混合动力汽车直流电源变换系统传导电磁干扰分析与抑制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
混合动力汽车相比传统汽车电磁兼容(Electromagnetic Compatibility, EMC)问题更加突出,其车载大功率电力电子设备产生的强烈电磁干扰(ElectromagneticInterference, EMI)会对自身系统和车内其它系统造成干扰影响。为了解决混合动力汽车大功率电力电子系统的EMC问题,本文重点研究车载大功率直流电源变换器系统EMC问题,掌握该系统的EMI测量方法、产生机理、传播路径、预测模型和优化方案,本文的研究思路和方法可以推广到解决车载其它EMC问题较突出的系统研究中,能够为混合动力汽车EMC问题研究提供理论和实践指导。论文主要研究内容及取得的成果有:
     1)采用消耗型铁氧体磁环对直流电源变换系统线束EMI进行排查,对多个线束上的EMI信号进行独立测量,获得直流电源变换系统单独产生的EMI水平。采用小波变换分解EMI信号并提取对应的小波系数,基于各分解尺度下的小波系数计算出了干扰信号频域内的三种特征参数:累积能量参数、突变参数和不平衡参数,该特征参数能够表征时域EMI信号的频域特征。
     2)通过对直流电源变换器系统EMI产生机理分析,建立了产生干扰振荡波形的等效电路模型,并推导出振荡波形的数学表达式,该数学模型能够表征干扰波形的主要特征。在EMI传播路径研究过程中,依据变压器主电路中变压器的结构和初次级线圈之间寄生电容的分布,建立了EMI通过变压器的耦合路径模型。推导出了EMI从初级绕组耦合到次级绕组的机理,并定性分析出降低EMI耦合作用的三种方法。
     3)建立了直流电源变换器系统传导EMI预测模型,包含的子模块主要为:基于传输线理论的电缆模型、基于多软件联合仿真计算的变压器和带铁芯电感的“实体-场-路”模型、干扰源的集中等效模型、基于静电场有限元方法的寄生电容计算模型。将各个模块的模型集合成系统仿真模型,仿真计算得到系统的传导EMI水平,并通过实验对比验证了该系统EMI预测模型的准确性。
     4)基于直流电源变换器系统差模和共模EMI传播路径,分别建立其等效电路模型,分析得出功率器件对机壳的寄生电容是影响系统共模EMI水平的重要因素,提出通过改变寄生电容大小的方法来改善系统EMI。通过仿真分析增大功率器件导热片与散热器之间导热硅脂的填充厚度,减小导热片与散热器之间导热硅脂的介电常数,以及减小功率模块导热片的面积这三种优化方法,能够有效地降低系统共模EMI水平,并根据实验条件验证了前两种优化方法在低频段抑制传导EMI的正确性和有效性。
     5)设计研究了电源变换器系统EMI滤波器。通过测量直流电源变换器系统干扰源内阻抗和电源线EMI水平,建立滤波器的高频等效电路模型并提取参数,通过对滤波器插入损耗的仿真验证了滤波器的有效性,并将设计制作的滤波器加入直流电源变换器系统进行滤波效果验证,实验结果表明本文所设计的EMI滤波器能够有效地抑制变换器系统电源线上的传导EMI水平,并且弥补了导热硅脂只能抑制低频EMI的缺陷。
Compared with traditional vehicles, hybrid electric vehicles have obvious EMC(Electromagnetic Compatibility) problems. The high-power electronic devices onvehicle will bring about strong EMI (Electromagnetic Interference), which willnegatively interference these devices and other systems on the same vehicle. In order tosolve the EMC problems of high-power electronics devices of hybrid electric vehicles,this dissertation mainly focuses on the EMC problem of high-power DC/DC converter,studying the EMI measurement methods of this system, mechanism of EMI production,EMI transmission routes, EMI predictive model and optimal schemes. The research ideaand approach of this dissertation can be applied to other on-vehicle systems with seriousEMC problems, thus offering theoretical and practical guide to EMC problems ofhybrid electric vehicles. The main research contents and results of this dissertation arelisted as follows.
