高速铁路弓网电弧动态特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高速铁路是当今世界铁路发展的潮流,提升列车运行速度是世界各国不断追求的目标。我国通过引进——消化吸收——再创新的发展模式,极大推动了我国高速列车技术的发展。受电弓/接触网(以下简称弓网)关系是高速电气化铁路安全运行的三大核心关系之一,弓网系统良好的服役性能是保障高速列车可靠、安全运行的基本条件。随着高速列车运行速度的提高,受电弓与接触网之间存在着纵横向的高速滑动和垂向的频繁跳动,使得弓网之间的电接触状态变化更加复杂。弓网在接触至分离过程中,弓网之间的接触电阻不断增大,受流质量降低。弓网出现分离时将产生弓网电弧,弓网电弧将烧蚀接触网导线和受电弓滑板,同时引起牵引供电电压和电流波形畸变、降低牵引供电质量,威胁高速铁路的安全稳定运行。
     以高速铁路弓网运动过程为研究对象,分析了传统弓网试验装置(盘-销结构)的不足,基于弓网之间的实际耦合关系,研制了“柔性平直线接触”的弓网电弧发生装置和同步电弧信息采集系统。将接触网导线放置于两个圆盘的安装槽上,采用变频电机驱动圆盘运动来实现接触网导线的纵向运动;采用伺服电机结合滚轴丝杆驱动的方式实现受电弓滑板的垂向振动和横向“Z”形运动,从而精确控制弓网之间的相对运动。根据弓网电弧电压的突变性,采用宽频带桥式阻容分压式电弧电压采集方法,将采集的电弧电压信号经隔离放大处理,送入后续的高速数据采集系统,以便实现电弧电压、电流、电弧形态等信息的同步采集,从而为研究弓网电接触特性、弓网电弧影响规律及其动态特性奠定基础。
     研究了弓网系统的接触形态,剖析了弓网接触电阻产生机理,解析了接触电阻与接触形貌和触点温升关系,建立弓网接触电阻模型并进行了试验验证,探明了弓网滑动速度、接触压力、弓网受流对动态接触电阻的影响规律。
     研究了弓网在高速滑动、跳动过程中电弧的产生、发展、熄灭规律及其机理。揭示了弓网离线间歇、弓网系统电极材料、牵引电流以及弓网系统的负载特性对弓网电弧的影响规律,为后续建立弓网电弧时空分布模型奠定了试验基础。
     建立了弓网电弧时空分布模型,将弓网电弧模型引入到牵引供电系统中,研究了弓网燃弧相位、离线位置对牵引系统过电压的影响规律,提出了弓网电弧引起的牵引供电系统过电压的抑制措施。
High-speed is trend of electrical railway development all over the world. Higher and higher speed is the seek purpose for various countries. The mode of import, digestion, absorption and re-innovation of technology has greatly contributed to the development of high-speed railway in China. Pantograph-catenary system is one of three key systems of high-speed electric railway. So its service performance has great influence on the train's reliable and safe running. Because of the phenomenon "contact-abruption-contact" of pantograph-catenary system, with the increase of train speed, electric contact and abruption of pantograph-catenary system are alternated more and more quickly. During the alternation process, contact resistance of pantograph-catenary system increases, power quality from catenary reduces. When the pantograph and catenary is separated, pantograph-catenary arc would occur. The arc will ablate catenary wire and pantograph sliding board, and distort voltage and current waveform, as well as reduce the power quality. The arc greatly impacts the train's reliable and safe running.
     Running process of high-speed railway pantograph-catenary system was studied. According to the deficiency of traditional pantograph-catenary system test device (tray-pin structure), based on the coupling of actual pantograph-catenary system, pantograph-catenary arc test device of flexible line contacting flat line as well as arc information collection synchronous system were developed. The contact wire is fixed in the grooves around the outer edges of the two wheels. When the driving wheel is driven to rotate by the variable speed motor, the driven wheel and the contact wire moves together with it, which can simulate horizontal movement. This apparatus can achieve zigzag movment and vertical libration based on it used the servo control systems and roller screws technology. The arcing voltage acquisition used broadband bridge resistance-capacity partial pressure sampling method according to the pantograph arcing voltage's mutability, the voltage singal route by isolation amplifier, send to high speed acquisition unite, in order to realize the arcing voltage arcing current and acrcing morphology synchronous acquisition. It has laid the experimental foundation for researching the character of pantograph electrical contact and pantograph arcing.
