高温超导块材在电磁力作用下的断裂特性理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高温超导体中的裂纹问题是超导体力学特性研究的一个重要方面。基于裂纹对超导体应用的限制,本博士论文研究了超导体受电磁力和温度变化引起的热应力对含有裂纹超导体的影响,对无限长超导体和有限长超导体在电磁力和热应力作用下的裂纹问题做了详细的研究。
     首先,研究了无限长超导体在电磁力作用下,超导体内包含Ⅰ型、Ⅱ型以及混合型裂纹的应力强度因子随磁场的变化关系。分别讨论了零场冷和场冷情形时这三种裂纹的断裂参数随磁场的变化关系,在磁场减小的过程中,超导体内部的裂纹在电磁力的作用下将会有开裂的趋势,开裂趋势反映在应力强度因子与J积分的变化过程中。
     其次,研究了有限长超导体在电磁力作用下的断裂行为。将无限长超导裂纹问题扩展到有限尺度的超导体上,在零场冷和场冷激励下,讨论了磁化系数和长径比对超导体断裂参数的影响。在磁化系数不变的情形下,超导体尺度越短,应力强度因子越大;磁化系数对较短超导体的应力强度因子有明显的影响,当超导体尺度较长时,磁化系数的影响很小。此外,Ⅰ型应力强度因子的数值大于Ⅱ型应力强度因子的值,这表示裂纹的开裂主要是基于拉伸的Ⅰ型开裂。
     最后,研究了脉冲场激励和热致对超导体断裂参数的影响。考虑了脉冲场激励下三种类型裂纹在磁化过程中的断裂趋势,随着磁场的减小,应力强度因子增大;由于在脉冲磁场的最大点处超导体整体受最大压力,所以在这一时刻应力强度因子最小且为负值,由这一时刻开始,应力强度因子逐渐增大;最大磁场较大的脉冲场,所对应的应力强度因子变化越快。继而讨论了热致因素对超导断裂问题的影响。从超导态到正常态转变过程中,巨大的温差所引起的热应力对热应力强度因子影响较为明显。随着温度的上升,热应力强度因子增大,这表示在超导体由临界温度向室温的变化过程中,裂纹变得容易开裂。此外,不同的裂纹长度对热应力强度因子也有较大的影响,裂纹长度越长,热应力强度因子越大。
It has been known that some fracture or crack is induced, which plays an important role in the safety design when a bulk superconductor is used in practice. In practical applications, the superconductor is often subjected to several forces like electromagnetic force, thermal stress, which maybe lead to fracture of superconductors. This dissertation presents some analysis of fracture behavior of the superconductors subjected to the environment of electromagnetic fields and low temperature, where the bulk superconductors have either infinite or finite size.
     Firstly, the crack problem of the infinite superconductor is considered in the process of zero-field cooling (ZFC) and field cooling (FC). The superconductor contains three type of cracks, namely, Mode-Ⅰ, Mode-Ⅱand mixed Mode. The fracture behaviors change with the magnetic field when the applied field is decreased. Both the stress intensity factors and J integral can be used to describe the trend of crack growth.
     Next, the fracture behaviors of finite superconductors are simulated under electromagnetic force by using the numerical method. A model for the calculation of the fracture behavior of finite type-Ⅱsuperconductors is presented. The demagnetization effect is considered by using a simple approximation of a constant demagnetization factor. The stress intensity factors of finite superconductors are calculated in the process of zero-field cooling (ZFC) and field cooling (FC). Numerical results obtained show that the stress intensity factors increase with the increase of applied field. The effects of the susceptibility and ratio of length to diameter are presented. From the results, the stress intensity factors increase with the decrease of applied field, comparing to the Mode-Ⅱ, a larger change is found in the stress intensity factors of the Mode-Ⅰ, these results display that the crack growth is the Mode-Ⅰfracture mainly.
