高温超导悬浮系统在温度循环和横向移动速度下的电磁力实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高温超导材料由于其具有较高的上临界磁场、较大的临界电流密度以及高于液氮沸点的临界温度,因此有着广阔的应用前景。利用高温超导块材的抗磁性和磁通钉扎效应设计的高温超导悬浮系统具有相当高的承载能力和独特的自稳定性,是未来高温超导应用的重要分支。由单块永磁体和单块高温超导体构成的悬浮系统的电磁相互作用力特性研究是超导悬浮系统安全运行设计的基础,并作为基础性研究课题受到广泛关注。本博士学位论文主要针对由单块圆柱永磁体和单块圆柱YBCO超导体构成的高温超导悬浮系统在低于液氮沸点温度下的不同温度循环过程中静态电磁力特性以及在液氮沸点温度永磁体垂直于悬浮系统轴向的水平运动对电磁力特性影响开展实验研究,发现了一些新的现象及特性;本文还改进了磁通冻结镜像模型模拟了永磁体水平运动对电磁力特性的影响。
     首先,测试了悬浮系统中高温超导体在低于临界温度的不同冷却温度下零场冷悬浮力-距离磁滞回线特性。实验表明:在低磁场情形及低于一定温度下,悬浮力-距离磁滞回线存在交叉现象,即在小于一定垂向位移时靠近过程悬浮力小于远离过程悬浮力。尽管悬浮力-距离磁滞回线的磁滞随着温度的降低而减小悬浮力-距离磁滞回线的最大悬浮力随温度的降低而增大并趋于饱和,交叉面积却随温度的降低而增大,交叉点的距离坐标也随温度的降低而增大。
     其次,研究了高温超导体在弛豫过程中经历温度循环及在非弛豫时变温对悬浮力的影响。实验表明在弛豫时从恒定温度持续降温将使得原本经过长时间弛豫已经趋于稳定的悬浮力继续快速减小,减小的幅度随初始恒温和降温最终到达温度之差的减小而减小;弛豫时在从超导体所经历过的最高温度处持续升温时,悬浮力随温度的升高而减小,减小的幅度与升温速度无关;弛豫时先在一定温度恒温一段时间后持续降温到另一温度稳定后,再次升温且不超过初始恒温时悬浮力随温度的升高而增加,最终增加的幅度不超过从初次恒温降温到另一温度时悬浮力减小的幅度,由此可以提出一个升温稳定预处理过程,即先在一定温度弛豫一段时间后持续降温到另一温度进行悬浮系统长时间运行,在此温度下运行时若出现升温且不超过初始恒温的温度不稳定情形时悬浮力不随温度的升高而减小、仅小幅度增加;恒温弛豫结束后,零磁场直接升温至另一温度后再弛豫、在再次弛豫结束后零磁场直接降温至初始恒温后再弛豫,该温度循环过程中不同初始恒温情形在恢复初始恒温后悬浮力减小幅度与升温后悬浮力减小幅度之比在升温达到的温度固定时差别很小
     最后,研究了初始冷却高度以及永磁体的水平运动速度对水平位移下悬浮力和导向力的影响。实验表明在由单块永磁和单块超导组成的轴对称悬浮系统中,发生垂直于轴对称方向的水平相对位移时,水平移动速度对悬浮力-水平位移磁滞回线有较大影响,随着水平速度的增大磁滞也增大,经过一次从中心轴对称位置到最大水平位移再回到中心位置的往复运动,相比于初始运动时的悬浮力,在冷却高度比较大时返回后的悬浮力下降,在冷却高度比较小时返回后的悬浮力上升。水平移动速度对导向力-水平位移磁滞的影响不明显。本文还改进了磁通冻结镜像模型使之能反映水平速度对悬浮力-水平位移磁滞回线的影响。
Owing to its higher upper critical magnetic field, higher critical current density and transition temperature above the temperature of liquid nitrogen, high temperature superconductor (HTS) shows some very important features in applications. The diamagnetic and flux pinning characteristics make high temperature superconducting levitation system has excellent loading capacity and novel passive stable characteristic. Thus the high temperature superconducting levitation system become an important branch of applications of superconductivity. The electromagnetic force characteristic researches on the typical superconducting levitation style, a superconductor and a permanent magnet (PM) levitation system, have become the basis of the superconducting levitating system operation design, and a subject of considerable interest, which have been extensively investigated. This Ph. D. dissertation presents some experimental investigations of the static and dynamic electromagnetic force characteristics in the high temperature superconductor levitation system under some different temperature cyclings and lateral moving velocity conditions, some new phenomena and characteristics are found, and the results are explained; The frozen-image model is also modified to fit the experimental results of influences of lateral moving of permanent magnet on the electromagnetic forces.
