电磁定向结晶从过共晶铝硅合金中富集初晶硅及提纯硅的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于全球经济危机的持续,各行各业都受到了一定的影响,光伏行业正面临严峻挑战。为了降低太阳能电池生产的成本,缓解光伏行业的压力,低成本太阳能级多晶硅的制备尤其关键。另一方面,目前粉煤灰等二次资源碳热还原后得到的一次粗铝硅合金处理困难,工业化应用面临诸多挑战,亟需新的工艺来解决现有存在的问题。在此背景下,本文提出电磁定向结晶从过共晶铝硅合金中富集初晶硅及提纯硅的想法,利用电磁搅拌结合定向结晶的技术对铝硅熔体中的初晶硅进行迁移控制,最终将富集后的初晶硅与共晶铝硅合金进行分离,既解决了一次粗铝硅合金难处理的问题,又为低成本太阳能级多晶硅的制备提供了思路。该技术为合金的分离提纯提供了一种新的途径,具有重要的学术意义和较大的实际应用价值。
     结合Al-Si二元相图、粘度梯度、定向凝固、固液界面推斥/吞没以及电磁搅拌等相关理论较全面地计算了电磁定向结晶过程中初晶硅在铝硅熔体中的迁移规律,预测了初晶硅在固液界面富集的条件。计算结果表明,电磁搅拌条件下,初晶硅颗粒在铝硅熔体中运动速率Vp变化的范围为7-26mm/s。本实验过程中,坩埚的拉升速率控制在7-200μm/s的范围内,且拉升速率即为凝固速率R,故无电磁场定向凝固过程条件下,由于vP-R≤0,所以随着初晶硅在铝硅熔体中逐渐析出,并不断被凝固界面吞没,而无法形成有效的富集。在有电磁场存在的定向凝固情况下,vP-R≥0,初晶硅颗粒虽然会被凝固界面推斥,但是在电磁搅拌和粘度梯度的共同作用下,最终可以使初晶硅形成富集。
     在理论计算的基础之上,实验研究结果表明,向下电磁定向结晶时,初晶硅在样品下部富集,向上电磁定向结晶时,初晶硅在样品上部富集。并且电磁定向结晶过程中,随着上拉或下拉距离的增加,初晶硅与铝硅合金的分离界面越来越清晰,初晶硅富集得越充分,但是当上拉或下拉距离超过10cm后,有部分初晶硅残留在铝硅合金中,不利于初晶硅的完全富集。由此确定,10cm为最佳上拉或下拉距离。电磁定向结晶实验过程中,降低拉速有利于初晶硅富集效率的提高,实验过程中采用7μm/s拉速条件下得到的初晶硅富集区中硅的含量为66.4wt%。电磁定向结晶过程中,增加感应电流可以使初晶硅的富集效率提高。但是随着感应电流增加,温度也随之增加,又反而不利于初晶硅在铝硅熔体中析出,从而使部分初晶硅最终残留在铝硅合金中。实验过程中采用先增加后降低感应电流两步法使初晶硅的富集效率显著提高,得到的样品初晶硅富集区中硅的含量为76.1wt%。在样品上方加水冷系统可以使样品轴向方向上的温度梯度增加,并且使初晶硅的富集效果变好,得到的样品中初晶硅富集区中硅的含量为82.0wt%。相同条件下,扩大实验比小型实验得到的初晶硅富集区中硅的含量更高。SEM-EDS结果表明,杂质元素主要分布在铝硅合金中以及铝硅合金和初晶硅的晶界上,所以初晶硅富集效率的提高使夹带的铝硅合金含量降低,有利于硅中杂质的减少,并且通过一次酸洗可以将硅中的杂质降低到50ppmw,二次酸洗后硅中杂质可以降低到约为10ppmw。初晶硅在铝硅熔体中晶体生长的形貌与硅的含量有关,硅的含量逐渐升高的过程中初晶硅的形貌从鱼骨状、板片状变为球状。球状初晶硅中由于铝的夹杂几率低而更有利于初晶硅纯度的提高。
     气泡吸杂提纯硅的研究结果表明,当向下电磁定向结晶,气泡向样品上方迁移,而当样品向上电磁定向结晶,气泡向着样品下方迁移。SEM-EDS分析结果表明,元素C.O.Si和Ca均聚集在气泡孔穴壁上,而在远离气泡的区域却没有发现这些元素的聚集。对于B.P.Ti等元素由于含量过低,所以在检测过程中并没有发现其分布的情况。对于元素Fe来说,由于其容易与基体形成Al-Si-Fe合金而没有聚集在气泡孔穴壁上。ICP-AES分析结果表明,远离气泡的区域比气泡壁上的杂质含量要低,由此可以证明气泡表面可以选择性吸附杂质。随着合金中铝含量的升高,电磁定向结晶后样品中的气泡孔穴逐渐增大,并且所得到的初晶硅中杂质的含量逐渐降低。随着上拉速率的降低,样品中出现的气泡孔穴逐渐增大,并且所得到的初晶硅中杂质的含量逐渐降低。
     电磁定向结晶改善铝硅合金性能的研究表明,电磁搅拌有利于抑制铝硅合金中初晶硅的长大,最终细化初晶硅。定向结晶的工艺有利于富铁相充分沉降并最终可以通过切除底部来达到富铁相去除的目的。电磁定向结晶处理对铝硅熔体中的气泡有较好的脱除效果,可以使气泡得到更充分地脱除。上述处理后,铝硅合金的力学性能得到明显改善。
As the global economic crisis continues, worldwide businesses have been affected more or less, among which the photovoltaic (PV) industry is facing the serious challenge. In order to reduce the cost of the solar cell, the preparation of low-cost solar-grade silicon is significantly important. Additionally, the coarse Al-Si alloys obtained by the carbon thermal reduction of the coal fly ash and other resources can not be dealt with conveniently, which results in the difficulty of the industrial application. In this paper, the electromagnetic directional solidification process has been proposed for the Si purification by enrichment of primary crystal silicon from the hypereutectic Al-Si alloy. The migration of the primary silicon in Al-Si melt has been controlled by the electromagnetic stirring&directional solidification technology which separated the primary silicon and eutectic Al-Si alloy. This process can not only solve problems of the coarse Al-Si alloy, but also the preparation of low cost solar-grade silicon. Furthermore, this technology provides a new way for the separation and purification of the alloy, and it has important academic significance and practical value of application.
