. Analytical Chemistry,2000,72(9):1987- 1993
    [78] [0]Laurie E. Locascio, Catherine E. Perso, Cheng S. Lee, Measurement of electroosmotic flow in plastic imprinted microfluid devices and the effect of protein adsorption on flow rate, Journal of Chromatography A,1999,857:275-284
    [79] [0] Jason L. Pittman, Charles S. Henry, S. Douglass Gilman, Experimental Studies of Electroosmotic Flow Dynamics in Miceofabricated Devices during Current Monitoring Experiments, Anal. Chem. 2003,75,361-370
    [80] [0] Schrum D. P., Culbertson C. T., Jacobson S. C., Microchip flow cytometry using electrokinetic focusing. Anal. Chem.,1999,71(19): 4173-4177
    [81] [0]Fuhr G., Hagedorn R., Muller T., Benecke W., Wagner B., Gimsa J., Asynchronous traveling-wave incuced linear motion of living cells,Stud.Biophys.140(1991)79-102
    [82] [0] Morgan H., Green G., Honaghan M.P., Tan T.C., Largearea traveling-wave dielectrophoresis particle separator, J. Micromech. Microeng. 1997,7:65-70
    [83] [0] Webster J.R., Jones D.K., Mastrangelo C.H., Monolithic capillary gel electrophoresis stage with on-chip detector, in. Proceedings of the IEEE 9th International Workshop MEMS’96,February 1996,pp.491-496
    [84] [0]N.Burggrf, Manz A., Effenhauser C.S., Widmer H.M., de Rooij N.F., A novel approach to ion separation in solution: synchronized cyclic capillary electrophoresis(SCCE), Sensors and Actuators, B:Chem. 1994,20:103-110
    [85] [0]McClain M. A.,Culbertson C. T.,Jacobon S. C. Flow cytometry of escherichia coli on microfluidic devices. Anal. Chem.,2001,73(21): 5334-5338
    [86] [0] Fuhr G., Hagedom R., Muller T., Benecke W., Wagner B., Gimsa J., Asynchronous traveling-wave induced linear motion of living cells, Studia Biophys. 1991,140:79-102.
    [87] [0]Carlos F. Gonzalez, Vincent T. Remcho,Harnessing dielectric forces for separations of cells, fine particles and macromolecules. Journal of Chromatography A, 2005,1079:59–68
    [88] [0]H. Morgan, G. Green, M.P. Hughes, W. Monaghan, T.C. Tan, Largearea traveling-wavedielectrophoresis particle separator, J. Micromech. Microeng. 1997,7: 65-70.
    [89] [0]Cui L., Morgan H., Design and fabrication of travelling wave dielectrophoresis structures, J. Micromech. Microeng. 2000,10:72-79.
    [90] [0]Wang X.B., Huang Y., Becker F.F., Gascoyne P.R.C., A unified theory of dielectrophoresis and travelling-wave dielectrophoresis, J. Phys. D: Appl. Phys. 1994,27: 1571-1574.
    [91] [0]Hughes M.P., Pethig R., Wang X.B., Dielectrophoretic forces on particles in traveling electric fields, J. Phys. D: Appl. Phys. 1996,29:474-482.
    [92] [0]Webster J.R., Jones D.K., Mastrangelo C.H., Monolithic capillary gel electrophoresis stage with on-chip detector, in: Proceedings of MEMS, The IEEE 9th International Workshop, February, 1996, pp. 491-496.