     Firstly, the influences of different cooling temperature on the hysteretic curves of levitation force versus gap between the bulk HTS and the PM under zero-field cooling (ZFC) are described. It is found that with the decreasing of cooling temperature, there exists a crossing phenomenon on the hysteretic curves of levitation force. Even though the hysteresis loop area decreases with the decreasing of cooling temperature and the maximum levitation force of each hysteretic curves of different cooling temperature increase and saturate under lower cooling temperature condition, the crossing area and the gap of crossing point increase with the decreasing of cooling temperature.
     Secondly, the influences of some temperature cycling on the levitation force relaxation is described. It is found that the levitation force continue to decrease when the temperature of superconductor is decreased continually from the initial cooling temperature during the relaxation, and it will increase with the increasing of temperature after the continual decreasing. According to these results, a temperature stabilization pretreatment method is presented. Another temperature cycling that increase the temperature from the initial cooling temperature under zero magnetic field condition and then go back to the initial cooling temperature also under zero magnetic field condition will show a fixed ratio between the decreased levitation force ranges of increasing and decreasing processes if the target value of increasing process for different initial cooling temperature cases are the same.
     Finally, the effects of the initial cooling height (CH) and the lateral moving speed on the levitation force and the lateral force in the levitation system are described. The measurement results show that for some cooling height after the symmetrical movement (from the CH to levitation height) the effects of lateral movement and lateral moving velocity on the levitation force are remarkable. The levitation force will decrease for higher CH and increase for lower CH after the lateral movement. The hysteresis loop area of levitation force increase with the increasing of lateral moving velocity for higher CH, and the hysteresis loop area have nearly no change for lower CH. The hysteresis loop area of lateral force for all CH have nearly no change with the increasing of lateral moving velocity. The frozen-image method has also be modified to simulate the results of above, that the lateral moving speed has significant effect on levitation force-lateral displacement hysteresis loop curves.
引文
[1]王家素,王素玉,1995.超导技术应用.成都:成都科技大学出版社.
    [2]章立源,张金龙,崔广霁,1995.超导物理学.北京:电子工业出版社.
    [3]伍勇,韩汝珊,1997.超导物理基础.北京:北京大学出版社.
    [4]林良真,张金龙等,1998.超导电性及其应用.北京:北京工业大学出版社.
    [5]周又和,郑晓静,1999.电磁固体结构力学.北京:科学出版社.
    [6]武建军,2000.磁悬浮列车-轨道耦合控制系统的动力稳定性研究.兰州大学博士论文.
    [7]汪金荣,吴晓祖,周廉,1997.高温超导磁悬浮与飞轮储能.物理,26,226-232.
    [8]F. C. Moon,谢慧才(译),1987.超导结构介绍.力学进展,3,411-417.
    [9]F. C. Moon,1994. Superconducting Levitation. New York:John Wiley& Sons, Inc..
    [10]P. Z. Chang,1991. Mechanics of superconducting magnetic bearings. Ph. D. Thesis, Cornell University.
    [11]E. H. Brandt,1989. Levitation in physics. Science,243,349-355.
    [12]J. R. Hull,2000. Topic Review:Superconducting bearing. Supercond. Sci. Technol.,13, R1-R15.
    [13]H. K. Onnes,1911. Further experiments with liquid helium. G. On the electric resistance of pure metals etc. VI. On the sudden change in the rate at which the resistance mercury disappears. Commun. Phys. Lab. Univ. Leiden,124c.
    [14]W. Meissner and R. Ochsenfeld,1933. Ein neuer Effekt bei Eintritt der Supraleitfahigkeit. Naturwissenschaften,21:787-788.
    [15]C. J. Gorter and H. B. Casimir,1934. On Superconductivity. Physica,1,306-320.
