考虑电磁与热耦合的ITER过渡馈线设计与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
国际热核聚变实验堆(International Thermonuclear Experimental Reactor,简称ITER)的目标是通过国际合作,研制一个可自持燃烧的托卡马克可控聚变试验堆装置,为和平、安全利用聚变能进行科学探索和研究。ITER过渡馈线(CryostatFeed-Through,简称CFT)作为馈线系统的一个重要组成部分,是核聚变装置的关键部件之一。因此,对过渡馈线及其关键部件的设计进行研究是十分必要的。
     本文对过渡馈线和国内外主要托卡马克装置冷屏的研究现状进行了广泛的调研,参照ITER总体设计的相关文档,制定了过渡馈线的设计准则、材料选择原则等。针对CFT冷屏结构复杂和有多场作用的特点,对其进行了热、电磁以及耦合分析和实验研究。完成的主要研究工作和成果如下:
     (1)针对CFT冷屏的设计,综合运用电磁学理论、热力学理论、耦合分析理论、有限元理论、计算机辅助工程、机械设计等学科知识,建立了考虑多场耦合分析、加工制造和实验的冷屏设计方法。通过热学实验,对冷屏的热分析进行了验证。
     (2)综合运用公式计算和有限元仿真对CFT冷屏各个参数作了详细的设计与分析,通过对比分析各个设计方案,最终确立了CFT冷屏的各个设计参数。对冷屏的焊接方式进行了筛选,通过焊接实验,确定了冷屏冷却管的焊接方案。
     (3)对于CFT冷屏的电磁分析,提出了解析法与有限元法相结合的分析方法。分别通过这两种方法计算得到了冷屏上磁场分布、涡流分布等一系列的电磁分析数据,对比了两种方法的计算结果,较为接近的计算结果验证了计算方法的可行性和计算结果的正确性。
     (4)针对CFT冷屏的热分析,详细阐述了CFT冷屏的热源以及传热方式,理论计算出了辐射热流密度和对流换热系数等参数。将电磁分析中得到的焦耳热作为热源计入热分析中,完成了CFT冷屏的电磁—热局部耦合分析。
     (5)将多场耦合的分析理论引入到CFT冷屏的分析中,制定了CFT冷屏的多场耦合分析方法。在电磁和电磁—热局部耦合分析的基础上,将电磁力和温度载荷代入结构分析中,完成了CFT冷屏的电磁—热—结构全局耦合分析。
     (6)深入研究了CFT冷屏的多层绝热,分析和计算了多层绝热中的热辐射、热对流和热传导的热量损失。对冷屏的表面镀银工艺以及镀银后在低温下的发射率进行了对比实验,为以后聚变装置馈线冷屏的表面处理提供了详尽可靠的实验数据与可借鉴方案。
The goal of International Thermonuclear Experimental Reactor(ITER)is to developa controllable Tokamak device, which is self-sustaining combustion, for scientificexploring and studying fusion energy peacefully and safely through internationalcooperation. As an important part of ITER Feeder System, Cryostat Feed-Through(CFT)is one of the key parts of fusion device. So, it is necessary to study CFT and itskey parts.
     In this paper, the research status of CFT and major domestic and foreign tokamakthermal shields is extensively investigated. Design criteria and material selectionprinciples for CFT are established referring to the overall design of ITER-relateddocuments. According to CFT thermal shield characteristics of complex structure andmulti-field effect, thermal, electromagnetic and coupling analysis and experimentalresearches are carried out. The main research work and achievements accomplished areas follows:
     (1)Regarding to the design of CFT thermal shield, a design method consideringmulti-field coupling analysis, manufacturing and experiment is established bycomprehensively using of electromagnetic theory, thermodynamics, coupled analysistheory, finite element theory, computer-aided engineering, mechanical design and otherdisciplines of knowledge. Furthermore, the thermal analysis of Thermal shield isverified through thermal experiment.
     (2)The parameters of CFT thermal shield are designed and analyzed in detail bycomprehensively using of formula calculation and finite element simulation, andestablished ultimately through comparative analysis of each design scheme. In addtion,welding types are filtered and the welding program of cooling pipes is determined bywelding experiments.