     The contact shapes of pantograph-catenary system and the mechanism of contact resistance for pantograph-catenary system were studied. the relationships among contact resistance, contact morphology and spot temperature were analyzed. A novel contact resistance model for pantograph-catenary system has been established and verified the model by experiment. The relationships among contact resistance, slide speed, contact force and collecting current were studied.
     Occurring, development, extinguishing law and its mechanism of pantograph-catenary arc under high-speed sliding and beating process were investigated. The influence of abruption and electrode material of pantograph-catenary system, import current, load characteristic on pantograph-catenary arc was analyzed. Impact law of pantograph-catenary arc was obtained. It has laid the experimental foundation for the spatial and temporal distribution model of pantograph-catenary arc.
     The spatial and temporal distribution model of pantograph-catenary arc was gained. Based on the model, the impact of the phase of arc, abruption position on overvoltage of traction system was studied. Suppression measures for arc inducing traction system overvoltage were proposed.
引文
[1]H. Lee, G. Kim, S. Oh. Fault analysis of Korean AC electric railway system [J]. Electric Power Systems Research,2006,76(5):317-326.
    [2]D. Nakagava, M. Hatoko. Reevaluation of Japanese high-speed rail construction:recent situation of the north cocorridor shinkansen and its way to completion [J]. Transportpolicy,2007,14(2): 150-164.
    [3]沈志云.论我国高速铁路技术创新发展的优势[J].科学通报。2012,53(8):594-599.
    [4]B Allotta, L Pugi, F Bartolini. Design and Experimental Results of an Active Suspension System for a High-Speed Pantograph[J] Mechatronics, IEEE Transactions on ASME 2008,13(5), pp:548-557
    [5]金学松,温泽峰,张卫华等.世界铁路发展状况及其关键力学问题(特邀报告)[C].第十三届全国结构工程学术会议论文集(第1册).2004:96-100.
    [6]JIS E2002-2001, Electric traction overhead lines-Fittings-Test methods[S].
    [7]EN50367, Railway Application-Current Collection Systems-Technical Criteria for the Interaction between Pantograph and Overhead Line[S].
    [8]中国交通年鉴社.中国交通年鉴2005[M].北京:中国交通年鉴社,2005.
    [9]S. Kubo and H. Tsuchiya. Recent developments in the installation of carbon contact strips on pantograp heads, Quarterly Report of Railway Technical Research Institute,2004.
    [10]B.Tellini, M.Macucci, R.Giannetti, et al. Line-pantograph EMI in railway systems [J]. IEEE Instrumentation and Measurement Magazine,2001:10-13
    [11]R.Giannetti, M.Macucci, B.Tellini. EMI Measurements in Line-Pantograph Contact Discontinuity in Railway Transportation Systems[C]. Trends in Electrical Measurement and Instrumentation, 2001:25-27.
    [12]Rawlins, C.B, Papiliou, K.O, Diana, Get al. On the measurement of overhead transmission lines conductor self-damping [J]. IEEE Transactions on Power Delivery.2000.15 (4) 1329-1331
    [13]Hiroshi TSUCHIYA. Development of a new pantograph contact strip for ultrahigh-speed operations [J].Railway technology avalanche,2006,8:83-83
    [14]Surajit Midya, Dierk Bormann, Thorsten Schutte, and Rajeev Thottappillil. Pantograph Arcing in Electrified Railways—Mechanism and Influence of Various Parameters—PartⅠ:With DC Traction Power Supply [J]. IEEE Transaction on power delivery,2009,29(4):1931-1939
    [15]Surajit Midya, Dierk Bormann, Anders Larsson, et al. Understanding Pantograph Arcing in Electrified Railways-Influence of Various Parameters[C]. IEEE International Symposium on Electromagnetic Compatibility,2008:1-6.
    [16]Surajit Midya, Dierk Bormann, Ziya Mazloom. Et al. Conducted and Radiated Emission from Pantograph Arcing in AC Traction System[C]. Power and Energy Society General Meeting,2009: 1-8.