    [16]F. London and H. London,1935. The electromagnetic equations of the superconductor. Proc. Roy. Soc. (London), A,149,71-88.
    [17]V. L. Ginzburg and L. D. Landau,1950. On the theory of superconductivity. Zh. Exsperim. i Teor. Fiz,20,1064-1082.
    [18]A. A. Abrikosov,1957. On the magnetic properties of superconductors of the second group. Soviet Phys. JETP,5,1174-1182.
    [19]J. Bardeen, L. N. Cooper, J. R. Schrieffer,1957. Theory of superconductivity. Phys. Rev, 108,1175-1204.
    [20]J. G. Bednorz and K. A. Muller,1986. Possible high-Tc superconductivity in the La-Ba-Cu-O system. Z. Phys. B,64,189-193.
    [21]J. G. Bednorz, M. Takashige and K. A. Muller,1987. Susceptibility Measurements Support High-Tc Superconductivity in the Ba-La-Cu-O System. Europhys. Lett.,3(3),379-385.
    [22]S. Uchida, H. Takagi, K. Kitazawa and S. Tanaka,1987. High-Tc superconductivity of La-Ba-Cu oxides. Jpn. J. Appl. Phys,26, L1-L2.
    [23]C.W. Chu, et al,1987. Superconductivity at 52.5K in the Lanthanum-Barium-Copper-Oxide system. Science,235,567-569.
    [24]M.K. Wu, et al,1987. Superconductivity at 93K in a New Mixed-Phase Y-Ba-Cu-O Compound System at Ambient Pressure. Phys. Rev. Lett.,58,908-910.
    [25]P.H. Hor, et al,1987. High-Pressure Study of the New Y-Ba-Cu-O Superconducting Compound System. Phys. Rev. Lett.,58,911-912.
    [26]赵忠贤,陈立泉,杨乾声等,1987.Ba-Y-Cu氧化物液氮温区的超导电性.科学通报,32,412-414.
    [27]钱廷欣,周雅伟,赵晓鹏,2006.新型超导材料的研究进展.材料导报,20,98-101.
    [28]Available on:Http://www.Superconductors.org.
    [29]Kamihara Y, Watanabe T, Hirano M and Hosono H,2008. Iron-Based Layered Superconductor La[O1-xFx]FeAs (x= 0.05-0.12) with Tc= 26 K. J. Am. Chem. Soc,130, 3296-3297.
    [30]Ren Zhi-An,Lu Wei,Zhao Zhong-Xian,et al.,2008. Superconductivity at 55 K in Iron-Based F-Doped Layered Quaternary Compound Sm[O1-xFx]FeAs. Chin. Phy. Lett.,25, 2215-2216.
    [31]X. J. Zheng, X. F. Gou and Y. H. Zhou,2003. Numerical simulation of the levitation force of High-Tc superconductors. Key Engin. Mater.,243-244,553-558.
    [32]郑晓静,苟小凡,周又和,2004.超导电磁悬浮力的数值模拟.固体力学学报,24,16-23.
    [33]苟小凡,2004.高温超导悬浮体的静、动力特性分析.兰州大学博士学文论文.
    [34]杨勇,2007.高温超导体面内移动时的静力特性研究.兰州大学博士学位论文.
    [35]Q. Robinson, et al.,1987. Sinter-Forged YBa2Cu307-δ. Adv. Ceram. Mater.,2,26-30.
    [36]S. Jin, T. H.Tiefei, et al.,1988. High critical currents in Y-Ba-Cu-O superconductors. Appl. Phys. Lett.,52,2074-2076.
    [37]E. Yanmaz,1997. Melt processed YBa2Cu3O7-x superconductors. J. Alloy. Compd.,260, 242-249.
    [38]P. Schatzle, G. Krabbes, G. Stover, G. Fuchs and D. Schlafer,1999. Multi-seeded melt crystallization of YBCO bulk material for cryogenic applications. Supercond. Sci. Technol., 12,69-76.
    [39]K. Salama and D. F. Lee,1994. Review Article:Process in melt texturing of YBa2Cu3O7 superconductor. Supercond. Sci. Technol.,7,177-193.
    [40]E. Yanmaz,1997. Melt processed YBa2Cu3O7-x superconductors. J. Alloy. Compd.,260, 242-249.
