N990炭黑的改性以及CB/高密度聚乙烯PTC复合材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本实验研究N990炭黑高温改性处理,包括高温N_2气处理、高温CO_2处理、高温水蒸气处理,以及高温KOH活化处理。探讨不同处理方式对CB/HDPE复合材料的室温电阻率和PTC效应的影响。高温改性在950℃自制的管式反应器中进行,制备的炭黑与HDPE熔融复合得到PTC复合材料。实验制备的改性炭黑用SEM、BET、XPS、XRD等手段表征结构和表面性质,在自制的柱塞式装置上评估改性炭黑样品的导电能力,并通过自建的电阻-温度测试系统测得复合材料的PTC曲线。
     高温改性炭黑的导电性依热处理和KOH处理、高温水蒸气处理、高温CO_2处理而逐步增大,其中CO_2处理的炭黑比未处理炭黑的导电能力高出一倍以上。改性炭黑的微观结构分析表明,各种处理方式对炭黑粒子的微晶结构和颗粒大小影响甚微,却明显改变其颗粒表面的氧含量和比表面积,还体现在表面的孔容增多和孔分布变化。进一步研究发现,改性工艺对炭黑导电性影响同它对比表面积的影响趋势相同。
     改性工艺对CB/HDPE复合材料的室温电阻率的影响趋势与它对改性炭黑的导电性的影响类似。复合材料的电阻率都随炭黑含量的增加而出现不同程度的逐步下降。相同炭黑含量,不同工艺处理CB/HDPE复合材料的室温电阻率大小的依次是未处理,热处理或KOH处理,水蒸汽处理,CO_2处理。
     N990炭黑的复合材料容易出现很高的PTC强度,而且其PTC强度随着炭黑填充量的增加有下降的倾向,特别当炭黑填充量高于70%,PTC强度下降很快。CO_2处理炭黑复合材料的PTC强度随炭黑填充量增加下降明显,而热处理的却保持在9个数量级的高水平。
     总体上,N990炭黑及其改性产物填充HDPE所得复合材料的PTC强度都在6个数量级以上,且NTC强度小。其中通过CO_2高温改性处理,可获得1Ω·cm的低室温电阻率和6数量级PTC强度的复合材料,因此本实验方法制得的改性炭黑是一类具有应用前景的PTC复合材料的导电填料。
The modifications of carbon black N990 at high temperature under the stream of N_2, CO_2, vapor and activated by KOH respectively are studied. The influences of different preparing methods on the room resistivity and PTC effect of Carbon black /HDPE composites are investigated. Carbon black is treated in an pipe reactor at 950 ℃, and its product is then incorporated into HDPE to form PTC composites. Treated Carbon black is characterized with SEM, BET, XPS and XRD. Its conductivity is evaluated with self-made piston-cylinder equipment. The PTC curves of Carbon black composites are measured by self-established device.The conductivity of the treated carbon black gradually increases by sequence of heat treatment、 KOH treatment、 vapor treatment、 CO_2 treatment at high temperature. The conductivity of the carbon black treated by CO_2 is one time more than that of the untreated. Evidences from microstructure of treated carbon black show that there is little influence of different modified methods on crystallites and particle size, but obvious influences of oxygen content and BET on carbon black surface, which also show an increase in pore volume and change of pore distribution. Further analysis reveals that the conductivity of treated carbon black is closely related to its BET.The influences of different treatments on the room resistivity of carbon black /HDPE composite are similar to that on carbon black conductivity. The resistivity of the composites decreases to some extents with an increase in carbon black content. Room resistivity of composite with the same content of modified carbon black decreases gradually by sequence of heat treatment、 KOH treatment、 vapor treatment, CO_2 treatment at high temperature.High PTC intensity is easily achieved by both the composite filled with treated or untreated N990. Its PTC intensity has tendency of dropping as carbon black content increases, especially for carbon black content higher than 70%. PTC intensity of carbon black composites treated by CO_2 decreases rapidly with the carbon black contents, while heat treatment keeps at 9 orders of magnitude.
    In general, treated and untreated carbon black N990 has characteristics of high PTC intensity above 6 orders of magnitude and low NTC intensity. The room resistivity of lQcm of composite can be achieved by using CO2 treatment of N990 at high temperature. Therefore, treated carbon black N990 is a prospective conductive filler of PTC composites for future applications.
引文
[1] 钟代英.导电高分子材料.西安邮电学院学报,1996,1(4):30-36.
    [2] 姜斌,侯止则.有机复合PTC热敏电阻的研制.电子科技大学学报,1994,23(5):488-492.
    [3] 周宅忠.聚合物复合型PTC材料及应用,功能材料,1991,22(5):298-302.
