炭黑填充聚酰胺6制备导电复合材料及其结构和性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在高聚物共混物中加入炭黑制备导电高聚物是近年高分子材料共混领域中的研究热点之一,高聚物共混物的相分离和炭黑选择性地分散到某一相中,能够在炭黑用量较低的情况下获得高电导率的复合材料,另一方面能够提供比较好的加工性能,并且有效减弱因填料含量较高时造成的机械性能下降的影响。本文以炭黑粒子为导电填料,聚酰胺6为主要聚合物基体,在HAAKE转矩流变仪中制备了PA6/PS/CB、PA6/PAN/CB等导电复合材料,研究了炭黑粒子的分散形态、共混体系相形态、共混体系流变行为特点,以及它们与炭黑/聚合物共混体系导电性能的关系。
     采用扫描电镜观察、透射电镜观察、炭黑粒子迁移现象观察,以及溶剂选择溶解等方法,考察了炭黑粒子在PA6/PS和PA6/PAN共混体系中的选择性分散情况,得到炭黑粒子都选择性的分散在PA6相中的一致结果。炭黑/聚合物共混体系中炭黑含量一定时,炭黑富集相中炭黑含量与炭黑富集相的连续状态共同影响体系导电能力,炭黑富集相含量相对较少时更有利体系导电性能的提高;炭黑富集相含量相对较少且保持连续状态时,体系导电能力达到最大值。
     研究了PA6/PS/CB共混体系的动态流变行为。结果表明,共混体系表现出自相似性的黏弹行为;炭黑填充聚合物共混体系的G'等曲线均位于炭黑填充单一组分相应曲线之间,且G'随PS含量的增加而增大,说明炭黑填充二元聚合物复合材料比炭黑填充一元聚合物复合材料更有弹性。
     对炭黑/聚合物共混体系动态力学行为的研究结果表明,炭黑导电粒子的加入对聚合物共混体系起到了增强作用,随着炭黑填充量的增加复合材料的储能模量也在提高,并且填料的加入使体系的玻璃化转变温度略往高温处移动:共混体系的E'均随温度的升高而呈现逐渐降低的趋势,E'显著变化的区域分别对应不同的力学状态;PS组分的加入能提高复合材料对温度变化的敏感性:PA6/PAN/CB共混体系的E'随PAN含量的增加而提高,共混体系出现力学损耗峰的温度随PAN含量的增加而提高,并且损耗因子tanδ值变小。PAN组分的加入提高了复合体系的机械性能和耐热性能。
     结合DMA、DSC、TEM等实验方法,研究了PA6/PAN/CB共混体系的相形态以及其与材料导电性能的关系。结果表明,PA6与PAN相呈现部分相容性的特点;随着PAN组分的增加复合体系出现微相分离结构,并且PAN组分的加入能诱使一部分炭黑粒子分散到PA6、PAN两相界面处,在这两种作用下,PA6/PAN/CB共混体系的导电性能得到提高。
Polymers filled with carbon black (CB) have been extensively studied and used when appropriate conductivity levels are required. One of the recent trends is to reduce the CB content in composites while maintaining a relatively high conductivity at the same time. The selective distribution of CB into one phase or at the interface of polymer blends can bring on electric conductive materials with lower filler content. This can also provide good processing ability and avoid poor mechanical properties in consequence of high CB content. There are several factors affecting the electric conductivity of CB-filled polymer blends and the mechanism of the electric conductivity has not been clear yet. In this dissertation, sseveral sorts of CB-filled nylon6 (PA6) composites were prepared in HAAKE Thermo-mixer. The morphology, conductivity, thermorheology properties and their relationships were studied.