     Finally, the fracture behaviors of infinite superconductors are displayed in the process of pulse magnetic field and temperature change. The fracture trend is predicted in pulse field magnetization. The lower the magnetic field is, the larger the stress intensity factors. When pulse magnetic field is maximum, the superconductor subject to maximal pressure so that the stress intensity factors have minimum value. The change of stress intensity factors is faster for the larger pulse field. Additional, the effects of temperature are considered. A theoretical analysis is used to investigate the fracture behavior of a large single domain YBCO superconductor under thermal stress based on the two-dimensional theory of anisotropic thermoelasticity. The thermal stress intensity factors are obtained due to a uniform heat flux by a line crack in a generally half plane superconductor. It is found that the thermal stress intensity factors decrease with the decrease of temperature, and while the longer the crack length is, the larger the stress intensity factors. Furthermore, the J integral at the crack tip is also investigated, a similar behavior to the thermal stress intensity factors is found. These results are benefit for us to understand the fracture mechanism of superconductor both in theory and application.
引文
1.H.K.Onnes,1911,On the sudden change in the rate at which the resistance of mercury disappears,Commun.Phys.Lab.Univ.Leiden,120b,122b.
    2.金建勋,郑陆海,2006,高温超导材料与技术的发展及应用,电子科技大学学报,35,612-617.
    3.章立源,张金龙,崔广霁,1995,超导物理学,北京:电子工业出版社.
    4.J.G.Bednorz,K.A.MUller,1986,Possible high-T_c superconductivity in La-Ba-Cu-O system,Z.Physik B,64,189-193.
    5.C.W.Chu,P.H.Hor,R.L.Meng,1987,Superconductivity at 52.5K in the La-Ba-Cu-O system,Science,235,567-569.
    6.赵忠贤,陈立泉,杨乾声等,1987,Ba-Y-Cu氧化物液氮温区的超导电性,科学通报,32.412-414.
    7.C.Michel,M.Hervieu,M.M.Borel,1987,Superconductivity in the Bi-Sr-Cu-O system,Z.Physik B,68,421-423.
    8.Z.Z.Sheng,A.M.Hermann,1988,Superconductivity in the rare-earth-free TI-Ba-Cu-O system above liquid-nitrogen temperature,Nature,332,55-58.
    9.S.N.Putilin,E.V.AntiPov,O.Chmaissem,1993,Superconductivity at 94K in HgBa_2CuO_(4+Δ),Nature,362,226-228.
    10.A.Schilling,M.Cantoni,J.D.Guo,1993,Superconductivity above 130K in the Hg-Ba-Ca-Cu-O system,Nature,363,56-58.
    11.J.Bardeen,L.N.Cooper,J.R.Schrieffer,1957,Theory of Superconductivity,Phys.Rev.,108,1175-1204.
    12.J.Nagamatsu,N.Nakagawa,T.Muranaka,2001,Superconductivity at 39K in magnesium diboride,Nature,410,63-64.
    13.王家素,王素玉,1995,超导技术应用,成都:成都电子科技大学出版社.
    14.伍勇,韩汝珊,1997,超导物理基础,北京:北京大学出版社.
    15.林良真,张金龙等,1998,超导电性及其应用,北京:北京工业大学出版社.
    16.周又和,郑晓静,1999,电磁固体结构力学,北京:科学出版社.
    17.Y H.Zhou(周又和),X.J.Zheng(郑晓静),K.Miya,1995,Magnetoelastic bending and buckling of three-coil superconducting partial torus,Fusion Eng.and Des.,30,275-289.
    18.Y.H.Zhou,K.Miya,1998,Mechanical behaviours of magnetoelastic interaction for superconducting helical magnets,Fusion Eng.Des.,38,283-293.
    19.X.J.Zheng,Y.H.Zhou,J.S.Lee,1999,Instability of superconducting partial torus with two pin supports,ASCE J.Eng.Mech.,125,174-179.
    20.X.J.Zheng,X.Z.Wang,Y.H.Zhou,2000,Magnetoelastic analysis of non-circular superconducting partial torus,Int.J.Solids Struct.,37,563-576.
    21.周又和,郑晓静,1997,托克马克聚变堆中环向磁场超导线圈的磁弹性弯曲与稳定性,核聚变与等离子体物理,2,17-23.
    22.郑晓静,周又和,1997,D型超导线圈的磁弹性弯曲和屈曲,兰州大学学报,33,23-31.
    23.王省哲,郑晓静,周又和,1999,非圆Tokamak载流线圈的磁弹性分析,兰州大学学报,35.24-43.
    24.王海滨,周又和,郑晓静,2003,超导磁体感应电流及其对电磁弹性动力稳定性的影响,核聚变与等离子体物理,23,1-6.