    [93] [0]Yu-Cheng Lin, Wei-Da Wu, Arrayed-electrode design for moving electric Field driven capillary electrophoresis chips , Sensors and Actuators B , 2001,73 :54-62;
    [94] [0]Yu-Cheng Lin , Design of low voltage-driven capillary electrophoresis chips using moving electrical fields, Sensors and Actuators B,2001, 80 : 33-40
    [95] [0]Lung-Ming Fu, Ruey-Jen Yang,, Low-voltage driven control in electrophoresis microchips by traveling electric field, Electrophoresis 2003, 24, 1253–1260
    [96] [0]刘岗,温志渝,李霞,张流强,彭述成,影响低电压电泳芯片分离的主要因素,微纳电子技术,2003,7/8:347-350
    [97] [0]陈里铭,闫卫平,刘军民,低电压驱动毛细管电泳芯片电势分布数值计算,仪器仪表学报,2005,26(8):183-184
    [98] [0]陈超,赵湛,张搏军,基于线阵电极电泳芯片的微全分析系统,微纳电子技术,2003,7-8:362-364
    [99] [0]陈超,赵湛,线阵电极电泳芯片与单片机控制系统,传感器技术,2004,23(1):77-80
    [100] [0]吴英,温志渝,张正元,蒋子平,黄尚廉,低电压集成电泳芯片的研制,光学精密工程,2003,11(2):
    [101] [0]李霞,温志渝,李星海,吴英,彭述成,电泳芯片的低电压分离模型及控制系统,微纳电子技术,2003,7/8: 344-346
    [102] [0]Lapos J. A., Manica D. P.,Ewing A. G. Dual Fluorescence and Electrochemical Detection on an Electrophoresis Microchip, Anal. Chem. 2002, 74(14):3348-3353
    [103] [0]Andreas J. Zemann,Conductivity detection in capillary electrophoresis, trends in analytical chemistry, 2001, 20(6,7):
    [104] [0]Yan Liu, David O. Wipf and Charles S.Henry. Conductivity detection for monitoring mixing reactions in microfluidic devices. Analyst, 2001, 126, 1248-1251
    [105] [0]胡深,庞代文,李培标等. 毛细管电泳电化学检测,分析测试学报, 1997, 16:70-75
    [106] [0]Prest J, Baqldock S J, Bektas N. Single electrode conductivity detection for electrophoretic separation systems. J. chromatotgr. A. 1999,836: 59-65
    [107] [0]陈瓒光,莫金桓,毛细管电泳高频电导检测器的研制,高等学校化学学报,2002,23(5): 801-804
    [108] [0]A.J.Zemann, Conductivity detection in capillary electrophoresis, Trends in Anal. Chem., 2001, 20(6-7), 346-354
    [109] [0]Martin Pumera, Wang J, Frantisek Opekar, Contactless conductivity detector for microchip capillary electrophoresis. Anal Chem, 2002, 74:1968-1971
    [110] [0] Joseph Wang, Martin Pumera, Nonaqueous electrophoresis microchip separations: conductivity detection in UV-absorbing solvents,Anal. Chem. 2003,75,341-345;
    [111] [0] Guijt R M, Baltussen E, van der Steen G,. Capillary electrophoresis with on-chip four-electrode capacitively coupled conductivity detection for application in bioanalysis. Electrophoresis. 2001,22:2537-2541
    [112] [0]Frederic Laugere, Rosanne Guijt, Jeroen Bastemeijer, On-chip contactless four-electrode conductivity detection forcapillary electrophoresis devices. Anal. Chem. 2003,75,306-312;
    [113] [0]Rosanne M.Guijt,Erik Baltussen,Johannes Frank, et al. New approaches for fabrication of microfluidic capillary electrophoresis devices with on-chip conductivity detection. Electrophoresis, 2001,22,235-241
    [114] [0]Grass B, Neyer A, Jonck M, A new PMMA-microchip device for isotachophoresis with integrated conductivity detector. Sensor and Actuators B. 2001,72:249-258
    [115] [0]Prest J, Baqldock S J, Fielden P R, et al. Determination of metal cations on miniaturised planar polymeric separation devices using isotachophoresis with integrated conductivity detection. Analyst. 2001,126:433-435
    [116] [0] Laugere F., Lubking G.W., Bastemeijer J., Vellekoop M.J.. Design of an electronic interface for capacitively coupled four-electrode conductivity detection in capillary electrophoresis microchip. Sensors and Actuators B, 2002, 83, 104-108