    [41]朱敏,2000.超导磁体.西南交通大学硕士学位论文.
    [42]周廉,1998.超导材料发展.世界科学与研究发展-院士论坛,20,46-50.
    [43]F. C. Moon, M. M. Yanoviak, R. Ware,1988. Hysteretic levitation forces in superconducting ceramics. Appl. Phys. Lett.,52,1534-1536.
    [44]F. C. Moon, K.-C. Weng, P.-Z. Chang,1989. Dynamic magnetic forces in superconducting ceramic. J. Appl. Phys.,66,5643-5645.
    [45]P.-Z. Chang, F. C. Moon, J. R. Hull, T. M. Mulcahy,1990. Levitation force and magnetic stiffness in bulk high-tc superconductors. J. Appl. Phys.,67,4358-4360.
    [46]F. C. Moon,1990. Magnetic forces in High-Tc superconducting bearings. Int. J. Appl. Electromagn. Mater,1,29-35.
    [47]F. C. Moon, P.-Z. Chang, H. Hojaji,1990. Levitation force, relaxation and magnetic stiffness of Melt-Quenched YBCO. Jpn. J. Appl. Phys.,29,1257-1258.
    [48]T. H. Johansen, H. Bratsberg, Z. Yang, G. Helgesen, A. T. Skjeltorp,1990. A pendulum feedback system to measure the lateral force on a magnet placed above a high-Tc superconductor. Rev. Sci. Instrum.,61,3827-3829.
    [49]T. H. Johansen, Z.-J. Yang, H. Bratsberg, G. Helgesen, A. T. Skjeltorp,1991. Lateral force on a magnet placed above a planar YBa2Cu3O7-x superconductor, Appl. Phys. Lett.,58, 179-181.
    [50]Z. J. Yang, T. H. Johansen, H. Bratsberg, G. Helgesen, A. T. Skjeltorp,1990. Potential and force between a magnet and a bulk YBa2Cu3O7-x superconductor studied by a mechanical pendulum. Supercond. Sci. Technol,3,591-597.
    [51]T. H. Johansen, H. Mestl, and H. Bratsberg,1994. Investigation of the lateral force and stiffness between a high-Tc superconductor and magnet of rectangular shapes. J. Appl. Phys.,75,1667-1670.
    [52]A. B. Riise, T. H. Johansen, and H. Bratsberg,1994. The vertical magnetic force and stiffness between a sylindrical magnet and a high-Tc superconductor. Physica C,234,108-114.
    [53]王家素,王素玉,2000.高温超导磁悬浮测试系统.高技术通讯,10,56-59.
    [54]J. S. Wang, S. Y. Wang, Z. Y.,Ren, M. Zhu, H. Jiang and Q. X. Tang,2001. Levitation force of a YBaCuO bulk high temperature superconductor over a NdFeB guideway. IEEE Trans. Appl. Supercond.,11,1801-1804.
    [55]S. Y. Wang, J. S. Wang, Z. Y. Ren, H. Jiang, M. Zhu, X. R. Wang and Q. X. Tang,2001. Levitation force of multi-block YBaCuO bulk high temperature superconductors. IEEE Trans. Appl. Supercond.,11,1809-1804.
    [56]J. S. Wang, S. Y. Wang, et al.,2002. The first man-loading high temperature superconducting Maglev test vehicle in the world. Physica C,378-381,809-814.
    [57]Z. Y. Ren, J. S. Wang, S. Y. Wang, et al.,2003. Influence of shape and thickness on the levitation force of YBaCuO bulk HTS over a NdFeB guideway. Physica C,384,159-162.
    [58]J. S. Wang, S. Y. Wang, Z. Y. Ren, et al.,2003. Experiment results of high temperature superconducting Maglev vehicle. Physica C,386,431-437.
    [59]J. S. Wang, S. Y. Wang, Z. Y. Ren, et al.,2003. High temperature superconducting Maglev equipment on vehicle. Physica C,386,531-535.
    [60]X. R. Wang, J. S. Wang, S. Y. Wang, Z. Y. Ren, H. H. Song, X. Z. Wang, J. Zheng and X. M. Shen,2003. The relaxationship of guidance force between single and multiple cylindrical Y-Ba-Cu-O superconductors. Physica C,390,113-113.