     The dispersion states of CB particles in polymer blends were characterized by different methods. The results show the same: CB particles distributed predominately in the PA6 phase in PA6/PS/CB, PA6/PAN/CB composites. The results also show that when CB particles located preferentially in one polymer phase, the ternary composites have the highest electric conductivity usually when the amount of the polymer component in which the CB particles distribute is comparatively less than the polymer component in which the CB particles do not distribute. The addition of PAN component can attract a part of CB particles that transfers to the interface of PA6 and PAN. This makes the formation of a better network structure of CB, and the electric conductivity of the composites increases as a consequence.
     Studies on the linear viscoelastic behavior of PA6/PS/CB blends were carried out. The results show that polymer blends performance a similarity viscoelastic behavior of the original component. The elastic modulus of PA6/PS/CB composites increases as the CB or PS content increases. CB-filled binary polymer blends show more elastic than CB-filled unitary polymer.
     The studies on the thermorheological properties of CB-filled PA6 composites demonstrate that while the PAN content in PAN/PA6/CB blends rises, the elastic modulus of the blends increases and tan 5 values of the blends decreases as compared with the PA6/CB composites. The presence of PAN particles enhances the mechanical performance of conductive PA6/CB composites at high temperatures.
     When a small mass of PAN was introduced into PA6/CB composites, micro-phase separation structures and partial miscibility were confirmed by Advanced Rheometric Expansion System, DMA, TEM and DSC tests. A part of CB particles could be attracted by PAN, and transferred to the interface of PA6 and PAN, leading to an increase of electric conductivity.
引文
[1]章明秋,曾汉民.导电性高分子复合材料.工程塑料应用,1991(2):50-57
    [2]江东亮.新材料.上海科学技术出版社,1994,224
    [3]D.R.Paul,J.W.Barlow,Polymer blends(or alloys),J Macromol Sci-Rev Macromol Chem,1980,18,109-169
    [4]杨小利,王钧.导电复合材料的研究.玻璃钢/复合材料,1997(5):28-30
    [5]J.K.Beyoung,G.Seong,et al.Polyaniline nanoparticles prepared in micelles[J].Langmuir,2000,16(14):5841-584
    [6]H.Hsuc.Novel preparation and properties of conductive polyaniline film[J].Synth Met,1991,11(6):671-67
    [7]J.Huang,M.X.Wan.Microtubes of conducting polymers[J].J Poly Sci A:Polym Chem,1999,37:151-157
    [8]J.E.Osterolm,Y.Cao,F.Klavetler.Emulsion polymerization ofaniline[J].Polymer,1994,35(13):2902-2905
    [9]L.J.Zhang,M.X.Wan,Y.Wei.Nanoscaled polyaniline fibers prepared by ferric chloride as an oxidant[J].Macromol Rapid Commun,2006,27:366-371
    [10]王克智.共混聚合物-炭黑复合材料的导电特性.塑料科技,1996(4):42-46
    [11]张福强,王立新.永久性抗静电剂.塑料科技,1996(1):5-9
    [12]Ying Li,Shifeng Wang,Carbon black-filled immiscible polypropylene/epoxy blends,Journal of Applied Polymer Science,2006,99,461-471
    [13]K.Miyasaka,K.Watanabe,E.Jojima,et al.Electrical conductivity of carbon-polymer composites as a function of carbon content.Journal of Materials Science,1982,17:1610-1616