    [117] Neelesh A. Patankar,Howard H. Hu. Anal. Numerical Simulation of Electroosmotic Flow. Anal. Chem.1998, 70,1870-1881
    [118] [0]Yang R.J., Fu L.M, Lin Y.C,Electroosmotic Flow in Microchannels,Journal of Colloid and Interface Science, 2001, 239: 98–105
    [119] [0]Lung-Ming Fu,Ruey-Jen Yang,Gwo-Bin Lee. Analysis of geometry effects on band spreading of microchip electrophoresis. Electrophoresis 2002, 23, 602–612
    [120] [0]Lung-Ming Fu, Ruey-Jen Yang, Gwo-Bin Lee, Yu-Jen Pan. Ruey-Jen Yang. Multiple injection techniques for microfluidic sample handling. Electrophoresis 2003, 24, 3026–3032
    [121] [0]Jin Y,Luo G A. Numerical calculation of the electroosmotic flow at the cross region in microfluidic chips,Electrophoresis, 2003, 24: 1242–1252
    [122] Fu L.M., Yang R.J., Lee G.B., Liu H.-H.. Anal. Chem. Electrokinetic Injection Techniques in Microfluidic Chips.2002, 74,5084-5091
    [123] Sergey V. Ermakov, Stephen C. Jacobson, J. Michael Ramsey. Computer Simulations of Electrokinetic Transport in Microfabricated Channel Structures Anal. Chem.1998, 70, 4494-4504
    [124] Griffiths S K,Nilson R H. Nilson. Band Spreading in Two-Dimensional Microchannel Turns for Electrokinetic Species Transport. Anal. Chem., 2000, 72: 5473-5482
    [125] [0]Yang R J, Fu L M, Hwang C C. Electroosmotic Entry Flow in a Microchannel,Journal of Colloid and Interface Science, 2001, 244: 173–179
    [126] [0]Guijt R M, Baltussen E, Steen G V, et al. New Approaches for Fabrication of Microfluidic Capillary Electrophoresis Devices with On-Chip Conductivity Detection. Electrophoresis. 2001. ( 22):235-241.
    [127] 吴英, 温志渝,蒋子平等,电泳芯片的低电压分离模型及讨论,光电工程,2002,29:27-33
    [128] 李霞,温志渝,李星海,吴英等,电泳芯片的低电压分离模型及控制系统,微纳电子技术,2003,(7/8):344-346
    [129] [0]李霞,温志渝,电泳芯片上低电压分离过程的实现和计算机模拟,重庆大学硕士学位论文,2004.5
    [130] [0]Fu L M, Yang R J, Lee G B. Electrokinetic Focusing Injection Methods on Microfluidic Devices. Anal. Chem., 2003, 75: 1905-1910
    [131] 周霆,何凤云,夏兴华,芯片电泳微管道中的流场的模拟分析,高等学校化学学报, 2004, 25(增刊): 16-17
    [132] Sergey V. Ermakov,? Stephen C. Jacobson, and J. Michael Ramsey. Computer Simulations of Electrokinetic Injection Techniques in Microfluidic Devices .Anal. Chem.2000,72, 3512-3517
    [133] [0]Yang R J, Fu L M, Lee G B. Variable-volume-injection methods using electrokinetic focusing on microfluidic chips ,J. Sep. Sci., 2002, 25: 996–1010
    [134] [0]Fu L M, Lin C H. Numerical Analysis and Experimental Estimation of a Low-Leakage Injection Technique for Capillary Electrophoresis, Anal. Chem., 2003, 75: 5790-5796
    [135] [0]郑九文,闫卫平,刘冲,白吉玲, 芯片毛细管电泳电动进样的数值分析,微纳电子技术, 2003(7/8): 328-331
    [136] Brian M. Paegel, Lester D. Hutt, Peter C. Simpson, Richard A. Mathies. Turn Geometry for Minimizing Band Broadening in Microfabricated Capillary Electrophoresis Channels. Anal. Chem.2000, 72,3030-3037
    [137] Sergey V. Ermakov, Stephen C. Jacobson, and J. Michael Ramsey,Computer Simulations of Electrokinetic Transport in Microfabricated Channel Structures,Anal. Chem. 1998, 70, 4494-4504
    [138] Christopher T. Culbertson, Stephen C. Jacobson, and J. Michael Ramsey. Dispersion Sources for Compact Geometries on Microchips. Anal. Chem.1998, 70,3781-3789
    [139] [0] [0] [0] [0] [0] Christopher T. Culbertson, Stephen C. Jacobson, Michael Ramsey J. Electroosmotically Induced Hydraulic Pumping on Microchips: Differential Ion Transport Anal. Chem.2000, 72, 5814-5819