    [61]E. Postrekhin, K. B. Ma, H. Ye and W.-K. Chu,2001. Dynamics and relaxation of magnetic stress between magnet and superconductor in a levitation system. IEEE Trans. Appl. Supercond.,11,1984-1987.
    [62]K. B. Ma, Y. V. Postrekhin and W.-K. Chu,2003. Superconductor and magnet levitation devices. Rev. Sci. Instrum.,74,4989-5017.
    [63]T. Akamatsu, H. Ueda, and A. Ishiyama,2003. Characteristics of levitation X-Y transporter using HTS bulks. IEEE Trans. Appl. Supercond.,13,2161-2164.
    [64]H. Ueda and A. Ishiyama,2004. Dynamic characteristics and finite element analysis of a magnetic levitation system using a YBCO bulk superconductor. Supercond. Sci. Technol., 17, S170-S175.
    [65]M. Iwamoto, H. Ueda, and A. Ishiyama,2004. Lift and restoring force characteristics of a levitation X-Y transporter using high-temperature superconducting bulks. Supercond. Sci. Technol,17,1042-1045.
    [66]W. M. Yang, L. Zhou, Y. Feng, et al.,2001. The effect of magnet configurations on the levitation force of melt processed YBCO bulk superconductors. Physica C,354,5-12.
    [67]W. M. Yang, X. X. Chao, Z. B. Shu, S. H. Zhu, X. L. Wu, X. B. Bian and P. Liu,2006. A levitation force and magnetic field distribution measurement system in three dimensions. Physica C,445-448,347-352.
    [68]X. L. Wu, W. M. Yang, S. H. Zhu, J. Z. Guo, T. N. Liu and J. L. Pei,2007. Effect of magnet moving speed on the relaxation rate of the levitation force for YBCO bulk. Mater. Sci. Forum,546-549,2103-2106.
    [69]S. H. Zhu, W. M. Yang, X. L. Wu, J. Z. Guo, T. N. Liu and S. B. Xi,2007. Effect of the moving speed between magnet and superconductor on the levitation force of single-domain YBCO bulk. Mater. Sci. Forum,546-549,2107-2110.
    [70]W. M. Yang, S. H. Zhu, X. L. Wu, X. X. Chao,2009. Effects of the relative speed of a magnet moving to and from a single-domain YBCO bulks on their interaction force. Cryogenics,49,299-301.
    [71]V. Arkadiev,1947. A floating magnet. Nature,160,330.
    [72]W. H. Culver and M. H. Davis,1957. Application of superconductivity to intertial navigation. Raud Corp., Santa Monica, U. S.A., Rep, no. R363.
    [73]C. A. Guderjahn, S. L. Wipf, H. J. Fink, et al.,1969. Magnetic suspension and guidance for high speed rockets by superconducting magnets. J. Appl. Phys,40,2133-2140.
    [74]M. Brian Maple,1987. Phys. Today,40,3.
    [75]F. Hellman, E. M. Gyorgy, D. W. Johnson, Jr., H. M. O'Bryan and R. C. Sherwood,1988. Levitation of a magnet over a flat type II superconductor. J. Appl. Phys.,63(2),447-450.
    [76]David E. Weeks,1989. Levitation properties of the YBa2Cu3Ox and Tl-Ba-Ca-Cu-O superconducting systems. Appl. Phys. Lett.,55,2784-2786.
    [77]W. C. Chan, C. Y. Wang and J. J. Lee,1997. Grain size effect on magnetic levitation of YBCO superconducting samples. Physica C,282-287,1455-1456.
    [78]W. M. Yang, L. Zhou, Y. Feng, et al.,2002. Identification of the effect of grain size on levitation force of well-textured YBCO bulk superconductors. Cryogenics,42,589-592.
    [79]W. M. Yang, L. Zhou, Y. Feng, et al.,2002. The relationship of levitation force between single and multiple YBCO bulk superconductorsThe relationship of levitation force between single and multiple YBCO bulk superconductors. Physica C,371,219-223.
    [80]W. M. Yang, L. Zhou, Y. Feng, et al.,1998. The grain-alignment and its effect on the levitation force of melt processed YBCO single domained bulk superconductors. Physica C,307,271-276.