    [17]Dierk Bormann, Surajit Midya, Rajeev Thottappillil. DC Components in Pantograph Arcing: Mechanisms and Influence of Various Parameters[C].18th Int. Zurich Symposium on EMC, Munich 2007:369-372
    [18]戴利民,林吉忠,丁新华.滑板材料受流摩擦时接触点瞬态温升对磨损性能的影响[J],中国铁道科学.2002,23(2):111-117
    [19]李鹏,杜三明,孙乐民等.载电条件下铬青铜/纯铜摩擦副摩擦磨损性能研究[J].摩擦学报,2003,23(3):250-252
    [20]姜国强,郭凤仪,王智勇等.基于磨耗稳定态的高性能摩擦磨损实验机研制[J],中国工程机械学报,2009,7(1):100-104
    [21]杨志鹏,李华伟,孙忠国.基于弓网电弧模拟试验装置的电弧参数测量及分析[J].北京交通大学学报,2012,36(2):111-115
    [22]汪吉健,田志军,李会杰等.承力索张力对弓网受流质量影响研究[J].铁道学报.2005,27(1):114-118
    [23]周宁,张卫华.基于受电弓弹性体模型的弓网动力学分析[J].铁道学报.2009,32(6):26-31
    [24]于正平,张弘.高速电气化铁路接触网受电弓系统的研究[J].中国铁道科学,1999,20(1):59-72.
    [25]Gajdar Tibor.Burlacu Catalin, Suda Yoshihiro, Masada Eisuke. Simulation of Electric Drive System of Electric Rolling Stocks, IEEE International Conference on Intelligent Engineering Systems[C].Proceedings,INES,1997:365-370.
    [26]于涤.高速接触网受流的理论分析[J].铁道学报,1998,20(5):58-64.
    [27]于万聚.高速接触网的受流稳定性分析[J].西铁科技,1996,2:38-44.
    [28]Collina Andrea,Bruni Stefano. Numerical Simulation of Pantograph# Overhead Equipment Ineraction[J].Vehicle System Dynamics,2002,38(4):261-291.
    [29]李灵敏.接触网系统受流质量及浸金属碳载流磨损特性试验研究[D],西南交通大学硕士学位论文,四川成都,2008.
    [30]宋洪磊.空气动力作用对高速受电弓受流性能影响的研究[D],北京交通大学硕士学位论文,北京,2010.
    [31]郭京波.高速机车受电弓稳定受流与控制研究[D],北京交通大学博士学位论文,北京,2006.
    [32]吴天行.弓一网高速动态受流仿真研究[J],铁道学报,1999年08期
    [33]李灵敏,贾步超,陈光雄.接触网系统受流质量影响因素的试验研究[J].润滑与密封.2008,33(3):32-35
    [34]吴积钦,钱清泉.受电弓与接触网系统电接触特性[J].中国铁道科学,2008,29(3):106-109
    [35]吴积钦,钱清泉.弓网系统电弧侵蚀接触线时的热分析[J].铁道学报,2008,30(3)31-34
    [36]B Bhushan, M. Nosonovsky. Comprehensive model for scale effects in friction due to adhesion and two and three-body deformation plowing [J]. Acta Materialia,2004,52(2):2461-2474
    [37]H. Zaidi, E. Csapo, H. Nery, D. Paulmier, and T. Mathia, Friction coefficient variation in a graphite-graphite dynamical contact crossed by an electric current," in Proceedings of the 20th International Conference on Metallurgical Coatings and Thin Films. Part 2 (of 2)), San Diego, CA, USA, Apr.1993:388-392
    [38]戴利民,林吉忠,刘越.受电弓滑板受流摩擦中体温升的模拟计算分析[J]铁道学报,2002,24(5):58-60
    [39]郭凤仪,马同立,陈忠华等.不同载流条件下滑动电接触特性[J].电工技术学报,2009,24(12):18-23
    [40]郭凤仪,姜国强,赵汝彬等.基于相对稳定系数的滑动电接触特性[J].电机工程学报,2009,29(36):113-119
    [41]G Bucca, A Collina. A procedure for the wear prediction of collector strip and contact wire in pantograph-catenary system [J]. Wear,2009.266 (1):46-59,
    [42]Ocoleanu C, Manolea G, Cividjian G. Experimental study of contact resistance variation for pantograph-contact line contact[C] Proceedings of the International Conference on Risk Management, Assessment and Mitigation. Bucharest,2010:101-105.