    25.P.Z.Chang,1991,Mechanics of Superconducting magnetic bearings,Ph.D.Thesis,Cornell University.
    26.F.C.Moon,K.-C.Weng,P.-Z.Chang,1989,Dynamic magnetic forces in superconducting ceramic,J.Appl.Phys.,66,5643-5645.
    27.F.C.Moon,1990,Magnetic forces in High-Tc superconducting bearings,Int.J.Appl.Electromagn.Mater,1,29-35.
    28.F.C.Moon,P.-Z.Chang,H.Hojaji,1990,Levitation force,relaxation and magnetic stiffness of Melt-Quenched YBCO,Jpn.J.Appl.Phys.,29,1257-1258.
    29.Y.Yang,X.J.Zheng(郑晓静),2007,Method for solution of the interaction between superconductor and permanent magnet,J.Appl.Phys.,101,113922(1-8).
    30.X.J.Zheng,Y.Yang,2007,Transition cooling height of high-temperature superconductor levitation system,IEEE Trans.Appl.Supercond,17,3862-3866.
    31.X.F.Gou,Y.Yang,X.J.Zheng,2004,Analytic expression of magnetic field distribution of rectangular permanent magnets,Appl.Math.Meth.,25,271-178.
    32.X.J.Zheng,X.F.Gou,Y.H.Zhou,2005,Influence of flux creep on dynamic behavior of magnetic levitation systems with a high-Te superconductor,IEEE Trans.Appl.Supercond.,15,3856-3863.
    33.X.F.Gou,X.J.Zheng,Y.H.Zhou,2007,Drift of levitated/suspended body in high-Tc superconducting levitation systems under vibration - Part Ⅰ:A criterion based on magnetic-gap relaxation for gap varying with time,IEEE Trans.Appl.Supercond.,17,3795-3802.
    34.X.F.Gou,X.J.Zheng,Y.H.Zhou,2007,Drift of levitated/suspended body in high-Tc superconducting levitation systems under vibration - Part Ⅱ:Drift velocity for gap varying with time,IEEE Trans.Appl.Supercond.,17,3803-3808.
    35.X.Y.Zhang,Y.H.Zhou,J.Zhou,2007,Three-dimensional measurements of forces between magnet and superconductor in a levitation system,Physica C,467,125-129.
    36.X.Y.Zhang,Y.H.Zhou,J.Zhou,Jun Zhou,2008,Influence of waiting time on the levitation force between a permanent magnet and a superconductor,Mod.Phys.Lett.B,22,499-506.
    37.X.Y.Zhang,Y.H.Zhou,J.Zhou,2008,Experimental observation of a crossing in the force-displacement hysteretic curve of a melt processed YBaCuO bulk superconductor,Physica C,468,369-373.
    38.X.Y.Zhang,Y.H.Zhou,J.Zhou,2008,Modeling of symmetrical levitation force under different field cooling processes,Physica C,468,401-404.
    39.X.Y.Zhang,Y.H.Zhou,J.Zhou,2008,Relaxation transition due to different cooling processes in a superconducting levitation system,J.Appl.Phys.,103,123901.
    40.Y.H.Zhou,H.D.Yong,2007,Crack problem for a long rectangular slab of superconductor under an electromagnetic force,Phys.Rev.B,76,094523.
    41.H.Ikuta,N.Hirota,Y.Nakayama,K.Kishio,K.Kitazawa.1993,Giant Magnetostriction in Bi_2Sr_2Ca_2Cu_2O_8 Single Crystal in the Superconducting State and Its Mechanism,Phys.Rev.Lett,70,2166-2169.
    42.T.H.Johansen,1999,Flux-pinning-induced stress and strain in superconductors:Case of a long circular cylinder,Phys.Rev.B,60,9690-9703.
    43.F.Yu,K.W.White,R.Meng,1997,Mechanical characterization of top-seeded melt-textured YBa_2Cu_3O_(7-δ) single crystal,Physica C,276,295-308.
    44.K.C.Goretta,P.Diko,M.Jiang,M.M.Cuber,M.Xu,J.E.Ostenson,S.Sengupta,1999,Annealing and mechanical properties of bulk Y-Ba-Cu-O,IEEE Trans.Appl.Supercond.9,2081-2084.