     1) Consumable ferrite is employed to investigate EMI of DC/DC converter lines,so that EMI signals of multiple lines can be independently measured and the separateEMI levels of DC/DC converter lines can be obtained. Also, wavelet analysis is appliedto decompose EMI signals and to obtain corresponding wavelet coefficients. Based onwavelet coefficients on each decomposition scale, three characteristic parameters ofEMI signal in frequency-domain can be calculated, including cumulative energyparameter, mutation parameter and unbalance parameter.
     2) Based on the EMI production mechanism of DC/DC converter system, anequivalent circuit model producing EMI vibration wave is constructed. This model canrepresent main properties of EMI wave, and the mathematic equation of vibration wavecan be deduced. In the study of EMI transmission routes, a model that describes theEMI coupling route through the transformer is established on the basis of transformer’smain structure and the distribution of parasitic capacitance between the primary andsecondary coils. From this model, the mechanism of EMI coupling from primarywindings to secondary windings has been studied, and three approaches to reduce EMIcoupling effect have been qualitatively analyzed.
     3) A conducted EMI predictive model of DC/DC converter has been constructed.This model actually is consist of many sub-models, including cable model based ontheory of transmission lines,“object-field-circuit” model of transformer and iron-core inductor based on multiple-software simulation, and parasitic capacitance calculationmodel based on the finite element method of electrostatic field. All these sub-models areintegrated to form a system model, and conducted EMI level has been calculated by thisintegrated system model. The accuracy of this system EMI predictive model has beenverified via practical test comparison.
     4) According to the different EMI transmission paths of DC/DC converter system,the CM equivalent circuit and the DM equivalent circuit are separately constructed. It isconcluded that parasitic capacitance between power components and chassis is animportant factor to affect the CM EMI level of this system. Therefore, a new approachchanging parasitic capacitance has been proposed to reduce EMI. In simulation, thereare3optimal methods to reduce system CM EMI, namely increasing thickness ofthermal conductive adhesive between heat sink and heat-conducting plate of powercomponents, decreasing the permittivity of thermal conductive adhesive and decreasingthe geometry shapes of heat sink on power electronics modules. According the labcondition, the validity and effectiveness of the first two optimal methods have beenverified.
     5) The design process of EMI filter of DC/DC converter has been studied. Aftermeasuring interference source impedance of DC/DC converter system and EMI levelsof power lines, a high-frequency equivalent circuit of EMI filter has been constructed,and necessary parameters have been extracted. The effectiveness of filters is verified viasimulation of insertion loss. Meanwhile, the designed EMI filters are applied to DC/DCconverter system to verify their filtering performance, and the result shows thesedesigned filters can effectively suppress the conducted EMI level on power lines ofDC/DC converter system.
引文
[1]张戟,孙泽昌.现代汽车电磁兼容理论与设计基础[M].北京:清华大学出版社;北京交通大学出版社,2009.03.
    [2]余召锋,于颖,徐鸣谦.国内外汽车电磁兼容研究发展状况[J].客车技术与研究,2007,29(2):8-10.
    [3]肖军.汽车电子产业已成为新经济的增长点[J].天津汽车,2005.06:3-6.
    [4] Andersen P. An Overview of Automotive EMC Standards[C]. IEEE International Symposiumon Electromagnetic Compatibility,2006,3(8):14-18.
    [5]国家标准GB/T4365-2003.电工术语电磁兼容.
    [6]孙玮,童朱珏.汽车电磁兼容标准与测试[J].电子质量,2008,(9):65-68.
    [7] Lee Youn Hee, Nasiri Adel R. Analysis and Modeling of Conductive EMI Noise of PowerElectronics Converters in Electric and Hybrid Electric Vehicles [C],23th Annual IEEE AppliedPower Electronics Conference and Exposition,2008, pp.1952–1957.
    [8] Lee Young-Joo Joo, Rajashekara Kaushik S. Power Electronics and Motor Drives in Electric,Hybrid Electric, and Plug-in Hybrid Electric Vehicles[J], IEEE Transactions on IndustrialElectronics,2008,55(6):2237-2245.