    [43]L Ari, K Lior, K. Kyriakos. Electrical Contact Resistance as a Diagnostic Tool for MEMS Contact Interfaces. JOURNAL OF MICROELECTROMECHANICAL SYSTEMS,2004,13(6):977-987
    [44]M. J. Walker, D. Berman, C. Nordquist. Et al. Electrical Contact Resistance and Device Lifetime Measurements of Au-RuO2-Based RF MEMS Exposed to Hydrocarbons in Vacuum and Nitrogen Environments[J]. Tribology Letters.2011:30,34(2):5-314
    [45]H Makoto, Y Takeshi, S Koichiro. Significant Increase of Contact Resistance of Silver Contacts by Mechanical Switching Actions [J]. IEEE TRANSACTIONS ON COMPONENTS, HYBRIDS, AND MANUFACTURING TECHNOLOGY,1992,15(2):177-183
    [46]Y Naoki, I Takuya, S Koichiro,et al. Contact Resistance Characteristics of High Temperature Superconducting Bulk-II[C]. Proceedings of the 50th IEEE Holm Conference on Electrical Contacts,2004:416-420.
    [47]E.Vagnon, YAvenas, J.C.Crebier, et al. Electrical Characterization of a Pressed Contact between a Power Chip and a Metal Electrode[c]. I2MTC 2009:1738-1743
    [48]P Misra, J. Nagaraju. Electrical Contact Resistance in Thin (≤0.5 μm) Gold Plat.d Contacts: Effect of Gold Plating Thickness[J]. IEEE TRANSACTIONS ON COMPONENTS AND PACKAGING TECHNOLOGIES,2010.33(4):830-835
    [49]K Kataoka, T Itoh, K Okumura, et al. Low-Force Electric Contact Processes on Cu Electrodes, IEEE TRANSACTIONS ON ELECTRONICS PACKAGING MANUFACTURING,2007,30(3): 194-199
    [50]W. Wilson, S. Angadi, R. Jackson. Electrical Contact Resistance Considering Multi-Scale Roughness[C]. Electrical Contacts,2008. Proceedings of the 54th IEEE Holm Conference on Date of Conference,2008:190-197
    [51]E.Vagnon, Y.Avenas, J.C.Crebier, et al. Electrical Characterization of a Pressed Contact Between a Power Chip and a Metal Electrode[C], I2MTC International Instrumentation and Measurement, 2009:1738-1743.
    [52]王鑫.受电弓/接触网系统电弧放电机理研究[D],西南交通大学,2011
    [53]王鑫,陈光雄,杨红娟等.电弧能量对碳滑板/铜接触线高速滑动摩擦磨损性能影响[J].润滑与密封.2011,36(6):44-47.
    [54]S.ostlund, A.Gustafsson, L.Buhrkall, et al. Condition monitoring of pantograph contact strip[C], IET Inter. Conf. on Railway Condition Monitoring,2008:1-6.
    [55]J.S.Gershman, N.A.Bushe, Thin films and self-organization during friction under the current collection conditions [J], Surface and Coating Technology,2004,186(3):405-411.
    [56]于正平.受电弓滑板与接触导线摩擦磨损机理与特性分析[J],中国铁道科学,1995,17(4):63-68
    [57]J.S.Guo, L.Ping, F.Z.Ren, et al. Sliding wear behavior of copper alloy contact wire against copper-based strip for high-speed electrified railways [J], Wear,2007,262(3):112-777.
    [58]于正平,张弘,吴鸿表等.高速电气化铁路接触网-受电弓系统的研究[J],中国铁道科学,1999,20(1):69-71.
    [59]H.Zaidi, K.J.Chin, J.Frene, Analysis of surface and subsurface of sliding electrical contact steelysteel in magnetic field [J]. Surface and Coatings Technology,2001,148:241-250.
    [60]郭凤仪,苗盛章,杨维等.电弧力对触头表面形貌特征的影响[J],辽宁工程技术大学学报,1999,18(2):140-143.
    [61]胡道春,孙乐民,上官宝等.电弧能量对浸金属碳滑板材料载流摩擦磨损性能的影响[J].摩擦学学报,2009,29(1):36-42.
    [62]汪逸安;李金许;乔利杰.电流及其极性对浸铜碳滑板摩擦磨损性能的影响[J].金属学 报.2012,48(4):480-484.
    [63]L.Morin, N.B.Jemaa, D.Jeannot, et al, Contact materials performance under break arc in automotive applications[J],IEEE transactions on Components and Packaging Technologies,2000, 23(2):367-375.
    [64]V.Thiagaraja, Analysis of the effects of induced fields from sliding electrical contacts[J], IEEE Transactions on Magnetic,2005,41(1):241-245.