    [14]张雄伟,黄锐.高分子复合导电材料及其应用发展趋势.功能材料,1994,25(6):492-497
    [15]王克智.共混高聚物-炭黑复合材料的导电特性.塑料科技,1996(4):42-48
    [16]X.Tai,G.Wu,Y.Tominaga.An approach to one-dimensional conductive polymer composites.Journal of Polymer Science,Part B,Polymer Physics,2005,43:184-189
    [17]J.Reignier,D.Favis,Core-shell structure and segregation effects in composite droplet polymer blends,AICHE,2003,49(4),1014-1023
    [18]郦华兴,王松林,彭少贤等,金属填充导电高分子材料研究,中国塑料,1999,13(1):18-21
    [19]M.H.Policy,Study on conductive mechanism of conductive polymer composites,Rubber Chem.Technol,1957,30:170-179
    [20]Van Beck LKH,Van Pul BI.Internal field emission in carbon black-loaded natural rubber vulcanizates.Journal of Applied Polymer Science,1962,24:651-655
    [21]蒋红梅,王久芬.复合型导电高分子材料研究进展,华北工学院学报,1998,19(3),231-234
    [22]许佩新,陈治中.铜导电胶电性能研究材料,科学与工程,1998,16(1),75-77
    [23]刘志杰,赵斌.超细核壳铜-银双金属粉末抗氧化性研究,无机化学学报,1997,13(L),32-37
    [24]刘金世.导电高分子复合材料的有效电导率模型,石油大学学报(自然科学版),2005,29(1),140-143
    [25]张福强.复合型导电高分子材料技术进展[J].塑料,1995,24(2):7-11
    [26]董晓武,李长江.炭黑(炭纤维)-聚丙烯复合型导电高分子的电学性能[J].高分子材料科学与工程,1992,6:89-92
    [27]J.A.Shar,T.Cosgrove,T.M.Obey,et al.Adsorption Studies of Diblock Copolymers at the Cyclohexane/Carbon Black Interface.Langrnuir,1999,15:7688-7694
    [28]G.C.McGonigal,R.H.Bernhardt,D.J.Thomson.Imaging alkane layers at the liquid/graphite interface with the scanning tunneling microscope.Applied Physics Letters,1990,57:28-30
    [29]J.P.Rabe,S.Buchholz.Commensurability and Mobility in Two-Dimensional Molecular Patterns on Graphite.Science,1991,253:424-427
    [30]D.M.Cyr,B.Venkataraman,G.W.Flynn.STM investigations of organic molecules physisorbed at the liquid-solid interface.Chemistry of Materials,1996,8:1600-1615
    [31]J.M.Pena,N.S.Allen,et al.Factors affecting the adsorption of stabilisers on to carbon black(flow micro-calorimetry studies) Part Ⅱ Hindered amine light stabilisers(HALS).Journal of Materials Science,2001,36:4419-4431
    [32]A.Roychoudhury,P.P.De.Elastomer-carbon black interaction:Influence of elastomer chemical structure and carbon black surface chemistry on bound rubber formation.Journal of Applied Polymer Science,1995,55:9-15
    [33]F.Gubbels,S.Blacher,E.Vanlathem,R.Jerome,R.Deltour,F.Brouers,P.Teyssie,Design of electrical composites:Determining the role of the morphology on the electrical properties of carbon black filled polymer blends,Macromolecules,1995,28,1559-1566
    [34]D.R.Paul,J.W.Barlow,Polymer blends(or alloys),J Macromol Sci-Rev Macromol Chem,1980,18,109-169
    [35]J.K.Avlyanov,K.Schwartz,S.R.Gerteisen,S.Dahman,Self-organized networks of intrinsically conductive additives in two-phase plastics,Synth Met,1999,102(1-3),1274-1283
    [36]J.Y.Feng,A method to control the dispersion of carbon black in an immiscible polymer blend,Polym Eng Sci,2003,43(5),1058-1063
    [37]J.Feng,C.M.Chan,Carbon black-filled immiscible blends of Poly(vinylidene fluoride)and high density polyethylene:electieal properties and morphology,Polym Eng Sci,1998,38,1649-1657
    [38]G.J.Lee,K.D.Suh,Effect of ineorpotating ethylene-ethylacrylate copolymer of the positive temperature coefficient characteristics of carbon black filled HDPE systems,Polym Eng Sci,2000,40,247-255