    45.S.Nariki,N.Sakai,M.Tomita,M.Murakami,2002,Mechanical properties of melt-textured Gd-Ba-Cu-O bulk with silver addition,Physica C,378-381,779-782.
    46.M.Tomita,M.Murakami,K.Katagiri,2002,Reliability of mechanical properties for bulk superconductors with resin impregnation,Physica C,378-381,783-787.
    47.M.Tomita,M.Murakami,2002,Mechanical properties of bulk superconductors with resin impregnation,Supercond.Sci.Technol.,15,808-812.
    48.N.Sakai,A.Mase,H.Ikuta,S.J.Seo,U.Mizutani,M.Murakami,2000,Mechanical properties of Sm-Ba-Cu-O/Ag bulk superconductors,Supercond.Sci.Technol.,13,770-773.
    49.N.Sakai,S.J.Seo,K.lnoue,T.Miyamoto,M.Murakami,2000,Mechanical properties of RE-Ba-Cu-O bulk superconductors,Physica C,335,107-111.
    50.K.Katagiri,A.Murakami,T.Sato,T.Okudera,N.Sakai,M.Muralidhar,M.Murakami,2002,Stress-strain characteristics and fracture surface morphology of(Sm,Gd)-Ba-Cu-O bulk superconductor,Physica C,378 - 381,722-726.
    51.A.Murakami,K.Katagiri,K.Kasaba,Y.Shoji,K.Noto,N.Sakai,M.Murakami,2003,Mechanical properties of Sm-Ba-Cu-0 bulk superconductors at room temperature,Physica C,392 - 396,557-561.
    52.A.Murakami,K.Katagiri,K.Kasaba,Y.Shoji,K.Noto,H.Teshima,M.Sawamura,M.Murakami,2003,Mechanical properties of Gd123 bulk superconductors at room temperature ,Cryogenics,43,345-350.
    53.T.Okudera,A.Murakami,K.Katagiri,K.Kasaba,Y.Shoji,K.Noto,N.Sakai,M.Murakami,2003,Fracture toughness evaluation of YBCO bulk superconductor,Physica C ,392 - 396,628-633.
    54.T.Miyamoto,K.Nagashima,N.Sakai,M.Murakami,2000,Direct measurements of mechanical properties for large-grain bulk superconductors,Physica C,340,41-50.
    55.K.Katagiri,T.Sato,A.Murakami,K.Kasaba,Y Shoji,K.Noto,H.Teshima,M.Sawamura,2005,Fracture toughness of REBaCuO bulk superconductor at liquid nitrogen temperature,Physica C,426-431,709-713.
    56.M.Sugano,K.Osamura,W.Prusseit,R.Semerad,K.Itoh,T.Kivoshi,2005,Tensile fracture behaviour of RE-123 coated conductors induced by discontinuous yielding in Hastelloy C-276 substrate,Supercond.Sci.Technol,18,S344-S350.
    57.K.Osamura,M.Sugano,K.Matsumoto,2003,Mechanical property and its influence on the critical current of Ag/Bi2223 tapes,Supercond.Sci.Technol.,16,971-975.
    58.A.Murakami,K.Katagiri,K.Kasaba,H.Miyata,Y Shoji,2006,Bending mechanical properties of a single-grain Y123 bulk superconductor at liquid nitrogen temperature,Physica C,445-448,361-365.
    59.A.Murakami,K.Katagiri,R.Kan,H.Miyata,Y Shoji,K.Noto,A.Iwamoto,T.Mito,2005,Compressive mechanical properties of Sml23 bulk superconductor at liquid nitrogen temperature,Physica C,426-431,644-648.
    60.H.Fujimoto,H.Shimada,S.Yoshizawa,2007,Mechanical properties of DyBaCuO superconducting bulks,Physica C,463-465,374-378.
    61.W.H.Keesom,Rapp,1924,Disc 4e Conger.Phy.Solvay,288.
    62.A.J.Rutgers,1934,Physica,1,1055.
    63.C.J.Gorter,1933,Arch.Mus.Teyler,7,378.
    64.C.J.Goiter,H.B.G.Casimir,1934a,On superconductivity I.Physica,1,306-320.
    65.C.J.Gorter,H.B.G.Casimir.1934b,Z.Phys.,35,963-966.