    [65]松山晋作,李春阳.受电弓的受流摩擦学[J],电力牵引快报,1997,1:81-83.
    [66]G.W.Chang, H.W.Lin, S.K.Chen, Modeling characteristics of harmonic currents generated by high-speed railway traction driver converters[J], IEEE transactions on power delivery, 2004,19(2):766-773.
    [67]Ruddle, A.R. Computation of electromagnetic fields in the vicinity of a railway catenary[C]. IEEE Colloquium on EMC in Electric Traction and Signalling,2009:21-24.
    [68]Chen Song, Sha Fei. Three types of electromagnetic noise between pantograph and catenary[C]. Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications,3rd IEEE International Symposium on,2009:40-43.
    [69]Wang Guodong. Characteristics of radio frequency interference from pantograph arcing in car of traction stock[C]. Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications,3rd IEEE International Symposium on,2009:207-210.
    [70]P.Tao, L.Hong, Analysis of electromagnetic interference from pantograph arcing with different trolley locomotive speed in coal mine tunnel[C], ISAPE,2008:1096-1098.
    [71]L.M.Deng, Q.Ye, G.N.Wu, The status of arch arc in the High-speed electrified railway[C], Asia-Pacific Power and Enery Engineering Conference,2010:1-3.
    [72]贺德强,张锐锋,苗剑,铁路高速列车网络控制系统及其电磁兼容性研究[J],广西大学学报,2008,33(3):251-255.
    [73]S.Midya, D.Bormann, T,Schutte, et al, Pantograph arcing in electrified railways-mechanism and influence of various parameters-Part I:With DC traction power supply [J], IEEE Transactions on power delivery,2009,24(4):1931-1939.
    [74]S.Midya, D.Bormann, T.Schutte,et al, Pantograph arcing in electrified railways-mechanism and influence of various parameters-part Ⅱ:With AC traction power supply [J], IEEE Transactions on power delivery,2009,24(4):1940-1950.
    [75]S.Midya, D.Bormann, A.larsson,et al, Understanding pantograph arcing in electrified railways-influence of various parameters[C], IEEE international symposium on electromagnetic compatibility,2008:1-6.
    [76]S.Midya, D.Bormann, Z.Mazloom,et al, Conducted and radiated emission from pantograph arcing in AC traction system[C],Power and energy society general meeting,2009:1-8.
    [77]D.Bormann, S.Midya, R.Thottappillil, DC Components in pantograph arcing mechanisms and influence of various parameters[C],18th International Zurich Symposium on Electromagnetic Compatibility,2007:369-372.
    [78]L. Buhrkall.DC components due to ice on the overhead contact wire of ac electrified railways [J] Electrische Bahnen,2005.103(8):380-389,
    [79]S. Midya, D. Bormann, T. Sch utte, and R. Thottappillil. Pantograph arcing in electrified railways-mechanism and influence of various parameters:Part i-with DC traction power supply[J]. IEEE Trans. Power Delivery,2009,24(4):1940-1950
    [80]S. Midya, Electromagnetic interference in modern electrified railway systems with emphasis on pantograph arcing[D] Licentiate Thesis, Uppsala University,2008.
    [81]S. Midya, D. Bormann, T. Schutte, and R. Thottappillil, Pantograph arcing in electrified railways-mechanism and influence of various parameters:Part ii-with AC traction power supply. IEEE Transaction on Power Delivery,2009
    [82]S. Midya, D. Bormann, Z. Mazloom, T. Schutte, and R. Thottappillil.Conducted and radiated emission from pantograph arcing in ac traction system[C]. Proceedings of IEEE PES General Meeting,2009:165-169
    [83]A. Takahashi and M. Lindmayer. Reignition voltage of arcs on double-break contacts [J]. IEEE Trans. Comp., Hybrids, Manufact. Technol.,1986,9(1).35-39
    [84]J. J. Shea and X. Zhou, Contact material and arc current effect on post-current zero contact surface temperature [J]. IEEE Trans. Comp. Packag. Technol.,2006.29(2):286-293
    [85]S. Brillante, P. Ferrari, and P. Pozzobon, Modeling of electromagnetic emission from catenary-pantograph sliding contact[C]. Manufacture and Operation in The Railway and Other Advanced Mass Transit Systems in Proceedings of the International Conference on Computer Aided Design,, Lisbon, Portugal,1998, pp.881-890.