    [9]朱学军,张逸成等.大功率直流/直流变换器的电磁兼容试验方案[J].同济大学学报(自然科学版),2007,35(6):788-791.
    [10] Guido Ala, Maria C. Di Piazza, Giovanni Tine, et al. Numerical Simulation of Radiated EMI in42V Electrical Automotive Architectures [J]. IEEE Transactions on Magnetics,2006,42(4):879-882.
    [11] E. Darie. C. Cepisca and E. Darie, Modeling EMI Problems Associated with DC-DCConverters[C], Conference MIPS2008, November2008.
    [12] Ehsani Mehrdad S, Gao Yimin, Miller John. Hybrid Electric Vehicles: Architecture and MotorDrives, Proceedings of the IEEE, Vol.95, No.4, pp.719–728,2007.
    [13] Ali Emadi, Young Joo Lee, Kaushik Rajashekara. Powe Electronics and Motor Drives in Electic,Hybrid Electric and Plug-In Hybrid Electric Vehicles [J],2008,55(6):2237-2245. Ruddle A R.GEMCAR: Guidelines for EMC Modelling for Automotive Requirements[C]. GEMCARWorkshop held at EMC Zurich, Switzerland, Tutorials,2003,2:225-2330.
    [14]金华标.船用电子设备电磁兼容技术研究[D].武汉理工大学博士学位论文,2010,5.
    [15] Kenn Atkinson. Graphical EMI Modeling Spreadsheet[C], Proceedings of the1990IEEEInternational Symposium on Electromagnetic Compafibilify, Washington, USA, August1990,175-179.
    [16] Joe LoVetri, Andrew S. Podgorski. Evaluation of HardSys: A Simple EMI Expert System[C].Proceedings of the1990IEEE International Symposium on Electromagnetic Compafibilify,Washington, USA, August1990,228-232.
    [17] Neumayer R, Stelzer A. Continuous Simulation of System-level Automobile EMCProblems[C].IEEE International Symposium on Electromagnetic Compatibility,2003,1(8):409-413.
    [18] Neumayer, F. Haslinger, A. Stelzer, R. Weigel. Equivalent Circuit Models for Coupling EffectsCharacterized by Scattering Parameter Data[C]. EMC Europe International Symposium onElectromagnetic Compatibility, Sorrento, Italy,2002,2:141-417.
    [19] Neumayer, A. Stelzer, F. Haslinger, R. Weigel. On the Synthesis of Equivalent Circuit Modelsfor Multipart Characterized by Frequency Dependent Parameters [J]. IEEE Trans. Theory andTechniques,2002,50(12):2789-2796.
    [20] S. Frei R. lobaw D. Karkashadzc, A Ghmnjian, E.Yavolovsksia. Calculation of Low FrequencyEMC Problems in Large Systems with a Quasi-static Approach [C]. IEEE InternationalSymposium on Electromagnetic Compatibility, Santa Clara, CA,2004,3(8):798-803.
    [21] Frank Kremer, Stephan Frei. Simulation of Emissions of Power Electronic Devices in Electricaland Hybird Electrical Vehicals[C].Asia-Pacific International Symposium on ElectromagneticCompability,Beijing,2010,691-694.
    [22] Hara M O, Colebrooke J. Automotive EMC Test Harnesses: Standard Lengths and their Effecton Conducted Emissions [C]. IEEE International Symposium on Electromagnetic Compatibility,Istanbul, Turkey,2003,1(5):233-236.
    [23]肖立伊,周童.汽车电子点火系统的VHDL-AMS模型[J].计算机辅助设计与图形学学报,2003,15(3):259-263.
    [24]李旭.汽车点火系统电磁干扰的仿真与实验研究[D].重庆大学博士学位论文,2008,6.
    [25] Yu Jihui, Li Xu, Li Yongming, et al. Theoretical Calculation of Spark Current Level inAutomotive Secondary Ignition System [J]. Journal of System Simulation,2009,21(2):568-571.