    [140] [0]Nobert Gottschilich, Stephen Jacobson C., Chritopher T.Culbertson, J.Michael Ramesey. Two- Dimensional Electrochromatography/Capillary Electrophoresis on a Microchip. Anal. Chem. 2001,73,2669-2674
    [141] [0] Jeremy D. Ramsey, Stephen C. Jacobson, Christopher T. Culbertson, Michael J.. High-Efficiency, Two-Dimensional Separations of Protein Digests on Microfluidic Devices Anal. Chem.2003,75,3758-3764
    [142] [0]Debashis Dutta, David T. Leighton, A Low Dispersion Geometry for Microchip Separation Devices. Anal. Chem.2002, 74,1007-1016
    [143] [0]Stewart K. Griffiths, Robert H. Nilson. Band Spreading in Two-Dimensional Microchannel Turns for Electrokinetic Species Transport. Anal. Chem.2000, 72,5473-5482..
    [144] [0] Stewart K. Griffiths , Robert H. Nilson. Low-Dispersion Turns and Junctions for Microchannel Systems. Anal. Chem.2001, 73,272-278
    [145] [0]Joshua I. Molho, Amy E. Herr, Bruce P. Mosier, Juan G. Santiago, and Thomas W. Kenny. Optimization of Turn Geometries for Microchip Electrophoresis. Anal. Chem.2001, 73, 1350- 1360
    [146] [0]Lung-Ming Fu,Ruey-Jen Yang,Gwo-Bin Lee. Analysis of geometry effects on band spreading of microchip electrophoresis. Electrophoresis 2002, 23, 602–612
    [147] [0]Gwo-Bin Lee,Lung-Ming Fu,Che-Hsin Lin,Chia-Yen Lee,Ruey-Jen Yang. Dispersion control in microfluidic chips by localized zeta potential variation using the field effect Electrophoresis 2004, 25, 1879-1887
    [148] [0]Yu-Cheng Lin, Wei-Da Wu, Arrayed-electrode design for moving electric Field driven capillary electrophoresis chips , Sensors and Actuators B ,2001,73:54-62[0]
    [149] Michelle M. Bushey and James W. Jorgenson. Automated Instrumentation for comprehensive Two-Dimensional High-Performance Liquid Chromatography/Capillary Zone Electrophoresis, Anal.Chem.1990, 62(9),:978-984
    [150] [0]Marc Madou,John Florkey. From Batch to Continuous Manufacturing of MicrobiomedicalDevices, Chem. Rev. 2000, 100,(7):2679-2692
    [151] [0]Lasky J B. Wafer bonding for silicon-on-insulator technologies. Appl Phys Lett, 1986, 48 (1): 78-80
    [152] [0]林成鲁,SOI 技术的最新进展,功能材料与器件学报,2001,7(1):1-6
    [153] [0]Manz A , Harrison J , Verpoorte E M , et al. Planarchips technology for miniaturization and integration of separation techniques into monitoring systems Capillary electrophoresis on a chip. J . Chromatogr., 1992 , 593:255-258
    [154] [0]Yun Jiang, Penchen Wang, Laurie E Locascio, Cheng S Lee, Integrated plastic microfluidic devices with ESI-MS for drug screening and residue analysis, Anal. Chem.,2001,73:2048-2053
    [155] [0] Harrison D J, Fluri K, Seiler K, et al. Micromachining a miniaturized capillary electrophoresis2 based chemical analysis system on a chip. Science. 1993, 261:895-897
    [156] [0]Neudeck G W, Pierret RF , Editors , Introduction to Microelectronic Fabrication , (Modular Series on Solid State Devices , Vol. 5 ) ,Massachusetts :Addison,Wesley Publishing Company , 1993 ,13-18
    [157] [0]Maluf N,An introduction to Microelectromechanical Systems Engineering , Artech House , Boston ,2000, 64-69
    [158] He B, Tait N , Regnier F, Fabrication of Nanocolumns for Liquid Chromatography , Anal Chem , 1998 ,70 :3790-3797
    [159] He B , Tait N , Regnier F , Microfabricated Filters for Microfluidic Analytical Systems, Anal Chem , 1999 ,71 :1464-1468
    [160] 周中白, 刘中全,硅集成的薄膜微电极器件及应用,武汉大学学报, 1995 ,41 (2) :179-184
    [161] 谢锦春, 崔志应, 薜峰,. 超微电极技术与应用,分析测试技术与仪器,2004 ,10 (2) :101-106.