    [39]M.Sumita,K.Sakata,Dispersion of filler and the electrical conductivity of polymer blends filled with carbon black,The sixth annual meeting,PPS,Nice,France(1990)
    [40]范五一,蔡碧华.塑料加工与应用,1987(5):18
    [41]邓毅.导电炭黑在塑料中的应用.中国塑料,2001,15(4):7-9
    [42]刘金世,导电高分子复合材料的有效电导率模型,石油大学学报(自然科学版),2005,29(1),140-143
    [43]R.Tehoudakov,O.Breuer,M.Narkis,A.Siegmann,Conductive polymer blends with low carbon black loading:polypropylene/polyamide,Polym Eng Sci 1996,36,1336-1346
    [44]P.Tchomakov,D.Favis,A.Huneault,F.Champagne,Composite droplets with core/shell morphologies prepared from HDPE/PS/PMMA ternary blends by twin-screw extrusion,Polym Eng Sci,2004,44(4),749-759
    [45]江家清.高分子导电材料的新进展.材料导报,1992,6:54-59
    [46]K.Miyasaka,K.Watanabe,E.Jojima,et al.Electrical conductivity of carbon-polymer composites as a function of carbon content.Journal of Materials Science,1982,17: 1610-1616
    [47]R.Tchoudakov,O.Breuer,O.M.Narkis,A.Siegmann,Conductive polymer blends with low carbon black loading:High impact polystyrene/thermoplastic elastomer (styrene-isoprene-styrene),Polym Eng Sci,1997,37,1928-1935
    [48]F.Gubbels,R.Jerome,P.Teyssie,E.Vanlathem,R.Deltour,A.Calderone,Selective localization of carbon black in immiscible polymer blends:A useful tool to design electrical conductive composites,Macromolecules,1994,27,1972-1974
    [49]F.Gubbels,E.Vanlathem,R.Jerome,R.Deltour,Selective control of the localization of carbon black in polymer blends,The second international conference on carbon black,Mulhouse(1993)
    [50]M.Sumita,K.Miyasaka,Effect of melt viscosity and surface tension of polymers on the percolation threshold of conductive-particle-filled polymeric composites,Journal of Macromolecular Science-Physics,1986,B25(1&2),171-184
    [51]D.J.Sommers.Carbon Black for Electrically Conductive Plastics.Polymer-Plastics Technology and Engineering,1984,23(1):83-88
    [52]K.Levon,A.Margolina,A.Z.Patashinsky,Multiple percolation in conducting polymer blends,Macromolecules,1993,26,4061-4063
    [53]H.Foulger,Reduced percolation thresholds of immiscible conductive blends,Journal of Polymer Science:Part B:Polymer Physics,1999,37,1899-1910
    [54]Jan-Chan Huang,Carbon black filled conducting polymers and polymer blends,Advances in polymer technology,2002,21(4),299-313
    [55]Ying Li,Shifeng Wang,Carbon black-filled immiscible polypropylene/epoxy blends,Journal of Applied Polymer Science,2006,99,461-471
    [56]M.Sumita,K.Sakata,Dispersion of filler and the electrical conductivity of polymer blends filled with carbon black,The sixth annual meeting,PPS,Nice,France(1990)
    [57]J.C.Huang,S.H.Shen,Y.T.Chu,Melt viscosity of polycarbonate-polyolefin blends,Adv Polym Tech,1994,13,49-55
    [58]G.Geuskens,J.L.Gielens,Eur.Polym.J.,23,993(1987)
    [59]杜仕国.聚合物抗静电材料的研究与发展.工程塑料应用,1998,10:31-35
    [60]汪济奎,导电高分子材料在显示材料方面的应刚,辽宁化工,1994,(5):15-17
    [61]江家清.高分子导电材料的新进展.材料导报,1992,6:54-59
    [62]万梅香,导电聚合物隐身材料的研究现状及发展机遇,隐身技术,1999,(3):7-10
    [63]郦华兴,王松林,彭少贤等,金属填充导电高分子材料研究,中国塑料,1999,13(1):18-21