    [4] 汤浩,陈欣方.复合型导电高分子材料PTC效应的研究与应用.高分子材料科学与工程,1996,12(3):6-11.
    [5] 黄锐,刘劲松.导电塑料的进展.中国塑料,1992,6(4):3-10.
    [6] 杨万辉,丁小斌.自限温电热带热稳定性的研究.中国科学技术大学学报,1994,4(3):356-360.
    [7] 易同阳,肖建中,甘章华,等.高分子基PTC复合材料的研究及其应用.化学研究与应用,2003,15(6):748-752.
    [8] Strumpler R. J App. Phy., 1996, 80(11): 6091-6096.
    [9] 周东祥,龚树萍.PTC材料及应用.武汉:华中理工大学出版社,1989,455-460.
    [10] 万影,张力,闻荻江.材料开发与应用,1997,12(6):16-19.
    [11] 李运泽,魏传锋,袁领双,等.应用PTC电加热器的卫星局部温度控制系统仿真.系统仿真学报,2005,17(6):1494-1496.
    [12] 董光能,陈志澜,谢友柏,等.具有PTC特性的复合白润滑导电塑料[J].机械科学与技术,1999,18(5):819.
    [13] 谭洪生,王日辉,李忠,等.高密度聚乙烯/炭黑自限温发热管的电热特性[J].塑料工业,2002,30(2):39-43.
    [14] 李群荣,张聪,李威,等.高分子PTC材料的进展与发展趋势[J].科技动态,2001,20(4):30.
    [15] 林海平,赵文元,陈滇宝.炭黑填充聚合物基PTC材料的研究进展.弹性体,2004,14(1):51-56.
    [16] 朱盈权.PTC热敏电阻的现状与发展趋势(续一)[J].电子元件与材料,2002,21(7):24-26
    [17] Lux F. Percolation in electrical conductive polymer/filler systems Ⅰ: Density/filler curves according to a new thermodynamic percolation model. Polym Eng Sci, 1993, 33 : 334-332.
    [18] Lux F. Models proposed to explain the electrical conductivity of mixtures made of conductive and insulating materials. J Mater Sci, 1993, 28: 285-301.
    [19] Miyasaka K, Watanabe K, Jojima E, et al. Electrical conductivity of carbon-polymer composites as a function of carbon content. J Mater Sci, 1982, 17: 1610-1616.
    [20] Sumita M, Sakata K, Asai S, et al. Dispersion of fillers and the electrical conductivity of polymer blends filled with carbon black. Polym. Bull, 1991, 25: 265-271.
    [21] Rajagopal C, Satyam M. Studies on electrical conductivity of insulator-conductor composites. J Appl Phys, 1978, 49: 5536-5542.
    [22] Malliaris A, Turner D. T. Influence of particle size on the electrical resistivity of compacted mixtures of polymeric and metallic powders. J Appl Phys, 1971, 42: 614-618.
    [23] Bhattacharya S. K, ChakladerA. C. D. Reviewon metal-filled plastics. Part 1. Electrical conductivity. Polym Plast Technol Eng, 1982, 19: 21-51.
    [24] Fowkes F. M. Attractive forces at interfaces. Ind Eng Chem, 1964, 56: 40-52.
    [25] 贾向明,杨其,李光宪.填充型导电高分子复合材料的逾渗理论进展.中国塑料,2003,17(6):9-14.
    [26] Kirkpatrick S., Percolation and conduction, Rev. Mod. Phys., 1973, 45: 574-588.
    [27] Heaney M. B., Measurement and interpretation of nonuniversal critical exponents in disordered conductor-insulatorcomposites, Phys. Rev. B, 1995, 52: 12477-12480.
    [28] Janzen J, On the critical conductive filler loading in antistatic composites. J Appl Phys, 1975, 46: 966-969.
    [29] Bueche F. Electrical resistivity of conducting particles in an insulating matrix. J. Appl. Phvs., 1972, 43: 4837-4838.
    [30] 张雄伟,黄锐.LDPE/炭黑复合导电材料PTC/NTC效应形成机理的探讨.成都科技大学报,1995,(5):38-44.
    [31] 徐永利,陈汴琨.高密度聚乙烯/炭黑(HDPE—c)PTC材料的导电机制.材料研究学报,1995,9(4):364-367.
    [32] 汤浩,陈欣方,罗云霞.复合型导电高分子材料导电机理研究及电阻率计算.高分子材料科学与工程,1996,12(2):1-7.
    [33] 席保锋,刘辅宜,徐传骧,等.聚合物/炭黑复合材料PTC特性的理论研究进展.高分子材料科学与工程,1999,15(6):25-28.
    [34] Ohe K, Natio Y. A new resistor having an anomalously large positive temperature coefficient[J] Japanese J. Appl. Phys, 1971, 10(1): 99-108.