     According to the Al-Si binary phase diagram, viscosity gradient, electromagnetic stirring, directional solidification theory et al, this paper calculated migration features of the primary silicon in Al-Si melt during the electromagnetic directional solidification process, which provided a good theoretical basis for the experimental study. The results show that the velocity range of silicon particles in Al-Si melt is7-26mm/s under the electromagnetic stirring condition. The solidification rate of the melt is equal to the pulling rate which is controlled in the range of7~200μm/s. Because the Vp-R≤0, the primary silicon can be swallowed by the solidification interface when the electromagnetic field is absent. Under the electromagnetic field, although the primary silicon is rejected by the solidification interface, the combined effect of viscosity gradient and the electromagnetic stirring is beneficial to the enrichment of the primary silicon.
     Based on the theoretical calculation, the experimental results show that the primary silicon precipitates at the lower part of the sample by pulling down. While pulling up, it precipitates at the upper part. And with the increasing of the pulling-up or pulling-down distance, the primary silicon and Al-Si alloy can be separated more and more adequate, but when the pulling-up or pulling-down distance exceeds10cm, part of the primary silicon residue in Al-Si alloy. Therefore,10cm is the best pulling distance. With the decreasing of the pulling-up rates, silicon enrichment efficiency increased, and when the pulling-up rate is7μm/s, the content of primary silicon in silicon enrichment zone is66.4wt%. Meanwhile, with the increasing of the induction current, the enrichment efficiency of primary silicon increased. However, with the increasing of the induction current, the temperature increased which resulted in the residues of the primary silicon in Al-Si alloy. The two step process contains high and low induction current was proposed to save the problems mentioned above which can make the content of primary silicon in silicon enrichment zone up to76. lwt%. Furthermore, the content of primary silicon in silicon enrichment zone can up to82.0wt%by equipped a water cooling system above the sample due to the increase of the temperature gradient. The result phenomenon of the expand experiments may be similar to the small experiments, but the enrichment effect of primary silicon is better than that of the small experiments. The improvement of the primary crystal silicon enrichment efficiency can reduce the impurities in silicon, and the content of the impurities can be reduced to50ppmw after first acid leaching, while after the second times, the impurities can be reduced to about lOppmw. The morphology of primary silicon in the Al-Si melt is mainly decided by the silicon contents, and with the silicon content increasing, the morphology of primary silicon changes from fish-bone shape to plate-like, and then to spheroid which is considered to be beneficial for the purification of silicon due to the low Al entrapment in this morphology.