    66.R.Becker,G.Heller,F.Sauter.,1933,Z.Phys.,85,772.
    67.F.London,H.London.1935,Proc.Roy.Soc.,A155,71.
    68.D.Shoenberg.Proc.Roy.Soc.,1940,A175,49.
    69.M.Desirant,D.Shoenberg.1947,Penetration of Magnetic Field into Superconducting Mercury,Nature,159,201-202.
    70.A.B.Pippard.,1950,Proc.Roy.Soc.,A203,210.
    71.V.L.Ginzburg,L.D.Landau,1950,Exp.Theor.Phys.,U.S.S.R.,20,1064.
    72.L.D.Landau,E.M.Lifshitz,1958,Statistical Physics,London,Pergamon Press.
    73.A.A.Abrikosov,1957,Exp.Theor.Phys.,U.S.S.R.,32,1442.
    74.L.P.Gorkov,1960,Exp.Theor.Phys.,U.S.S.R.,10,593.
    75.W.H.Keesom,H.K.Onnes,1924,Leiden comm.,174b.
    76.M.K.Wilkinson,C.G.Shuli,L.D.Roberts,S.Bernstein,1955,Neutron diffraction observation on the superconducting state.Phys.Rev.,97,889-891.
    77.G.Eska,H.G.Willers,B.Amend,W.Wiedemann,Spin echo experiments in superfluid He,Physica C,108,1155-1156.
    78.W.S.Corak,B.B.Goodman,C.B.Saterthwalte,A.Wexler,1956,Atomic heats of normal and superconducting vanadium,Phys.Rev.,102,656-661.
    79.P.L Richards,M.Tinkharn,1960,Far-infrared energy gap measurements in bulk superconducting In,Sn,Hg,Ta,V,Pb,and Nb,Phys.Rev.,119,575-590.
    80.E.Maxwell,1950,Isotope Effect in the Superconductivity of Mercury,Phys.Rev.,78,447-477.
    81.C.A.Reynolds,B.Serin,W.H.Wright,L.B.Neslitt,1950,Superconductivity of isotopes of mercury,Phys.Rev.,78,487-487.
    82.H.Frohlich,1950,Theory of the superconducting state.I.The ground state at the absolute zero of temperature,Phys.Rev.,79,845-856.
    83.L.N.Cooper,1956,Bound electron pairs in a degenerate Fermi gas.Phys.Rev.,104,1189-1190.
    84.L.K.Heill,H.Ikuta,N.Hirota,K.Kishio,K.Kitazawa,1994,Magnetostriction relaxation in high-Tc superconductors,Physica C,235-240,2925-2926.
    85.N.Nabialek,H.Szymczak,V.A.Sirenko,A- I.D'yashenko,1998,Influence of the real shape of a sample on the pinning induced magnetostriction,J.Appl.Phys.,84,3770-3775.
    86.K.Fulber,A.Geerkens,S.Ewert,K.Winzer,1998,Magnetostriction due to flux pinning in polycrystalline YNi2B2C,Physica C,299 1-8.
    87.T.H.Johansen,1999,Flux-pinning-induced stress and strain in superconductors:Long rectangular slab,Phys.Rev.B,59,11187-11190.
    88.T.H.Johansen,1998,Shape Distortion by Irreversible Flux-Pinning-Induced Magnet-ostriction,Phys.Rev.Lett,80,4757-4760.
    89.Y.R.Pen,R.Weinstein,J.Liu,1995,Damage caused by magnetic pressure at high trapped field.Physica C,251,15-26.
    90.C.P.Bean.1962,Magnetization of Hard Superconductors,Phys.Rev.Lett.,8 250-253.
    91.M.Morita,S.Takebayashi,M.Tanaka,K.Kimura,1991,MBE or MO-MBE process for forming Bi-Sr-Ca-Cu-O superconducting thin films,Adv.Supercond.,3,733-739.
    92.S.Jin,T.H.Tiefel,R.C.Sherwood,1988,High critical currents in YBCO superconductors,Appl.Phys.Lett,5,2074-2076
    93.J.Hull,2000,Topical review superconducting bearings,Supercond Sci.Technol,13,R1-R15.
    94.J.Hull,M.Murakami,2004,Applications of bulk high-temperature superconductors,Proc.IEEE,92,1705-1718.