    [86]B. Tellini, M. Macucci, R. Giannetti, et al.Conducted and radiated interference measurements in the line-pantograph system [J] IEEE Trans. Instrum. Meas.,2001,50(6):1661-1664
    [87]R. Giannetti, M. Macucci, and B. Tellini. EMI measurements in line-pantograph contact discontinuity in railway transportation systems[C] Proceedings of the 11th International Sysmposium on Trends in Electrical Measurement and Instrumentation, IMEKO TC-4, Lisbon, Portugal,2001:25-90.
    [88]B.Tellini, M.Macucci, R.Giannetti,et al,Line-pantograph EMI in railway systems[J], IEEE Instrumentation and Measurement magazine,2001:10-13
    [89]R.Giannetti, M.Macucci, B.Tellini, EMI measurements in line-pantograph contact discontinuity in railway transportation systems[C],Trends in electrical measurement and instrumentation, 2001:25-27.
    [90]Yu-Jen Liu; Chang, G.W.; Huang, H.M. Mayr's Equation-Based Model for Pantograph Arc of High-Speed Railway Traction System [J]. Power Delivery, IEEE Transactions on,2010,25(3): 2025-2027
    [91]龚兆丰,刘文正,童达等.弓网离线电弧放电研究[c],高速铁路接触网系统新技术研讨会,2010:67-72.
    [92]王波.弓网电弧对车载变压器的影响研究[D].西南交通大学,硕士学位论文,2012
    [93]N. B. Jemaa, L. Morin, S. Benhenda,et al. Anodic to cathodic arc transition according to break arc lengthening[J] IEEE Transaction. Compackag. Manufacture. Technology.1998.21(4):599-602
    [94]N. B. Jemaa and L. Morin.Transition from the anodic arc phase to the cathodic metallic arc phase in vacuum at low dc electrical level [J] IEEE Transaction. Compackage Manufacture. Technology. 2002,25(4):651-655
    [95]Z Chen and K Sawa. Particle sputtering and deposition mechanism for material transfer in breaking arcs [J]. Journal of Physics D:Applied Physics,1994,76(6):3326-3331
    [96]郭聪慧,段文新,杨志懋等CuCr触头材料电弧腐蚀速率的测定[J].稀有金属材料与工程,2005,34(2):295-298
    [97]周玮,臧春艳,何俊佳.电气参数和机械参数对继电器直流电弧的影响[J].中国电机工程学报,2006,26(19):151-155
    [98]刘洪武,陈德桂,李志鹏.不同因素对气吹式塑壳断路器开断电弧运动影响的实验研究[J].中 国电机工程学报,2004,24(11):154-159
    [99]何孟兵,周圣,李志鹏.放电电弧电磁力计算与气体开关电极机械性能的选择[J].电工材料,2007,1:24-26
    [100]J Lowke, H Ludwing. A Simple Model for High Current Arc Stabilized by Forced Convection [J]. Appl. Phys,1975,46(8):3325-3329.
    [101]M. Fang, D. Brannen. A Current Zero Arc Model Based on Fored Convection [J]. IEEE Transaction. Plasma Scince,1979,7(4):217-229.
    [102]J. J. Lowke. Two-dimensional Calculation of Properties of Arcs in High Speed Flow [C]. Int. Conf. on Gas Discharge and Their Application.1982:20-25.
    [103]H. Kuwahara, T. Tanabe, K. Ibuki, etc. New Approach to Analysis of Arc Interruption Capability by Simulation Employed in the Development of SF6 GCB Series with High Capacity Interrupter [J]. IEEE Trans, on Power Apparatus and Systems,1983,102(7):2262-2268.
    [104]R. R. Mitchell, D. T. Tuma. Transient Two-dimensional Calculations of Properties of Forced Convection Stabilized Electric Arcs [J]. IEEE Trans.on Plasma Science,1985,13(4):207-220.
    [105]X. D. Zhang, J. Y. Trepanier, R. Camarero. A Physical Model for the Numerical Simulation of Arco-Blown Circuit Breakers [C]. Energy Converters and drives In the Asp. Electromech,1993: 299-304.
    [106]Y. Park, M. Fang. Mathematical Modeling of SF6 Puffer Circuit Breakers I:High Current Region [J]. IEEE Transactions on Plasma Science,1991,24(2):98-102.