     Bubble adsorption results show that the bubble agglomerated at the lower part of the sample by pulling up. While pulling down, it agglomerated at the upper part. SEM-EDS analysis results show that the elements C, O, Si, and Ca were clustered in the bubble hole wall, and did not find these elements away from the bubble region. For B, P, Ti and other elements, it is not detected because the content is too low. For the element Fe, it can not aggregate in the bubble cavity wall due to its easy to form Al-Si-Fe alloy. ICP-AES analysis showed that the impurity content far from the bubble region is lower than that of the bubble wall. It is proved that the bubble surface can selectively adsorb impurities. With the increasing of the aluminum content in the alloy, the volume of the bubble increased which results in impurities content in primary silicon decreased. And with the decreasing of the pulling-up rates, the volume of the bubble increased which results in impurities content in primary silicon still decreased.
     The results show that the electromagnetic stirring is beneficial to the refinement of primary silicon. The process of directional solidification is attribute for removal of the iron rich phase. The electromagnetic directional solidification processing has good removing effect of the bubble in Al-Si melt. After the above treatment, the mechanical properties of Al-Si alloy improved.
引文
[1]闻立时.冶金法制备多晶硅的现状和前瞻[R].2009年冶金高层论坛,昆明,2009年3月(特邀报告).
    [2]梁骏吾.电子级多晶硅的生产工艺[J].中国工程科学,2000,2(12):36-38.
    [3]蒋荣华,肖顺珍.国内外多晶硅发展现状[J].半导体技术.2001,2601:7-10.
    [4]半导体技术.国内外多晶硅生产的主要工艺技术[OL]. http://www.2ic.cn
    [5]屈平,白木,周洁.光伏产业多晶硅材料发展现状[J].装备机械,2008,2:61-65.
    [6]Christy M. White, Paul Ege, B. Erik Ydstie. Size distribution modeling for fluidized bed solar-grade silicon Production [J]. Powder Technology 2006,163: 51-58.
    [7]N. Yuge. Purification of metallurgical-grade silicon up to solar grade [J]. Prog. Photovolt. Res. Appl.,2001,9:203-209.
    [8]C. Zahedi, E. Enebakk, K. Friestad, et al. Solar grade silicon from metallurgical route [J]. Technical digest of the international PVSEC-14, Bangkok, Thailand, 2004:673-676.
    [9]K. Morita, T. Miki. Thermodynamics of solar-grade-silicon refining [J]. intermetallics,2003,11:1111-1117.
    [10]L. A. V. Teixeira, Y. Tokuda, T. Toko, et al. Behavior and state of boron in CaO-SiO2 slag during refining of solar grade silicon [J]. ISIJ International, 2009,49(6):777-782.
    [11]马文会,戴永年,杨斌等.一种制备太阳能级多晶硅的方法[P].发明专利号:ZL200610010654.8.
    [12]J. C. S. Pires, J. Otubo, A. F. B. Braga, et al. The purification of metallurgical grade silicon by electron beam melting [J]. Journal of Materials Processing Technology,2005,169:16-20.
    [13]谭毅,李国斌,姜大川等.一种去除多晶硅中杂质磷的方法及装置[P].专利号200810011949.6.
    [14]J. J. Wu, W. H. Ma, B. J. Jia, et al. Boron removal from metallurgical grade silicon using a CaO-Li2O-SiO2 molten slag refining technique [J]. Journal of Non-Crystalline Solids,2012,358 (23):3079-3083.
    [15]J. J. Wu, W. H. Ma, B. Yang, et al. Boron removal from metallurgical grade silicon by oxidizing refining [J]. Transactions of Nonferrous Metals Society of China,2009,19 (2):463-467.
    [16]罗学涛,郑淞生,蔡靖等.太阳能级多晶硅的提纯装置及提纯方法[P].专利号:200810071577.6.
    [17]T. Nohira, K. Yasuda, Y. ITO. PinPoint and bulk electrochemical reduction of insulating silicon dioxide to silicon [J]. Nature Materials,2003,2:397-401.
    [18]K. Yasuda, T. Nohira, R. Hagiwara, et al. Direct electrolytic reduction of solid SiO2 in molten CaCl_2 for the production of solar grade silicon [J]. Electrochimica Acta,2007,53(1):106-110.
    [19]S. C. Lee, J. M. Hur, C. S. Seo. Silicon powder production by electrochemical reduction of SiO_2 in molten LiCl-Li_2O [J]. Journal of Industrial and Engineering Chemistry,2008,14:651-654.