    95.K.Nagashima,T.Higuchi,1997,The trapped field of YBCO bulk superconducting magnets,Cryogenics,37,577-581.
    96.G.Fuchs,G.Krabbes,P.Schatzle,S.Gruss,P.Verges,K.-H.Muller,J.Fink,L.Schultz,H.Eschrig,2001,Bulk superconducting magnets with fields beyond 14 T,Physica B,294-295,398-401.
    97.M.Rabinowitz,H.W.Arrowsmith,D.S.Dahlgren,1977,Dependence of maximum trappable field on superconducting Nb3Sn cylinder wall thickness,Appl.Phys.Lett.,30,607-609.
    98.R.Weinstein,I.G.Chen,J.Liu,D.Parks,V.Selvamanickam,K.Salama,1990,Persistent magnetic fields trapped in high T_c superconductor,Appl.Phys.Lett,56,1475-1477.
    99.Y.Ren,R.Weinstein,J.Liu,R.P.Sawh,1996,10th anniversary HTS Workshop on physics,Materials and Applications,Houston,TX.
    100.S.Gruss,G.Fuchs,2001,Superconducting bulk magnets:Very high trapped fields and cracking.Appl.Phys.Lett,79,3131-3133.
    101.G.Fuchs,P.Schatzle,G.Krabbes,S.GraB,P.Verges,K.-H.Muller,J.Fink,L.Schultz,2000,Trapped magnetic fields large than 14 T in bulk YBa_2Cu_3O_(7-x),Appl.Phys.Lett.,76,2107-2109.
    102.P Diko,2004,Cracking in melt-grown RE-Ba-Cu-O single-groin bulk superconductors,Supercond.Sci.Technol.,17,R45-R58.
    103.P.Diko,G.Krabbes,2003,Macro-crocking in melt-grown YBaCuO superconductor induced by surface oxygenation,Supercond.Sci.Technol.,16,90-93.
    104.G.Fuchs,2000,Trapped magnetic fields larger than 14 T in bulk YBCO,Appl.Phys.Lett.,76,2107-2109,.
    105.S.Gruss,2001,Superconducting bulk magnets:Very high trapped fields and cracking,Appl.Phys.Lett.,79,3131-3133.
    106.R.G.Arrabal,2002,Very high trapped fields in neutron irradiated and reinforced YBCO-melt-textured superconductors,Appl.Phys.Lett.,81,868-870.
    107.P.Diko,N.Pelerin,P.Odier,1995,Microstructure analysis of melt-textured YBa2Cu3O7-x ceramics by polarized light microscopy,Physica C,247,169-182.
    108.P.Diko,H.Kojo,M.Murakami,1997,Microstructure of Nd-Ba-Cu-O superconductors prepared by the oxygen-controlled-melt-growth method,Physica C,276,185-196.
    109.N.Sakai,F.Munakata,P.Diko,S.Takebayashi,S.I.Yoo,MurakamiM,1997,Relationship between J_c -B characteristics and Irreversibility Lines in OCMG-processed Nd-Ba-Cu-O Bulk Superconductors,Adv.Supercond.,X 1,645-648.
    110.P.Diko,1998,Cracking in melt-processed RE-Ba-Cu-O superconductors,Supercond.Sci.Technol.,11,68-72.
    111.F.Tancret,I.Monot,F.Osterstock,2001,Toughness and thermal shock resistance of Y_2Ba_2Cu_3O_(7-x) composite superconductors containing Y_2BaCu_5 or Ag particles,Mater.Sci.Eng.A,298,268-283.
    112.S.Kracunovska,2004,Batch-processed melt-textured YBCO with improved quality for motor and bearing applications,Supercond.Sci.Technol.,17,1185-1188.
    113.M.Eisterer,S.Haindl,T.Wojclk,H.W.Weber,2003,'Magnetoscan':a modified Hall probe scanning technique for the detection of inhomogeneities in bulk high temperature superconductors,Supercond.Sci.Technol.,16,1282-1285.
    114.T.H.Johansen,Q.Y.Chen,2001,Pinning-induced stress in clamped superconductors,Physica C,349,201-210.
    115.T.H.Johansen,C.Wang,2000,Enhancement of tensile stress near a hole in superconducting trapped-field magnets,J.Appl.Phys,88,2730-2733.