    [81]W. M. Yang, L. Zhou, Y. Feng, et al.,1999. The effect of the grain alignment on the levitation force in single domain YBa2Cu3Oy bulk superconductors. Physica C,319,164-168.
    [82]D. L. Shi, S. Qu, S. Sagar, and K. Lahiri,1997. Domain-orientation dependence of levitation force in seeded melt grown YBCO. Appl. Phys. Lett.,70,3606-3608.
    [83]肖玲,任洪涛等,1999.YBCO超导体的磁浮力及其测量.低温物理学报,21,317- 320.
    [84]L. H. Allen, P. R. Broussard, J. H. Claassen, S. A. Wolf,1988. Temperature and field dependence of the critical current densities of Y-Ba-Cu-O films. Appl. Phys. Lett.,53, 1338-1340.
    [85]P. Chaudhari, J. Mannhart, D. Dimos, C. C. Tsuei, J. Chi, M. M. Oprysko and M. Scheuermann,1988. Direct measurement of the superconducting properties of single grain boundaries in Y1Ba2Cu3O7-δ. Phys. Rev. Lett.,60,1653-1656.
    [86]C. H. Chiang, C. W. Yang, P. L. Hsieh and W. C. Chan,2003. Levitation force at different temperatures for YBCO superconductor. J. Low. Temp. Phys.,131,743-746.
    [87]H. Jiang, J. S. Wang, S. Y. Wang, Z. Y. Ren, M. Zhu, X. R. Wang and X. M. Shen,2002. The levitation performance of YBaCuO bulk at different temperature. Physica C,378-381, 869-872.
    [88]江河,2002.深冷条件下高温超导体磁悬浮特性研究.西南交通大学硕士学位论文.
    [89]S. Nariki, M. Fujikura, N. Sakai, I. Hirabayashi, M. Murakami,2005. Field trapping and magnetic levitation performances of large single-grain Gd-Ba-Cu-O at different temperatures. Physica C,426-431,654-659.
    [90]E. Ito, T. Suzuki, T. Sakai, S. Koga, M. Murakami, K. Nagashima, N. Sakai. Ⅰ. Hirabayashi and K. Sawa,2006. Levitation forces of bulk RE-Ba-Cu-O in high magnetic fields. Physica C,445-448,412-416.
    [91]T. Suzuki, S. Araki, K. Takeuchir, M. Murakami, K. Nagashima, Y. Miyazaki, H. Sakai, I. Hirabayashi and K. Sawa,2007. Measurements of the levitation forces for a bulk Gd-Ba-Cu-O superconductor in high magnetic fields. Physica C,463-465,383-386.
    [92]T. Suzuki, E. Ito, T. Sakai, S. Koga, M. Murakami, K. Nagashima, Y. Miyazaki, H. Seino, N. Sakai, I.Hirabayashi, and K. Sawa,2007. Temperature Dependency of Levitation Force and Its Relaxation in HTS. IEEE Trans. Appl. Supercond.,17,3020-3023.
    [93]W. M. Yang, L. Zhou, Y. Feng, et al.,2001. The effect of magnet configurations on the levitation force of melt processed YBCO bulk superconductors. Physica C,354,5-12.
    [94]Qingyong He, Jiasu Wang, Longcai Zhang, Suyu Wang, Siting Pan,2008. Influence of the ramp angle on levitation characteristics of HTS maglev. Physica C,468,12-16.
    [95]W. M. Yang, L. Zhou, Y. Feng, P. X. Zhang, C. P. Zhang, R. Nicolsky and R de Andrade Jr, 2002. The effect of different field cooling processes on the levitation force and attractive force of single-domain YBa2Cu3O7-x bulk. Supercond. Sci. Technol.,15,1410-1414.
    [96]W. M. Yang, L. Zhou, Y. Feng, P. X. Zhang, R. Nicolsky and R de Andrade Jr,2003. The characterization of levitation force and attractive force of single-domain YBCO bulk under different-field cooling process. Physica C,398,141-146.
    [97]K. C. Kao, W. C. Chan and H. H When,2000. Magnetic levitation under field cooling conditions for YBCO superconductors. Chinese J. Phys,38,1079-1083.