    [20]谢江生,马文会,陈家辉等.直接电解还原SiO2制备硅过程中B、P行为研究[J].中国稀土学报,2012,30:289-292.
    [21]K. X. Wei, W. H. Ma, B. Yang, et al. Study on volatilization rate of silicon in multicrystalline silicon preparation from metallurgical grade silicon [J]. Vacuum,2011,85:749-754.
    [22]R. X. Zou, D. C. Jiang, W. Dong et al. Transition-metal Impurities Removal from Metallurgical Grade Silicon by Electron beam Injection [J]. Material Science Forum.2011. Vol.675-677:105-108.
    [23]S. S. Zheng, W. H. Chen, J. Cai et al. Mass transfer of phosphorus in silicon melts under vacuum induction refining [J]. Metallurgical and Materials Transactions B,2010,41B:1268-1273.
    [24]陈玉武,郝秋艳,刘彩池等.快速热处理对铸造多晶硅性能的影响[J].材料热处理学报,2008,29(5):5-8.
    [25]H. A. Aulich, K. H. Eisenrit, F. W. Scgulze et al.6th E. C. Photovoltaic Energy Conf. London:Commun. Eur. Communities Rep [J]. EUR10025,1985:951.
    [26]J Dietl, D. Helmreich, E. Sirtl. "Solar" Silicon [J]. Silicon,1981,5:43-107.
    [27]W. H. Ma, M. Ogura, T. Kobayashi, et al. Preparation of solar grade silicon from optical fibers wastes with thermal plasmas [J]. Solar Energy Materials & Solar cells,2004,81:477-483.
    [28]K. Morita, T. Yoshikawa. Thermodynamic evaluation of new metallurgical refining processes for SOG-silicon production [J]. Transactions of Nonferrous Metals Society of China,2011,21 (3):685-690.
    [29]T. Yoshikawa, K. Arimura, K. Morita. Boron removal by titanium addition in solidification refining of silicon with Si-Al melt [J]. Metallurgical and Materials Transactions B,2005,36 (6):837-842.
    [30]T. Yoshikawa, K. Morita. Refining of silicon during its solidification from a Si-Al melt [J]. Journal of Crystal Growth,2009,311 (3):776-779.
    [31]P. P. Wang, H. M. Lu, Y. S. Lai. Control of silicon solidification and the impurities from Al-Si melt [J]. Journal of Crystal Growth,2014,390:96-100.
    [32]J. W. Li, Z. C. Guo, H. Q. Tang, et al. Si purification by solidification of Al-Si melt with super gravity [J]. Transactions of Nonferrous Metals Society of China, 2012,22 (3):958-963.
    [33]X. Gu, X. G. Yu, D. R. Yang. Low-cost solar grade silicon purification process with Al-Si system using a powder metallurgy technique [J]. Separation and Purification Technology,2011,77 (1):33-39.
    [34]X. D. Ma, T. Yoshikawa, K. Morita. Si growth by directional of Si-Sn alloys to produce solar-grade Si [J]. Journal of Crystal Growth,2013,377:192-196.
    [35]X. D. Ma, T. Yoshikawa, K. Morita.Purification of metallurgical grade Si combining Si-Sn solvent refining with slag treatment [J]. Separation and Purification Technology,2014,125:264-268.
    [36]L. X. Zhao, Z. Wang, Z. C. Guo, et al. Low-temperature purification process of metallurgical silicon [J]. Transactions of Nonferrous Metals Society of China, 2011,21:1185-1192.
    [37]邱竹贤,预焙槽炼铝(第三版)[M].北京:冶金工业出版社,2005,445-449.
    [38]赖华清,范宏训,徐祥.过共晶铝硅合金的研究及应用[J].汽车工艺与材料,2001,(10):21-23.
    [39]H. C. Liao, Y. Sun, G X. Sun. Correlation between mechanical properties and amount of dendritic a-Al phase in as-cast near-eutectic Al-11.6% Si alloys modified with strontium [J]. Materials Science and Engineering A,2002,335 (1-2):62-66.
    [40]X. Chen, H. Y. Geng, Y. X. Li. Study on the eutectic modification level of Al-7Si Alloy by computer aided recognition of thermal analysis cooling curves [J]. Materials Science and Engineering A,2006,419:283-289.
    [41]王宇,陈刚,费黄霞.浇注温度对亚共晶Al-Si合金组织和硬度的影响[J].热加工工艺,2006,35(9):14-16.