    116.T.H.Johansen,1998,Flux-pinning-induced magnetostriction in cylindrical superconductors,Supercond.Sci.Technol,11,1186-1189.
    117.T.H.Johansen,2000,Flux-pinning-induced stress and magnetostriction in bulk superconductors,Supercond.Sci.Technol,13,R121-R137.
    118.T.H.Johansen,2000,Field-cooled magnetization measurements of Nd-123 bulk superconductors,Supercond Sci.Technol,13,745-748.
    119.T.H.Johansen,2000,Pinning-induced stress during activation of bulk HTSs as trapped-field magnets,Supercond Sci.Technol,13,830-835.
    120.T.H.Johansen,2003,Magnetostrictive behavior of thin superconducting disks,Supercond.Sci.Technol,16,1109-1114.
    121.H.D.Yong,Y.H.Zhou,2006,Transient anti-plane crack problem for two bonded functionally graded piezoelectric materials.Arch.Appl.Mech.,76,497-509.
    122.H.D.Yong,Y.H.Zhou,2006,Analysis of a mode Ⅲ crack problem in a functionally graded coating-substrate system with finite thickness.Int.J.Fracture,141,459-467.
    123.H.D.Yong,Y.H.Zhou,2007,A mode Ⅲ crack in a functionally graded piezoelectric strip bonded to two dissimilar piezoelectric half-planes,Compos.Struct,79,404-410.
    124.H.D.Yong,Y.H.Zhou,2007,Transient response of a cracked magnetoelectroelastic strip under anti-plane impact.Int.J.Solids.Struct,44,705-717.
    125.A.A Griffith,1920,The phenomenon of rupture and flow in solids,Philosophical Transactions of Royal Society,London,A221,163-198.
    126.G R Irwin,1962,Crack-extension force for a part-through crack in a plate,J.Appl.Mech.,651-654.
    127.李永东,2005,理论与应用断裂力学,北京:兵器工业出版社.
    128.G.R.Irwin,1948,Fracture Dynamics.In:Fracturing of Metals,Cleveland:Am.Soe.Metals,147-166.
    129.E.Orowan,1948,Fracture and Strength of Solids,In:ReP.On Progr.In Phys.,Ⅴ-Ⅶ,185P.
    130.G.R.Irwin,1957,Analysis of stresses and strains near the end of a crack traversing a plate,J.Appl.Mech,24,361-364.
    131.K.Palaniswamy,W.G.Knauss,1978,On the Problem of Crack Extension in Brittle Solids under General Loading,Mechanics Today,Edited by S.Nemat-Nasser,4,Pergamon Press.
    132.G.C.Sih,1973,Some Basic Problems in Fracture Mechanics and New Concepts,Eng.Frac.Mech.,5,365-377.
    133.F.Erdogan,G.C.Sih,1963,On the Crack Extension in Plates under Plane Loading and Transverse Shear,J.Basic Eng.,85,519-527.
    134.A.A.Wells.1963,Britlish Welding Journal.10,563-570.
    135.J.R.Rice,G.F.Rosengren,1968,Plane Strain Deformation Near a Crack Tip in a Power Law Hardening Material,J.Mech.Phys.Solids,16,1-12.
    136.范天佑,1990,断裂动力学引论,北京:北京理工大学出版社.
    137.S.K.Maiti,R.A.Smith,1983,Comparison of the Criteria for Mixed Mode Brittle Fracture Based on the Preinstability Stress-Strain Field,Part Ⅰ:Slit and Elliptical Cracks under Uniaxial Tensile Loading,International Journal of Fracture,23,281-295.
    138.M.A.Hussain,S.L.Pu,J.Underwood,1974,Strain-Energy-Release Rate for a Crack under Combined Mode Ⅰ and Mode Ⅱ,ASTM-STP-560,2-28.
    139.G.C.Sih,1973,Some Basic Problems in Fracture Mechanics and New Concepts,Eng.Fracture Mech.,5,365-377.
    140.P.S.Theocaris,1984,A Higher Order Approximation for the T-Criterion of Fracture in Biaxial Fields,Eng.Fracture Mech.,19,975-991.
    141.B.Cotterell,J.R.Rice,1980,Slightly Curved or Kinked Cracks,Int.J.Fracture,16,155-169.