    [26]汪泉弟,秦传明,郑亚利等.低压永磁直流电机的传导电磁干扰模型,电机与控制学报,2011,15(1):55-59.
    [27]俞集辉,邹志星,李永明等.导线电磁干扰的数值仿真[J].重庆大学学报(自然科学版),2007,30(9):46-50.
    [28]俞集辉,马晓雷,郑亚利.车载天线电磁特性及耦合度的仿真研究[J].系统仿真学报,2008,20(6):1603-1605.
    [29]钱照明,陈恒林.电力电子装置电磁兼容研究最新进展[J].电工技术学报,2007,22(7):1-11.
    [30] LiangY C, Gosbell V J. Diode Forward and Reverse Recovery Model for Power ElectronicSPICE Simulation [J]. IEEE Trans. on Power Electronics,1990,5(3):346-356.
    [31] Tao Qi, Jeff Graham.Characterization of IGBT Modules for System EMI Simulation[C].IEEEInternational Symposium on Power Electrics Conference,NY,USA,2010:2220-2225.
    [32] Lei Xing, Frank Feng. Behavioral Modeling Methods for Motor Drive System EMI DesignOptimization[C]. IEEE International Symposium on Energy Conversion Congress andExposition, NY. USA,2010:947-954.
    [33]孟进,马伟明.基于IGBT开关暂态过程建模的功率变流器电磁干扰频谱估计[J].中国电机工程学报,2005,25(20):16-20.
    [34]袁义生,钱照明.分析传导EMI的功率MOSFET建模[J].浙江大学学报(工学版),2003,37(2):198-201.
    [35] R. KAHOUL, P. MARCHAL, Y. AZZOUZ, et al. HF Model of DC Motor Impedance EMCProblems in Automotive Applications[C]. IEEE International Symposium on ElectromagneticCompatibility, August18-22,2008, Detroit.2008:1-5.
    [36] Mark A. Gries, Behrooz Mirafzal. Permanent Magnet Motor-Drive Frequency ResponseCharacterization for Transient Phenomena and Conducted EMI Analysis[C]. Twenty-ThirdAnnual IEEE Applied Power Electronics Conference and Exposition, February24-28,2008,Austin, Tx.2008:1767-1775.
    [37] Behrooz Mirafzal, Gary L. Skibbinski, Rangarajan M. Tallam. Determination of Parameters inthe Universal Induction Motor Model [J]. IEEE Transactions on Industry Applications,2009,45(1):142-151.
    [38] Behrooz Mirafzal, Gary L. Skibbinski, Rangarajan M. Tallam, et al. Universal Induction MotorModel with Low-to-High Frequency-Response Characteristics [J]. IEEE Transactions onIndustry Applications,2007,43(5):1233-1246.
    [39] Mohammed, O.A, Ganu, S. FE-Circuit Coupled Model of Electric Machines for Simulation andEvaluation of EMI Issues in Motor Drives [J]. IEEE Transactions on Magnetics,2010,46(8):3389-3392.
    [40] Mohammed, O.A, Ganu, S, Abed. N, et al. High Frequency Modeling of PM SynchronousMachine for Use in Integrated Motor Drive[C]. IEEE Electric Ship Technologies Symposium,May21-23,2007, Arlington.2007:245-249.
    [41]陈名,孙旭东,黄立培.变频空调压缩机电机高频参数的提取[J].清华大学学报(自然科学版),2011,51(1):43-46,52.
    [42] Sullivan C R, Kern A M. Capacitors with Fast Current Switching Require DistributedModels[C]. In: Proc. of IEEE PESC’01,2001:1497-1503.
    [43] Asensi R, Cobos J, Garc′ya A, et al. Full Procedure to Model High Frequency TransformersWindings[C]. In: Proc. of IEEE PESC’94,1994:856-863.
    [44] Pleite J, Prieto R, Asensi R, et al. Obtaining a Frequency-Dependent and Distributed-EffectsModel of Magnetic Components from Actual Measurements[J].IEEE Trans. on Magnetics,1999,35(6):4490-4502.