    [42]M. Hamn, I. A. Talib, A.R.Daud. Effect of element additions on wear property of eutectic aluminium-silicon alloys [J]. Wear,1996,194:54-59.
    [43]D. K. Dwivedi, T. S. Arjun, P. Thakur, et al. Sliding wear and friction behaviour of Al-18% Si-0.5%Mg alloy [J]. Journal of Materials Processing Technology, 2004,152:323-328.
    [44]J. G. Conley, J. Huang, J. Asada, et al. Modeling the effects of cooling rate, hydrogen content, grain refiner and modifier on microporosity formation in Al A356 alloys [J]. Materials Science and Engineering A,2000,285:49-55.
    [45]赵劭.铝硅合金的生产方法[J].铝镁通讯,2002(3):32-34.
    [46]周方栋,罗生其.铝土矿电热法生产铝硅铁合金简述[J].广西冶金,1995(2):29-34.
    [47]韩至成.电磁冶金技术及装备[M].冶金工业出版社,2008.
    [48]任忠鸣.强磁场下金属凝固研究进展[J].中国材料进展,2010,29(6):40-48.
    [49]C. J. Li, Z. M. Ren, W. L. Ren. Efect of a Hish Magnetic Fields on Solid-Melt Phase Transformation in Prebismuth [J]. Materials Letters,2009,63:269-271.
    [50]C. J. Li, Z. M. Ren, W. L. Ren, et al. Design and Application of Differential Thermal Analysis Apparatus in High Magnetic Fields [J]. Review of Scientific Instruments,2009,80:073907-1-5.
    [51]X. Li, Y. Fautrelle, Z. M. Ren. Influence of an Axial High Magnetic Field on the Liquid-Solid Transformation in Al-Cu Hypoeutectic Alloys and on the Microstructure of the Solid [J]. Acta Materialia,2007,55:1377-1386.
    [52]X. Li, Y. Fautrelle, Z. M. Ren. Influence of Thermoelectric Effects on the Solid-Liquid Interface Shape and Cellular Morphology in the Mushy Zone during the Directional Solidification of Al-Cu Alloys under the Magnetic Field [J]. Acta Materialia,2007,55:3803-3813.
    [53]X. Li, Z. M. Ren, Y. Fautrelle. Effect of a High Axial Magnetic Field on the Microstructure in a Directionally Solidified Al-Al_2Cu Eutectic Alloy [J]. Acta Materialia,2006,54:5349-5360.
    [54]X. Li, Z. M. Ren, Y. Fautrelle. Effect of High Magnetic Fields on the Microstructure in Directionally Solidified Bi-Mn Eutectic Alloy [J]. Journal of Crystal Growth,2007,299:41-47.
    [55]高志玉,孙维涛,张伟强.直流稳恒磁场对A1-111%Si共晶定向凝固组织的影响[J].铸造,2007,56:523-525.
    [56]高志玉,修凤玲,张伟强.热电磁流体动力学对Al-4Cu合金定向凝固组织的影响[J].特种铸造及有色合金,2007,27:16-18.
    [57]A. Kao, K. Perieleous, M. K. Patel, et al. Effects of Magnetic Fields on Crystal Growth [J]. International Journal of Cast Metals Research,2009,22: 147-150.
    [58]连峰,李廷举,胡国兵等.强磁场对亚共晶铝2硅合金变质处理的影响[J].轻合金加工技术,2005,33:8-12.
    [59]连峰,李廷举,胡国兵等.强磁场对过共晶铝硅合金中初晶Si分布的影响[J].材料工程,2005,(12):41-44.
    [60]张林,王恩刚,左小伟等.强磁场对Cu-80%Pb过偏晶合金凝固组织的影响[J].金属学报,2008,44:165-171.
    [61]宋长江,许振明,刘向阳等.电磁分离技术制备过共晶Al-Si合金自生功能梯度材料[J].上海交通大学学报,2005,39(7):1089-1093.
    [62]高技术新材料要览编辑委员会.高技术新材料要览[M].北京:中国材料技术出版社1993.
    [63]F. L. Versnyder, R. B. Barlow, L. W. Sink, et al. Direetional Solidification in the Precision Casting of Gas Turbine Parts [J]. Modern Casting,1967,52 (6): 68-75.
    [64]F. L. Versnyder, M. E. Shank. Development of Cloumnar Grain and Single Crystal High Temperature Materials through Directional Solidification [J]. Materials Science and Engineering,1970,6 (4):213-247.
    [65]J. S. Erickson. Proeess Speeds up Directional Solidification [J]. Metal Process, 1971, (3):58-62.