     (3)For the electromagnetic analysis of CFT thermal shield, a combined analysismethod of analytical method and FEM is proposed and the electromagnetic analysisdata of magnetic field and eddy current distribution are obtained. The feasibility ofcalculation method and the correctness of calculated results are validated by comparingthe calculated results of two methods.
     (4)With regard to the thermal analysis of CFT thermal shield, heat source and heattransfer mode of CFT thermal shield are expounded in detail. Then, heat flux density of radiation and heat transfer coefficient of convection are calculated. Finally, theelectromagnetic-thermal partial coupling analysis of CFT thermal shield is finished bycrediting the joule heat from electromagnetic analysis as heat source in thermal analysis.
     (5)By introducing multi-field coupling analysis theory into the analysis of CFTthermal shield, a multi-field coupling analysis method for CFT thermal shield isdeveloped. On the basis of electromagnetic and electromagnetic partial couplinganalysis, the analysis of electromagnetic-thermal-structural global coupling for CFTthermal shield is completed by putting electromagnetic force and temperature loads intostructural analysis.
     (6)The multi-layer insulation of thermal shield has been studied deeply and the heatloss of heat radiant, heat conduction and heat convection is analyzed and calculated.Detailed comparative experiments of thermal shield for sliver plating process andsilvered surface emissivity at low temperature are conducted, which can providedetailed and reliable experimental data and referential program for thermal shieldsurface treatment of future tokamak device.
引文
[1]冯开明.可控核聚变与国际热核实验堆(ITER)计划[J].中国核电,2009,2(3):212-219.
    [2]潘传红.国际热核实验反应堆(ITER)计划与未来核聚变能源.物理[J],2010,3(6):375-378.
    [3]王淦昌.21世纪主要能源展望.核科学与工程[J],1998,18(2):97-107.
    [4]孔宪文,姜军,朱松.核裂变与核聚变发电综述[J].东北电力技术,2002,(5):29-34.
    [5]赵君煜.国际热核聚变实验堆(ITER)计划.物理[J].2004,(4):257-260.
    [6]朱士尧.核聚变原理[M].安徽:中国科学技术大学,1992.
    [7]胡希伟.受控核聚变[M].北京:科学出版社,1981.
    [8] Wessen J.Tokamaks[M].Oxford:ClarendonPress,1987.
    [9]朱士尧.核聚变研究的历史发展[J].物理,1990,19(2):113-117.
    [10] http://w3.pppl.gov/tftr/[OL].
    [11] http://www-jt60.naka.jaea.go.jp/[OL].
    [12] http://www.efda.org/jet/[OL].
    [13] Ninomiya,Hiromasa, Kitsunezaki, ect.Research Activities on Tokamaks in Japan: JT-60U,JFT-2M, and TRIAM-1M [J].Fusion Science and Technology,2002,(42):7-31.
    [14] http://www-fusion-magnetique.cea.fr/gb/cea/ts/ts.htm [OL].
    [15]翁佩德.HT-7超导托卡马克装置[R].合肥:中国科学院等离子体物理研究所,1997.
    [16]辛文.ITER最终落户法国[J].国外核新闻,2005,(7):31-32.
    [17]张一鸣.ITER计划和核聚变研究的未来[J].真空与低温,2006,12(4):231-237.
    [18]赵旺初.ITER介绍[J].东方电气评论,2004,(2):67.
    [19]张炎.处在转折中的ITER[J].国外核新闻,2003,(5):25-28.
    [20]国外核新闻编辑部.ITER项目背景介绍[J].国外核新闻,2003,(3):29-32.
    [21] R.Aymar.Status of ITER[J].Fusion Engineering and Design,2002,(6l-62):6.
    [22]霍裕平.人类开发新能源的宏伟计划[DB/OL].http://www.cas.cn/ft/zxft/200612/t20061222_1689635.html.
    [23] C.A.Felippa, K.Park, C.Farhat. Partioned analysis of coupled mechanical systems.Comput. Methods Appl. Mech. Engrg.2001(190):3247-3270.
    [24] Charles Boivin, Carl Ollivier-Gooch, A toolit for numerical simulation of PDEs. II.Solving ge neric multiphysics problems, Comput.Methods Appl. Mech. Engrg.2004,(193):3891-3918.