    142.C.P.Bean,J.D.Livingston,1964,Surface Barrier in Type-Ⅱ superconductors,Phys.Rev.Lett.,12,14-16.
    143.C.P.Bean,1964,Magnetization of high-field superconductors.Rev.Mod Phys.,36,31-39.
    144.M.F.Kanninen,C.H.Popelar,1985,Advanced Fracture Mechanics,New York,Oxford University Press.
    145.N.Sumi,T.Katayama,1980,Thermal stress singularities at tips ofa Griffith crack in a finite rectangular plate,Nucl.Eng.Des,60,389-394.
    146.J.Hull,2000,Topical review superconducting beatings,Supercond.Sci.Technol,13,R1-R15.
    147.J.Hull,M.Murakami,2004,Applications of bulk high-temperature superconductors.Proc.IEEE,92,1705-1718.
    148.K.Nagashima,T.Higuchi,1997,The trapped field of YBCO bulk superconducting magnets,Cryogenics,37,577-581.
    149.H.Ikuta,N.Hirota,1994,Magnetostriction in High-Tc cuprate single crystals,Physica C,235-240,237-240.
    150.K.F(u|¨)lber,A.Geerkens,S.Ewert,K.Winzer,1998,Magnetostriction due to flux pinning in polycrystalline YNi_2B_2C,Physica C,299,1-8.
    151.C.F.Shih,B.Moran,T.Nakamura,1986,Energy release rate along a three dimensional crack front in a thermally stress body,Int.J.Fracture,30,79-102.
    152.R.F.Ungless,1973,An infinite finite element[R].M.A.Sc.Thesis,University of British Columbia.
    153.P.Bettess,1980,More on infinite element[J],Int.J.Numer,Meth.Eng,15,1613-1626.
    154.G.Beer,J.L.Meek,1981,Infinite domain element[J],Int.J.Numer,Meth.Eng,,17,43-52.
    155.O.C.Zienkiewicz,1983,A novel boundary infinite element[J].Int.J.Numer,Meth.Eng,19,393-404.
    156.葛修润,1986,三维无限元和节理无界元[J].岩土工程学报,5,9-20.
    157.赵凯华,陈熙谋,1985,电磁学(第二版),北京:高等教育出版社.
    158.D.X.Chen,J.A.Brug,R.B.Goldfarb,1991,Demagnetizing Factors for Cylinders,IEEE Transactions on magnetics,21,3601-3619.
    159.H.Ikuta,H.Ishihara,T.Hosokawa,Y.Yanagi,Y.Itoh,M.Yoshikawa,2000,Pulse field magnetization of melt-processed Sm-Ba-Cu-O,Supercond.Sci.Technol.13,846-849.
    160.M.Tsuchimoto,M.K.Morikawa,1999,Macroscopic numerical evaluation of heat generation in a bulk high T_c superconductor during pulsed field magnetization,IEEE.Trans.Appl.Supercond.9,66-70.
    161.H.Fujishiro,M.Ikebe,T.Naito,K.Noto,S.Kobayashi,S.Yoshizawa,1994,Anisotropic thermal diffusivity and conductivity of YBCO(123) and YBCO(211) mixed crystals-I Japan,J.Appl.Phys.33,4965-4970.
    162.T.Tokunaga,M.Morita,O.Miura,1999,DC transport properties of QMG current limiting elements,IEEE Trans.Appl.Supercond,9,1343-1346.
    163.H.Ohsaki,T.Shimosakil,N.Nozawa,2002,Pulse field magnetization of a ring-shaped bulk superconductor,Supercond Sci.Technol.,15,754-758.
    164.Y.H.Zhou,X.B.Yang,2006,Numerical simulations of thermomagnetic instability in high- T_c superconductors-dependence on sweep rate and ambient temperature,Phys.Rev.B.,74,054507.
    165.Z.L.Xiao,P.Voss-de Hann,G.Jakob,T.Kluge,P.Haibach,H.Adrian,E.Y.Andrei,1999,Flux-flow instability and its anisotropy in BiSrCaCuO superconducting films,Phys.Rev.B.,59,1481-1490.
    166.C.Meingast,B.Blank,1990,Anisotropic pressure dependence of T_c in single-crystal YBo_2Cu_3O_7 via thermal expansion,Phys.Rev.B,41,11299-11304.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700