    [162] 张正元,徐学良,税国华,曾莉,刘玉奎,SOI 电路窄沟槽隔离技术研究,微电子学, 2005, 35(4):364-366
    [163] 王清平,郭林,刘兴凤等,1μm 宽硅深槽刻蚀技术,微电子学, 1996 , 26 (1) : 35-39
    [164] Niwao, Morita M , Tabei H. Fabrication and characteristics of vertically separated interdigitated array. J. Electroanalytical Chemistry , 1989,36: 267-291.
    [165] Xia Y, Kim R , Zhao XM , Rogers JA , Prentiss M , Whitesides GM , Complex Optical Surfaces Formed by Replica Molding Against Elastomeric Masters , Science , 1996 , 273 :347-349
    [166] 殷学锋,方群,凌云扬, 微流控分析芯片的加工技术, 现代科学仪器.2001,4: 10-14
    [167] 金亚,罗国安,集成毛细管电泳芯片研究进展, 王如骥,色谱.2000,18(4),313-317[0]
    [168] Weast, R., Astle, M. J., Beyer, W. H., “CRC Handbook of Chemistryand Phyics”, CRC Press,Boca Raton, FL, 1986,pp531
    [169] [0]Cifuentes, A., Poppe, H., Effect of Joule heating on efficiency and performance for microchip-based and capillary based electrophoretic separation systems: A closer look, Electrophoresis, 2004, 25, 253–269
    [170] [0]Yang R.J., Fu L.M.,Lin Y.C.,Electroosmotic Flow in Microchannels,Journal of Colloid and Interface Science, 2001, 239: 98–105
    [171] [0]Gaudioso J., Craighead H.G., Characterizing electroosmotic flow in microfluidic devices. J. Chromatography A.2002,971,49-253
    [172] [0]赵永芳主编,生物化学技术原理及应用,科学出版社,北京,2002,10, pp15-19
    [173] [0]Seiler K, Harrison D. J, Manz A. Planar glass chips for capillary electrophoresis: repetitive sample injection, quanititation, and separation efficiency. Anal. Chem., 1993, 65:1481-1486
    [174] [0]Jacobson S C, Hergenroder R, Ramsey J M et al. Precolumn Reactions with Electrophoretic Analysis Integrated on a Microchip. Anal. Chem., 1994, 66: 4127-4132
    [175] [0]Fluri K, Fitzpatrick G, Harrison D J et al. Integrated capillary electrophoresis devices with an efficient postcolumn reactor in planar quartz and glass chips. Anal. Chem., 1996, 68: 4285- 4290
    [176] Wang Hui(王辉), Mao Xiuli(毛秀丽), Gai Hongwei(盖宏伟), Bai Jiling(白吉玲), Lin Bingcheng(林炳承) Chemical Journal of Chinese University (高等学校化学学报), 2002,23:1030-1034

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700