    [25]王伟.大型星载薄膜天线结构-热-电磁耦合问题分析[D].西安电子科技大学,2007.
    [26] Jean-Philippe Parmantier. Numerical Coupling Models for Complex Systems and Results[J].IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY.2004,3(8):359-367.
    [27]宋少云,李世其.耦合场协同仿真中节点载荷插值的混合法[J].计算机仿真,2006,23(08):73-75.
    [28]王勇.场路结合并考虑耦合的磁力机械分析与设计方法研究[D].合肥工业大学,2006
    [29]李露.磁力机械多场耦合及多学科优化设计[D].合肥工业大学,2010.
    [30] Mark Cross, Avril Slone, Fenet. MULTI-PHYSISCS ANALYSIS(MPA)THEME: AREVIEW OF COMMERCIAL MPA CAPABILITY IN2005[Z].
    [31] J. Michopoulos, P. Tsompannopoulou. DESIGN ARCHITECTURE OF A DATA DRIVENENVIRONMENT FOR MULTIPHYSICS APPLICATIONS[C]. Proceedings of DETC'03.ASME2003Design Engineering Technical Conference and Computers and Information inEngineering Conference. Chicage, Illinois USA September2-6,2003.
    [32] Cecil G Armstrong. XML/STEP/OMG Technologies to Facilitate Generic Coupling ofDifferent Aanlysis Codes[C]. Technology Workshop. Copenhagen,Demark.2002,2,27th-28th.
    [33] G. La Rocca, M.J.L. van Tooren. Enabling distributed multi-disciplinary design of complexproducts: a knowledge based engineering approach[J]. Design Research,2007,3(5):333-351.
    [34] Sang Hun Lee. a CAD-CAE integration approach using feature-based multi-resolution andmulti-abstraction modeling techniques[J]. Design Research,2005,(37):941-955.
    [35] http://gre.ac.uk/physica/documentation.html [OL].
    [36]徐烈.绝热技术[M].北京:国防工业出版社,1982.
    [37]郭志恭.绝热工程[M].北京:化学工业出版社,1988.
    [38] Rajendra E., Kumar, et al. Design of Vessel system and thermal radiation shields forSST-1[R],20th Symposium on Fusion Technology, Mareseille, Sept,1998.
    [39] S.P. Deshpande and SST–1team " SST-1Overview"17th SOFE,1997,(1):227.
    [40] SST-1Team. Vacuum related R&D activities for different sub-systems of TokamakSST-1[R],2002.
    [41] http://www-fusion-magnetique.cea.fr/gb/cea/ts/ts.htm[OL].
    [42] R.Garbil, J.L. Marechal, B. Gravil, etal. The Tore Supra cryo-plant control systemupgrade[J], Fus.Eng.Des.2001.(58–59):217–223.
    [43]李兴中,傅新宇.韩国雄心勃勃的KSTAR规划[J].国际学术动态,1997,(4):7-8.
    [44]王海丹.韩国“人造太阳”成功生成等离子体[J].国外核新闻,2008,(9):30.
    [45]王志,朱学武.亚洲托卡马克超导磁体研究新进展[J].低温与超导,2002,30(01):16-21.
    [46] Dong-Lak Kima, Seungyeon Choa, Seung-Hyun Kima, et al. Study of thermal and coolingload for KSTAR thermal shield design[DB/OL], www.elsevier.com/locate/cryogenics,2002(42):399–404.
    [47] Wu S.T., Wu W.Y., et al. Design of the HT-7U Tokamakdevice.18th IEEE/NPSSSynposium of Fusion Engineering[R], Sept,1999.
    [48]谢韩,廖子英.EAST超导托卡马克冷屏的结构设计及受热分析[J].低温与超导,2004,(4):50-53.
    [49]祝燕云,庄明,王学敏. EAST内冷屏降温过程瞬态温度场和热应力分析[J].低温工程,2010,(02):38.
    [50]谢韩,廖子英. EAST超导托卡马克冷屏结构与受力分析[J].核聚变与等离子体物理,2005(02):133-134.