    [45] Youn Hee Lee, Adel Nasiri. Analysis and Modeling of Conductive EMI Noise of PowerElectronics Converters in Electric and Hybrid Electric Vehicles[C].IEEE InternationalSymposium on Power Electrics Conference,2008:1952-1957.
    [46]朱学军,张逸成等.大功率直流/直流变换器的电磁兼容试验方案[J].同济大学学报(自然科学版),2007,35(6):788-791.
    [47]余绍峰,何金良等.燃料电池客车驱动系统传导骚扰源的统计分析[J].高电压技术,2007,33(10):45-48.
    [48]余绍峰,黄勇等.燃料电池客车驱动系统传导性骚扰的仿真[J].高电压技术,2006,32(11):84-86.
    [49]余绍峰,张波等.燃料电池客车驱动系统传导性骚扰的特性分析[J]高电压技术,2007,33(5):84-86.
    [50]张逸成,韩新春等.电动车用直流-直流变换器中电磁干扰与抑制[J].同济大学学报(自然科学版),2005,33(1):108-111.
    [51]贾晋.汽车点火系统电磁干扰预测方法的研究[D].重庆大学硕士学位论文,2010,5.
    [52] T. C. Neugebauer and D. J. Perreault“Computer-Aided Optimization of DC/DC Converters forAutomotive Applications”IEEE Trans. Power Electron, vol.18, no.3, pp.775-783,2003.
    [53] Ruddle A R. GEMCAR: Guidelines for EMC Modelling for Automotive Requirements [C].GEMCAR Workshop Held at EMC Zurich, Switzerland, Tutorials,2003,2:225-2330
    [54] Jia Jin, Wang Quandi, Yu Jihui, et al. Wideband Equivalent Circuit Model and ParameterComputation of Automotive Ignition Coil Based on Finite Element Analysis [J]. AppliedComputational Electromagnetics Society Journal,2010,25(7):612-619.
    [55] Antonini G, Cristina S, Orlandi A. EMC Characterizationof SMPS Devices: Circuit andRadiated Emissions Model [J]. IEEE Trans. on EMC,1996,38(3):300-309.
    [56] Thomas R, Li F, Garrett C. Prediction of Radiated EMI From High Frequency PowerConverters[C]. In: Proc. of IEE Power Electronics and Variable Speed Drives Conf.,2000:80-85.
    [57] Joshi M, Agarwal V. Component Placement for Improved EMI Performance in PowerElectronic [C]. In: Proc. of IEEE APEC’98,1998:911-917.
    [58] Zhang D B, Chen D Y, Lee F C. An Experimental Comparison of Conducted EMI Emissionsbetween a Zero-Voltage Transition Circuit and a Hard Switching Circuit[C]. In: Proc. of IEEEPESC’96,1996:1992-1997.
    [59] Chung H, Hui S Y R, Tse K K. Reduction of Power Converter EMI Emission UsingSoft-Switching Technique[J]. IEEE Trans. on EMC,1998,40(3):282-288.
    [60] Shao J, Lin R L, Lee F C, et al. Characterization of EMI Performance for Hard andSoft-Switched Inverter[C]. In: Proc. of IEEE APEC’00,2000:1009-1014.
    [61] Mahdavi J, et al. Comparison of Conducted RFI Emission from Different Unity Power FactorAC/DC Converters[C]. In: Proc. Of IEEE PESC’96,1996:1979-1985.
    [62] Trzynadlowski A M, Blaabjerge F. Random Pulse Width Modulation Technique forConverter-Fed Drive System——a Review [J]. IEEE Trans. on Industry Application,1994,30(5):1166-1174.
    [63] S. Qu, D. Chen. Mixed-Mode EMI Noise and its Implications to Filter Design in OfflineSwitching Power Supplies [J]. IEEE Transactions on Power Electronics,2002,17(4):502-507.
    [64] Regue JR, Ribo M, Duran D, et al. Common and Differential Mode Characterization of EMIPower-line Filters from S-Parameters Measurements[C]. In: IEEE International Symposium onElectromagnetic Compatibility, ISEMC2004. USA: IEEE,09-13, Aug,2004.610-615.