    [107]刘晓明,王尔智,曹云东.高压SF6断路器电弧动态模型研究[J].中国电机工程学报,2004,24(2):102-106.
    [108]杨茜,荣命哲,吴翊.低压断路器中空气电弧运动的仿真及实验研究[J].中国电机工程学报,2006,26(15):89-94.
    [109]杨茜,荣命哲,吴翊等.低压断路器中空气电弧重击穿现象的仿真与实验研究[J].中国电机工程学报,2007,27(6):84-88
    [110]王立军,贾申利,史宗谦等.电弧电流以及纵向磁场对小电流真空电弧特性影响的数值仿真[J].电工技术学报,2007,22(1):54-61
    [111]张晋,陈德桂,付军.低压断路器灭弧室中磁驱电弧的数学模型[J]中国电机工程学报,1999,19(10):4-11
    [112]宫继全,宫野,刘金远等.气流对电弧螺旋不稳定性的影响[J].物理学报,2002,51(2):184-186.
    [113]王中辉,蒋力培,齐铂金等.发展中的电弧等离子体温度场诊断技术[J].材料科学与工艺,2007,15(5):135-139.
    [114]Y Liu, G Chang, H Huang. Mayr's Equation-Based Model for Pantograph Arc of High-Speed Railway Traction System[J]. IEEE Transactions on. Power Delivery,2010 25(3):2025-2027
    [115]丰战凯.电气化铁路过电压产生的原因及对策[J].西铁科技,2007,32(2):16-18.
    [116]宫衍圣.电力机车过关节式电分相过电压研究[J].铁道学报,2008,30(4):103-107.
    [117]郭育华,连级三,张昆仑.自动过分相对电力机车的影响[J].机车电传动,2000,27(2):13-15
    [118]秦小灵.电力机车过关节式电分相过电压分析与防护[D].北京:北京交通大学硕士学位论文,2007.
    [119]陈朝珍.电力机车过电分相电气过程的机理分析[D].成都:西南交通大学硕士学位论文,2007.
    [120]周福林,李群湛,贺建闽等.基于概率的机车过分相过电压仿真实测及其机理研究[J].机车电传动,2008,(6):13-23.
    [121]马德明,高仕斌.断电过分相的过电压.暂态过程分析[J].电气化铁道,2008,(3):1-4.
    [122]席春堂,郭力.关于分相绝缘器性能的探讨与对比[J].2002,(4):29-31.
    [123]张雪原.高速重载铁路车网耦合下过电压产生机理与防护方法研究[D].成都:西南交通大学博士学位论文,2009.
    [124]方鸿波.牵引网离线过电压分析[D].成都:西南交通大学硕士学位论文.2009.
    [125]高国强.高速列车运行状态暂态过电压机理与抑制方法的研究[D].成都:西南交通大学博士学位论文,2012.
    [126]R Holm. Electric contacts [M] Hugo Gebers Forlag,1946.
    [127]R Greenwood, K Johnson, M Matsubara. A surface roughness parameter in hertz contact [J]. Wear, 1984,100(5):47-57.
    [128]B Bhushan, M. Nosonovsky. Comprehensive model for scale effects in friction due to adhesion and two and three-body deformation (plowing)[J]. Acta Materialia 2004,52(4):2461-2474
    [129]H Zhao, G C Barber, J Liu. Friction and wear in high speed sliding with and without electrical current [J], Wear 2001,249(6):409-414.
    [130]李群湛,贺建闵.牵引供电系统分析[M].西南交通大学出版社.2012,四川成都
    [131]雷栋,吴广宁,张雪原等.高速铁路弓网电弧抑制方法的研究[J].电气化铁道,2008,05:1-4.
    [132]张明锐,金鑫,刘金辉.一种抑制固态断路器过电压的新方法[J].电力自动化设备,2012,03:37-41.
    [133]林莘,王静,徐建源等.GIS中金属氧化物避雷器对特快速暂态过电压的影响[J].高电压技术,2012,10:2655-2661.
    [134]张科,陈守聚,卢明等.限制投切高压电动机产生过电压的试验研究[J].高电压技术,2001,06:63-64.
    [135]杨庆,郑哲人,司马文霞等.避雷器对具有混沌效应铁磁谐振过电压的影响[J].高电压技术,2011,01:40-49
    [136]张春霞,孙伟忠,屠幼萍等.隔离开关不完全合闸引起的电缆护层过电压分析[J].高电压技术,2011,10:2498-2505

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700