    [35] 贾文涛,陈欣方.具有PTC效应的导电高分子复合材料的研究及应用.材料导报,1994,(1):72-74.
    [36] Meyer J. Glass transition temperature as a guide to selection of polymers suitable for PTC materials. Polymer EngineeringandScience, 1973, 13(6): 462-468.
    [37] Meyer J. Stability of polymer composites as positive-temperature-coefficient resisitors. Polymer Engineering and Science, 1974, 14(10): 706-716.
    [38] 黄英,李郁忠.炭黑/聚烯烃导电复合材料PTC效应的研究.塑料科技,2001,1:4-8.
    [39] Allak H. K., Brinkman A. W, Woods J Ⅰ-Ⅴ charaterstics of carbon black loded crystalline polyethylene. J. Master. Sci(UK), 1993, 28: 117-125.
    [40] A. Voet. Temperature Effect of Electrical Resistivity of CB Filled Polymers. Rubber Chemistry Technology, 1981, 54: 42-50.
    [41] 史宇正,方斌,杨钧.高分子PTC材料(上).上海化工,2002,23(8):26-28.
    [42] 李德才.炭黑填充聚合物复合型PTC材料的研究进展.北华大学学报(自然科学版),2000,1(6):472-475.
    [43] 李柏林,张新惠,蔡洪光.四种导电炭黑的性能研究.合成橡胶工业,1998,21(5),300-302.
    [44] 王道宏,徐亦飞,张继炎.炭黑的物化性质及表征.化学工业与工程,2002,19(1):76-82.
    [45] 王奇坤,孟凡瑞.炭黑的性能及在塑料中的应用.黑龙江石油化工,1997,3:17-20.
    [46] W. F. Verhelst, K. G. Worthuis, A. Voet P. Ehrenburger. The Role of Morphology andStructure of CB in the Electrical[J]. Rubber Chemistry Technology, 1977, 50: 735-746.
    [47] Klason C, Kubat J. Anomalous Behavior of Electrical Conductivity and Thermal Noise in Carbon Black Containing Polymers at Tg and Tin. [J]. J. Appl. Polym. Sci., 1975, 19(3): 831-845.
    [48] A. I. Medalia. Electrical Conduction in CB Composites[J]. Rubber Chemistry Technology, 1986, 59: 432-454.
    [49] 易回阳,肖建中,王敬丰,等.碳系分散体填充聚合物基PTC复合材料的研究进展.材料导报,2003,17(10):71-73.
    [50] 薛丹敏,罗延龄.偶联处理对HDPE/炭黑复合材料PTC性能的影响.现代塑料加工应用,2003,15(2):5-9.
    [51] 莫海林,游长江,贾德民.改性炭黑及其增强橡胶的研究.广州化学,2004,29(1):37-41.
    [52] 杨金平,李永.炭黑的氯化改性.橡胶工业,2000,47(4):201-205.
    [53] Dana Pantea, Hans Darmstadt, Serge Kaliaguine, et al. Electrical conductivity of conductive carbon blacks influence of surface chemistry and topology. APPLIED SURFACE SCIENCE, 2003, 217: 181-193.
    [54] 李兰英,肖英,尚书勇,等.炭黑氧化改性的方法.橡胶工业,2004,51(11):698-701.
    [55] Cascrinide Torre L E, Bottani E J, Martinez A, et al. Effects of oxygen plasma treatment on the surface ofgraphitozed carbon black[J]. Carbon, 1998, 36(3): 277-282.
    [56] Takada T, Nakahara M, Kumagai H, et al. Surface modification and characterization of carbon black with plasma[J] oxygen. Carbon, 1996, 34(9): 1087-1091.
    [57] Peter Albers, Alfons Karl, Johann Mathias. INS-, XPS-and SIMS-investigation on the controlled post-oxidation of pigment blacks. Carbon, 2001, 39: 1663-1676.
    [58] 彭永利,吴壁耀,蒋子铎,等.炭黑表面接枝改性.武汉化工学院学报,1994,16(4):1-6.
    [59] 罗延龄.炭黑粒子偶联处理的HDPE复合材料PTC性能研究.炭素,2001,3:16-22.
    [60] 罗延龄,王庚超,方斌,等.热处理对聚乙烯/炭黑导电复合体系形态结构及PTC特性的影响.功能高分子学报,1996,9(3):329-336.
    [61] 贾少晋,徐忠庭,张志成,等.PE/CB复合材料的辐照效应.功能高分子学报,2003,16(4):545-552.
    [62] 谢鸿峰,孙家珍.辐射效应对LDPE/CB复合物电性能的影响.辐射研究与辐射工艺学报,2001,19(4):294-298.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700