    [64]J Meyer.The PTC Effect of Polymer-carbon Composite.Polym Eng Sci,1973,13(6):452
    [65]许久福,邵文海.辐射交联自控温电热带的研制.辐射研究与辐射工艺学报,1990,8(1):54-58
    [66]潘宝风,李武光,导电高分子复合材料的研制,玻璃钢/复合材料,2000,1,12-14
    [67]Y.Wang,Y G.Liu,J.G.Chen,Organic charge-transporting materials,Photographic Science and Photo-chemistry,1999,17(1),73-84
    [68]许佩新,陈治中,铜导电胶电性能研究材料,科学与工程,1998,16(1),75-77
    [69]张华西,李瑛等.聚合物太阳能电池材料研究进展.化学研究与应用,2004,16(2):143-148
    [70]张文根等.导电高分子的应用展望.上海化工,2001,26(7):23-26
    [71]戴闻.从导电聚合物到有机超导体.物理,2001,30(3):189-190
    [72]M.Uoda,T.Abe,H.Auano,Synthesis of Poly(2,5-dialkoxy phenylene),Macromolecules,1992,25(27),5125-5130
    [73]R.M.Scarisbrick,Eletrically conducting mixtures[J].J Phys D:Appl Phys,1973,6:2098-2110
    [74]G.J.Lee,K.D.Suh,Effect of incorpotating ethylene-ethylacrylate copolymer of the positive temperature coefficient characteristics of carbon black filled HDPE systems,Polym Eng Sci,2000,40,247-255
    [75]J.Feng,C.M.Chan,Carbon black-filled immiscible blends of Poly(vinylidene fluoride)and high density polyethylene:electical properties and morphology,Polym Eng Sci,1998,38,1649-1657
    [76]J.Y.Feng,A method to control the dispersion of carbon black in an immiscible polymer blend,Polym Eng Sci,2003,43(5),1058-1063
    [77]J.K.Avlyanov,K.Schwartz,S.R.Gerteisen,S.Dahman,Self-organized networks of intrinsically conductive additives in two-phase plastics,Synth Met,1999,102(1-3),1274-1283
    [78]N.C.Das,T.K.Chaki,D.Khastgir.Effect of Filler Treatment and Crosslinking on Mechanical and Dynamic Mechanical Properties and Electrical Conductivity of Carbon Black-Filled Ethylene-Vinyl Acetate Copolymer Composites. Journal of Applied Polymer Science, 2003,90: 2073-2082
    [79] A. Katada, Y. Konishi, et al. Dynamic Percolation Phenomenon of Poly(methyl methacrylate)/Surface Fluorinated Carbon Black Composite. Journal of Applied Polymer Science, 2003,89:1151-1155
    [80] G. Wu, T. Miura, et al. Carbon black-loading induced phase fuctuations in PVDF/PMMA miscible blends: dynamic percolation measurements. Polymer, 2001,42:3271-3279
    [81]H. Guo, T. V. Sreekumar. Structure and properties of polyacrylonitrile/single wall carbon nanotube composite films. Polymer, 2005,46, 3001
    [82] W. Thongruang, R. J. Spontak, C. M. Balik. Bridged double percolation in conductive polymer composites: an electrical conductivity, morphology and mechanical property study. Polymer, 2002,43(13): 3717-3725
    [83] O. Meincke, D. Kaempfer, H. Weickmann. Mechanical properties and electrical conductivity of carbon-nanotube filled polyamide-6 and its blends with acrylonitrile/butadiene/styrene. Polymer, 2004,45(3): 739-748
    [84] J. R. Li, J. R. Xu, M. Q. Zhang. Electrical Response to Organic Vapor of Conductive Composites from Amorphous Polymer/Carbon Black Prepared by Polymerization Filling. Macromolecular Materials and Engineering, 2003,288(2): 103-107
    [85] Q. H. Zhang, D. J. Chen. Percolation threshold and morphology of composites of conducting carbon black/polypropylene/EVA. Journal of Materials Science, 2004, 39(5): 1751-1757

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700