    [66]A. F. Giaei, J. G Tschinkel. Liquid metal cooling:a new solidification technique [J]. Materials Transactions A,1976,7A(9):1427-1434.
    [67]钱志屏.材料的变形与断裂[M].上海:同济大学出版社,1989.
    [68]李德林,毛协民,傅恒志.第一届全国相变会议[C].CMRS,北京,1993.
    [69]B. Timothy Bassler, William H. Hofineister, G. Carro, et al. The velocity of solidification of highly undercooled nickel [J]. Metallurgical and Materials Transactions A.1994,25(6) 1301-1308.
    [70]谢发勤,张军,毛协民等.深过冷熔体激发快速定向凝固[J].材料科学与工艺,1996,4(3):102-106.
    [71]寇宏超,郝启堂,李金山等.金属熔体电磁成形过程研究[J].材料科学与工艺,1999,7:104-108.
    [72]傅恒志,沈军,郝启堂等.镍基高温合金真空电磁约束成形与定向凝固[J].中国有色金属学报,2002,12(6):1081-1086.
    [73]杨森,钟敏霖,张庆茂等.激光快速成型金属零件的新方法[J].激光技术,2001,25(4):254-257.
    [74]苏彦庆,郭景哲,刘畅.定向凝固技术与理论研究的进展[J].特种铸造及有色合金,2006,26(1):25-30.
    [75]H. J. Beattie, F. L. Versnyder. Anew complex phase in a high-temperature alloy [J]. Nature,1956:208-209.
    [76]H. S. Whitesell, R. A. Overfelt. Influence of solidification variables on the microstructure, macrosegregation, and porosity of directionally solidification Mar-M247 [J]. Mate. Sci. Eng A,2001,318:264-276.
    [77]P. N. Quested, M. Mclean. Solidification morphologies in directionally solidified superalloys [J]. Mate. Sci. Eng.,1984,65:171-178.
    [78]A. Szczotok, J. Szala, J. Cwajna, et al. Selection of etching methods of primary carbides in MAR-M247 nickel-base superalloy for computer-aided quantitative metallography [J]. Materials Characterization,2006,56:348-354.
    [79]J. S. Bae, J. H. Lee, S. S. Kim, et al. Formation of MC-γ+γ/eutectic fibers and their effect on stress rupture behavior in D/S Mar-247LC superalloy [J]. Scripta Materialia,2001,45:503-508.
    [80]A. F. Giamei, J. G. Tschinkel. Liquid metal cooling:A new solidification technique [J]. Metallurgical transactions A,1976,7A:1427-1434.
    [81]H. Hiroshi. High temperature materials for gas lurbines:the present and future[C]//IGTC2003, Tokyo:1-9.
    [82]E. W. Ross, K. S. O'hara. Rene'142:A high strength, Oxidation resistant DS turbine airfoil alloy[C]//Superalloys, USA:TMS,1992:257-265.
    [83]A. Kermanpur, N. Varahraam, E. Engilehei, et al. Directional solidificaiton of Ni base superalloy IN738LC to improve creep properties [J]. Materials Science and Technology,2000,16(15):579-586.
    [84]T. Kobayashi, M. Sato, Y. Koizumi, et al. Development of a third generation DS superalloy[C]//Superalloys, USA:TMS,2000:323-328.
    [85]T. Kobayashi, Y. Koizumi, T. Yokokawa, et al. Development of a 4th generation DS superalloy[C]//Superalloys, USA:TMS,2002,66(9):897-900.
    [86]J. L. Murray, A. J. Mcalister. The AI-Si (Aluminum-Silicon) System [J]. Bulletin of Alloy Phase Diagrams,1984,5(1):74-84.
    [87]胡汉起,沈宁福,姚山等.金属凝固原理[M].机械工业出版社,2000.
    [88]李庆春.铸件形成理论基础[M].机械工业出版社,1982.
    [89]G. K. Sigworth. Rheological properties of metal alloys in the semi-solid state [J]. Canadian Metallurgical Quarterly,1996,35 (2):101-122.
    [90]张大军.半固态铝硅合金触变压缩变形机制及其流变规律[D].北京,北京科技大学,2002.
    [91]肖泽辉.镁合金半固态流变压铸成形技术的研究[D].华中科技大学,2005.
    [92]P. Joly, R. Mehrabian. The rheology of a partially solid alloy [J]. Journal of Materials Science,1976,11 (8):1393-1418.