    [65] Akagi H, Tamura S. A passive EMI Filter for an Adjustable-Speed Motor Drive by a400VThree-Level Diode-Clamped Inverter[C]. In: Proceedings of IEEE PESC,2004:86-93.
    [66] Jiang Yanshu, Xu Dianguo, Chen Xiyou, et al. A Novel PWM Inverter Output Active Filter forCommonmode Voltage Cancellation [J]. In: Proceedings of CESS,2002,22(10):125-129.
    [67] Julian A L, Cuzner R, Oriti G, et al. Active Filtering for Common Mode Conducted EMIReduction in Voltage Source Inverters[C]. In: Proc. of IEEE APEC’98,1998:934-939.
    [68] Mei C, Balda J C, Waite W P, et al. Minimization and Cancellation of Common-Mode Currents,Shaft Voltages and Bearing Currents for Induction Motor Drives[C]. In: Proc. of IEEE PESC’03,2003:1127-1132.
    [69]王大凯,彭进业.小波分析及其在信号处理中的应用[M].北京:电子工业出版社,2006.01.
    [70]杨建国.小波分析及其工程应用[M].北京:机械工业出版社,2006.01.
    [71] STEPHANE Mallat,杨力华,戴道清,黄文良等(译).信号处理的小波导引[M].北京:机械工业出版社,2002.
    [72] C. K. Chui, An Introduction to Wavelet, Boston, MA: Academic,1992.
    [73] G. S. Burrus, R. A. Gopinath, and H. Guo, Introduction to Wavelets and Wavelet Transform, APrimer. Upper Saddle River, NJ: Prentice-Hall,1998.
    [74]张晓文,杨煜普,许晓鸣.基于小波变换的特征构造与选择[J].计算机工程与应用,2001,Vol.19, pp:25-28.
    [75]毛行奎,陈为.开关电源高频平面变压器并联PCB线圈交流损耗建模及分析[J].中国电机工程学报,2006,26(22):167-172.
    [76] Lu Hanyan, Zhu Jianguo, Hui S Y R.Experimental Determination of Stray Capacitances inHigh Frequency Transformers[J] IEEE Transaction on Power Electronics,2003,18(5):1105-1112.
    [77] Duerbaum T, Sauerlaender G. Energy Based Capacitance Model for MagneticDevice[C].16th Annual Applied Power Electronics Conference, California, U.S.A,2001,1:109-115.
    [78]曾光,金舜,史明.高频高压变压器分布电容的分析和处理[J].电力电子技术,2002,36(6):54-57
    [79] Blache F, Keradec J, Cogitore B.Stray Capacitance of Two Winding Transformers: EquivalentCircuit, Measurements, Calculation and Lowing[C].IEEE Industry Application Society AnnualMeeting, Denver, U.S.A,1994:1211-1217.
    [80]董纪清,陈为,卢增艺.开关电源高频变压器电容效应建模与分析[J].中国电机工程学报,2007,27(31):121-126
    [81]俞集辉,贾晋,汪泉弟,郑亚利.汽车点火线圈的宽频电路模型及参数提取[J].电工技术学报,2011,35(8):178-184.
    [82] Jia Jin, Wang Quan-di, Yu Ji-hui, Zheng Ya-li. Wideband Equivalent Circuit Model andParameter Computation of Automo tive Ignition Coil Based on Finite Element Analysis[J].Applied Computational Electromagnetics Society Journal,2010,25(7):612-619.
    [83]钱照明,程肇基.电力电子系统电磁兼容设计基础及干扰技术[M].北京:浙江大学出版社,2000.12.
    [84]朱学军,张逸成等.大功率直流/直流变换器的电磁兼容试验方案[J].同济大学学报(自然科学版),2007,35(6):788-791.
    [85]陈恒林,陈玮,冯利民,钱照明.基于阻抗测量的共模扼流圈高频建模[J].电工技术学报,2007,(04):8-12.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700