    [51]陆坤.ITER超导磁体结构冷却馈线的设计和实验研究[D].合肥:中国科学院等离子体物理研究所,2012.
    [52]张远斌.ITER极向场磁体馈线系统结构设计与分析[D].合肥:中国科学院等离子体物理研究所,2006.
    [53]王建青.ITER纵向场磁体馈线系统结构设计与分析[D].合肥:中国科学院等离子体物理研究所,2006.
    [54]王开松.多工况下ITER中心螺管馈线系统的优化设计与动力分析[D].合肥:合肥工业大学,2009.
    [55]张义.ITER杜瓦力学与电磁场分析研究[D].合肥:合肥工业大学,2012.
    [56] R.Aymar. ITER的设计[J].国外核聚变,2003,(2):10.
    [57]冯开明.可控核聚变与ITER计划[J].现代电力,2006,23(5):82-88.
    [58]潘垣,庄革,张明.国际热核实验反应堆计划及其对中国核能发展战略的影响[J].物理,2010,(06):381.
    [69] Project Intergration Document.ITER Design Description Document GAO GDRD6RO.2[R],2004.
    [60]张远斌,宋云涛,武松涛,王建青.ITER馈线系统虚拟设计[J].机械工程师,2005,(06):93-94.
    [61] Y.M. Park, Y.J. Lee. Development of SC Bus-Line for the KSTAR SuperconductingMagnet[R]. Proceedings of LINAC2002,Gyeongju, Korea:493-495.
    [62]刘畅.磁体馈线系统诊断线盒的结构优化设计研究[D].合肥:合肥工业大学,2013.
    [63] ITER magnet feeder functional specification. ITER_2EH9YM_v2[R],2009.
    [64]张远斌,武松涛,宋云涛.ITER超导馈线系统的设计[J].核聚变与等离子体物理,2005,25(03):195-198.
    [65] ITER structural design criteria for magnet components. ITER Design Description DocumentN11[R],2008.
    [66] Structural design criteria for ITER. ITER Design Description Document G74[R],2001.
    [67]单辉祖.材料力学教程(第二版)[M].北京:国防工业出版社,1997.
    [68]西安交通大学《低温材料》编写组.低温材料[M].北京:机械工业出版社,1988.
    [69] G. Hartwig, K. Endres, O. Haider. Support elements with negative thermal expansion[J].Advance in cryogenic engineering,1994,(40):1110.
    [70] M. Kasen, R. Schram. Current status of standardized nonmetallic cryogenic laminates[J].Advance in cryogenic engineering,1991,(28):275.
    [71]林良真.超导电性及其应用[M].北京:北京工业大学出版社,2001.
    [72]布莱恩,哈里斯.工程复合材料[M].北京:化学工业大学出版社,2004.
    [73]丁伯明.ASME压力容器规范分析与应用[M].北京:化学工业大学出版社,2009.
    [74] ITER I.O. Thermal Shield. ITER Design Document Document N27DDD6[R],2004.
    [75]朱艳.钎焊[M].哈尔滨:哈尔滨工业大学出版社,2012.
    [76]王娟,刘强.钎焊及扩散焊技术[M].北京:化学工业出版社,2013.
    [77]《焊接工艺与操作技巧丛书》编委会.气焊、气割工艺与操作技巧[M].沈阳:辽宁科学技术出版社,2010.
    [78]洪松涛.气体保护焊接一本通[M].上海:上海科学技术出版社,2011.
    [79] ITER Organization. ITER magnet feeder systems functional specification and interfacedocument[R]. ITER Technical Document,2009.
    [80]刘勃,武玉.ITER超导磁体线圈电磁分析[J].低温与超导,2011,39(01):29-32.
    [81]曹文钢,吴海龙,许铁军.ITER诊断插件电磁分析及其对结构的影响[J].核聚变与等离子体物理,2011,31(02):167-170.
    [82]赵斌兴,高椿明,刘华东.基于ANSYS的中国ITER实验包层电磁分析[J].实验科学与技术,2008,6(01):151-153.
    [83]高椿明,秦臻,陈颜静. ITER中国实验包层在等离子主破裂下的电磁耦合评估[J].电子科技大学学报,2008,42(01):678-683.