    [93]X. G Song, X. F. Bian, J. X. Zhang, et al. Temperature-dependent viscosities of eutectic Al-Si alloys modified with Sr and P [J]. Journal of Alloys and Compounds,2009,479 (1):670-673.
    [94]T. Yoshikawa, K Morita. Refining of Si by the solidification of Si-Al melt with electromagnetic force [J]. ISIJ international,2005,45 (7):967-971.
    [95]Y. Nishi, Y Kang, K. Morita. Control of Si Crystal Growth during Solidification of Si-Al Melt [J]. Materials Transactions,2010,51(7):1227-1230.
    [96]吕国强,马文会,王华等.冶金级硅真空感应熔炼过程温度场的数值模拟[J].铸造技术,2010,(01):93-96.
    [97]余文轴.碳热还原法从粉煤灰中制备铝硅合金的研究[D];昆明理工大学,2010.
    [98]D. Leenov, A. Kolin. Theory of electromagnetophoresis. I. Magnetohydrodynamic forces experienced by spherical and symmetrically oriented cylindrical particles [J]. The Journal of Chemical Physics,1954,22 (4): 683-688.
    [99]P. Marty,A. Alemany. Metallurgical Applications of Magnetohydrodynamics; proceedings of the Proc Symp of the IUTAM [C], Swedish Alloys Society, Goteborg, Sweden,1984.
    [100]许振明,李天晓,张雪萍等.电磁力场下初生富铁相在Al-Si熔体中的运动速度[J].上海交通大学学报,2001,(05):668-671.
    [101]周尧和,胡壮麒,介万奇.凝固技术[M].机械工业出版社,1998.
    [102]杨世铭.传热学(第一版)[M].北京,人民教育出版社,1981.
    [103]梅向阳.真空定向凝固法去除硅中金属杂质和晶体生长控制的研究[D].昆明,昆明理工大学,2010.
    [104]D. R. Uhlmann, B. Chalmers, K. Jackson. Interaction Between Particles and a Solid-Liquid Interface [J]. Journal of applied physics,1964,35 (10): 2986-2993.
    [105]钟云波,任忠鸣,孙秋霞等.电磁场中金属凝固界面前沿颗粒的推斥/吞没行为[J].金属学报,2003,(12):1269-1275.
    [106]D. Shangguan, S. Ahuja, D. Stefanescu. An analytical model for the interaction between an insoluble particle and an advancing solid/liquid interface [J]. Metallurgical Transactions A,1992,23 (2):669-680.
    [107]Q. Han, J. Hunt. Redistribution of particles during solidification [J]. ISIJ international,1995,35(6):693-699.
    [108]百度百科[OL].http://baike.baidu. com/link
    [109]R. C. WEAST(ED.). Handbook of Chemistry and Physics [J].1975.
    [110]T. Magnusson. Porosity and feeding in aluminium-silicon foundry alloys [D]. NTNU, Trondheim, Norway,2000.
    [111]吉川健.借助Al-Si熔体低温凝固精炼太阳能级硅过程物理化学研究[D].日本:东京大学博士论文,2005.
    [112]马幼平,许云华.金属凝固原理及技术[M].冶金工业出版社,2008.
    [113]J. C. Weiss, C. R. Loper Jr. Primary silicon in hypereutectic aluminum-silicon casting alloys [J]. AFS Trans,1987,32:51-62.
    [114]桂满昌,贾均,李庆春.五瓣星状初晶硅形核机制[J].金属学报,1996,11:1177-1183.
    [115]K. Kobayashi, L. Hogan. Fivefold twinned silicon crystals grown in an Al-16 wt.% Si melt [J]. Philosophical Magazine A,1979,40 (3):399-407.
    [116]K. Kobayashi, L. Hogan. The crystal growth of silicon in Al-Si alloys [J]. Journal of Materials Science,1985,20 (6):1961-1975.
    [117]张蓉,黄太文,刘林.过共晶Al-Si合金熔体中初生硅生长特性[J].中国有色金属学报,2004,(2):262-266.
    [118]H. Garabedian, R. Strickland-Constable. Collision breeding of ice crystals [J]. Journal of Crystal Growth,1974,22(3):188-192.
    [119]毛卫民,李树索,赵爱民等.电磁搅拌Al-24%Si合金的显微组织[J].中国有色金属学报,2001,(5):819-823.
    [120]W. Mao, A. Zhao, Y. Li, et al. Temperature field and micro structural formation of semi-solid AlSi_7Mg alloy [J]. Journal of University Science and Technology Beijing,2000,7(2):99-102.
    [121]M. C. Flemings. Behavior of metal alloys in the semisolid state [J]. Metallurgical Transactions B,1991,22(3):269-93.
    [122]张家涛,樊刚,彭著刚等.连续冷却电磁搅拌对Al-25%Si合金初生硅形貌的影响[C];第三届中国热处理活动周暨第六次全国热处理生产技术改造会议,中国西安,2005.
    [123]M. W. Ullah, T. Carlberg. Silicon crystal morphologies during solidification refining from Al-Si melts [J]. Journal of Crystal Growth,2011,318 (1): 212-218.
    [124]湘南学院大学物理学精品课程.http://jpkc.hnadl.cn/able.acc2.web. (access available on March 4,2012)
    [125]叶振华,宋清.吸附及离子交换/化学工程手册[M].北京:化学工业出版社,1985.
    [126]北川浩,铃木谦一郎著.吸附的基础与设计[M].鹿政理译.北京:化学工业出版社,1983.
    [127]沈耀良.废水处理中的几种廉价吸附剂[J].重庆环境科学,1995,17(3):49-53.
    [128]W. Takatsuji, H. Yoshida. Adsorption of organic acids on weakly basic ion exchanger:Equilibria for binary systems [J]. AIChE Journal,1998,44(5): 1216-1221.
    [129]M. Majone, M. P. Papini. Influence of metal speciation in landfill leachates on Kaolinite sorption [J]. Water Research,1998,32(3):882-890.
    [130]易四勇,王先友,李娜等.活性炭活化处理技术的研究进展[J].材料导报,2008,3(22):72-75.
    [131]立本英机,安部郁夫.活性炭的应用技术[M].高尚愚译.南京:东南大学出版社,2002.
    [132]高廷耀,顾国维.水污染控制工程下册[M].北京:高等教育出版社,1999.
    [133]李国斌,杨明平.粉煤灰活性炭处理含铬电镀废水[J].材料保护,2004,37(12):40-45.
    [134]袁文.泡沫分离法去除水中微量铜和镍二元金属离子的研究[D].哈尔滨:哈尔滨工程大学2008.
    [135]魏小芳,常志东,刘会洲.阴离子表面活性剂/蛋白质混合体系泡沫的富集行为[J].化工学报,2000,51:295-298.
    [136]D. M. Stefanescu. ASMI Metals Handbook [M].9th ed. Ohio:Metals Park, 1988.
    [137]J. E. Gruzleski, B. M. Closset. The Treatment of Liquid Aluminum-Silicon Alloys[A]. American Foundrymen's Society [C]. Illinois:Inc. Des Plaines, 1990:57-157.
    [138]李维钺,李军.中外有色金属及其合金牌号速查手册第2版[M].北京:机械工业出版社,2010.
    [139]陈东风,曹志强,张婷.锰加入量对铝合金中富铁相形貌和电磁过滤的影响[J].机械工程材料,2007,31(6):42-45.
    [140]S Murali, K. S. S. Murthy, et al. Morphological studies on β-A_(15)FeSi phase AI-7Si-0.3Mg alloy with trace additions of Be, Mn, Cr and Co [J]. Material Characterization,1994,33:99-112.
    [141]S. Murali, K. S. Raman, K. S. S. Murthy. Al-7Si-O-3Mg cast alloy:a new approach to properties improvement [J]. AFS Transaction,1996,165: 1175-1181.
    [142]P. N. Creapeau. Effect of iron in Al-Si casting alloys a critical review [J]. AFS Transactions,1995,110:361-366.
    [143]S. Gowri, F. H. Samuel. Effect of alloying elements on solidification characteristics and microstructure of AI-Si-Cu-Mg-Fe 380 alloy [J]. Metallurgical and Materials Transactions A,1994,25A:437-448.
    [144]王杰芳,谢敬佩,翁永刚等.电解低钛ZL108合金中钛含量对铁相形态及性能的影响[J].铸造技术,2004,25(9):681-685.
    [145]D. N. Khudokormov, A. M. Galashko, S. N. Lekakh. Effect of modificationon the form of iron-rich inclusions in aluminum alloys [J]. Russian Castings Production,1975, (5):198-199.
    [146]C. Mascre. Influence of iron and manganese on type Asl3 (Alpax) alloys [J]. Fonderie,1955,108:4330-4336.
    [147]孙益民.消除铁在铝合金中有害作用的途径[J].铸造技术,2009,30(4):520-522.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700