    [84]朱哲,傅鹏,朱银锋. ITER纵场的电磁分析与电源系统的概念设计[J].低温与超导,2011,39(06):28-32.
    [85]胡仁喜,孙明礼等.ANSYS13.0电磁学有限元分析从入门到精通[M].北京:机械工业出版社,2012.
    [86]曹建章,张正阶,李景镇.电磁场与电磁波理论基础[M].北京:科学出版社,2010.
    [87]牛中奇.电磁场理论基础[M].北京:电子工业出版社,2001.
    [88]谢龙汉,耿煜,邱婉.ANSYS电磁场分析[M].北京:电子工业出版社,2012.
    [89]孙明礼,胡仁喜,崔海容.ANSYS10.0电磁学有限元分析实例指导教程[M].北京:机械工业出版社,2007.
    [90]阎照文.ANSYS10.0工程电磁分析技术与实例详解[M].北京:中国水利水电出版社,2006.
    [91]杨宪章,邹玲,樊亚东.工程电磁场[M].北京:中国电力出版社,2010.
    [92]严济慈.电磁学[M].合肥:中国科学技术大学出版社,2013.
    [93]夏明耀,王均宏.电磁场理论与计算方法要论[M].北京:北京大学出版社,2013.
    [94]赵凯华.电磁学[M].北京:高等教育出版社,1985.
    [95]杜世俊,高静,吴维越. HT-7U装置环向场线圈涡流损耗分析[J].合肥工业大学学报(自然科学版),2000,23(2):166-172.
    [96]杜世俊,张永生.超导环向场磁体线圈盒对磁场的屏蔽效应[J].中国电机工程学报,2002,22(11):124-128.
    [97]程新华,苏华莺主.热工基础[M].北京:中国电力出版社,2013.
    [98]钟锡华,陈熙谋.热学[M].北京:北京大学出版社,2013.
    [99]方达宪,张红亚.流体力学[M].西安:武汉:武汉大学出版社,2013.
    [100]王国强.实用工程数值模拟技术及其在ANSYS上的实践[M].西安:西北工业大学出版社,2001.
    [101] Yunus A. Cengel, John M. Cimbala.流体力学基础及其工程应用[M].北京:机械工业出版社,2013.
    [102] M. van der Giet, C. Schlensok, B. Schmuelling, K. Hameyer. Comparison of2D and3DCoupled Eleetromagnetic and Structure-Dynamic Simulation of Electrical Machines[J].Proceedings of the1th Conference on the Computation of Electromagnetic Fields,2007,6,24th-28th:373-374.
    [103] Mark Cross, Avril Slone. Characterising closely coupled MULTI-PHYSICSsimulation[R]. FENET THEMATIC NETWORK,2002.
    [104] Verschoor JD, Greebler P. Heat Transfer by Radiation and Gas Conductioning FibrousInsulations, Trans ASME Mech Eng,1952,(74):961-969.
    [105]刘素梅.ITER装置线圈终端盒原型件冷屏传热设计分析与实验研究[D].合肥:中国科学院等离子体物理研究所,2009.
    [106]谢文丁.绝热材料与绝热工程[M].北京:国防工业出版社,2006.
    [107]徐烈.低温真空技术[M].北京:机械工业出版社,2008.
    [108]陈国邦.低温工程材料[M].浙江:浙江大学出版社,1998.
    [109]于秋红.热工基础[M].北京:北京大学出版社,2009.
    [110]陈国邦,张鹏.低温绝热与传热技术[M].北京:科学出版社,2004.
    [111]超传导.低温工学手册[M].日本:日本低温工学协会,1989.
    [112] Shuichi Yamada, Toshiyuki Mito. Superconducting Current Feeder System for the LageHelical Device[J]. IEEE Transactions on Magnetics,1996,(4):2422
    [113]高鹏,朱永明编.电化学基础教程[M].北京:化学工业出版社,2013.
    [114]徐家文,云乃彰等编.电化学加工技术[M].北京:国防工业出版社,2008.
    [115]张建奇,方小平编.红外物理[M].西安:西安电子科技大学出版社,2004.
    [116]翁诗甫编.傅里叶变换红外光谱分析[M].北京:化学工业出版社,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700