    [98]L. Liu, Y. Hou, C. Y. He, Z. X.Gao, L. Xiao, H. T. Ren, Y. L. Jiao and M. H. Zheng,2004. Effect of magnetization process on levitation force between a superconducting disk and a permanent magnet. Physica C,416,29-33.
    [99]N. Yamachi, T. Nishikawa, N. Sakai, K. Sawa, M. Murakami,2003. Levitation forces of bulk superconductors in varying fields. Physica C,392-396,579-584.
    [100]张兴义,2008.高温超导悬浮系统在不同条件下的电磁力实验研究.兰州大学博士学位论文.
    [101]W. M. Yang, S. H. Zhu, X. L. Wu, X. X. Chao,2009. Effects of the relative speed of a magnet moving to and from a single-domain YBCO bulks on their interaction force.49, 299-301.
    [102]J. R. Hull and A. Cansiz,1999. Vertical and lateral forces between a permanent magnet and a high-temperature superconductor. J. Appl. Phys.,86,6396-6404.
    [103]H. H. Song, O. Haas, C. Beyer, G. Krabbes, P. Verges and L. Schultz,2005. Influence of the lateral movement on the levitation and guidance force in the high-temperature superconductor maglev system. Appl. Phys. Lett.,86,192506(1-3).
    [104]R. Williams and J. R. Matey,1988. Equilibrium of a magnet floating above a superconducting dish. Appl. Phys. Lett.,52,751-753.
    [105]T. Hikihara and G. Isozumi,1996. Modeling of lateral force-displacement hysteresis caused by local flux pinning. Physica C,270,68-74.
    [106]X. R. Wang, H. H. Song, Z. Y. Ren, M. Zhu, J. S. Wang, S. Y. Wang, X. Z. Wang,2002. Levitation force and guidance force of YBaCuO bulk in applied field. Physica C,386,536-539.
    [107]A. B. Riise, T. H. Johansen, H. Bratsberg and Z. J. Yang,1992. Logarithmic relaxation in the levitation force in a magnet-high Tc superconductor system. Appl. Phys. Lett.,60, 2294-2296.
    [108]P. W. Anderson,1962. Theory of flux creep in hard superconductors. Phys. Rev. Lett.,9, 309-311.
    [109]P. W. Anderson and Y. B. Kim.1964. Hard superconductivity:theory of the motion of abrikosov flux lines. Rev. Mod. Phys.,36,39-45.
    [110]L. Civale, et al.,1990. Defect independence of the irreversibility line in proton-irradiated Y-Ba-Cu-O crystals. Phys. Rev. Lett.,65,1164-1167.
    [111]Y. Yeshrun. A. P. Malozemoff and A. Shaulov,1996. Magnetic relaxation in high-temperature superconductors. Rev. Mod. Phys,68,911-949.
    [112]Y. S. Tseng, C. H. Chiang and W. C. Chan,2004. Levitation force relaxation in YBCO superconductor. Physica C,411,32-34.
    [113]L. C. Zhang, S. Y. Wang, J. S. Wang and J. Zheng,2007. Influence of AC external magnetic field on guidance force relaxation between HTS bulk and NdFeB guideway. Physica C,467,96-100.
    [114]L. C. Zhang, S. Y. Wang, J. S. Wang, J. Zheng and Q. Y. He,2007. Numerical evaluation of guidance force decay of HTS bulk exposed to AC magnetic field over a NdFeB guideway. Physica C,467,27-30.
    [115]C. P. Bean,1962. Magnetization of hard superconductors. Phys. Rev. Lett,8,250-253.
    [116]C. P. Bean,1964. Magnetization of hard superconductors. Rev. Mod. Phys,36,31-39.
    [117]Y. B. Kim, C. F. Hempstead and A. R. Strnad,1962. Critical persistent currents in hard superconductors. Phys. Rev. Lett,9,306-309.
    [118]Y. B. Kim, C. F. Hempstead, and A. R. Strand,1964. Resistive states of hard superconductors. Rev. Modern Phys.,36,43-49.
    [119]Ming Xu, Donglu Shi and Ronald F. Fox,1990. Generalized critical state model for superconductors. Phys. Rev. B.,42(16),10773-10776.
    [120]Y. Yoshida, M. Uesaka and K. Miya,1994. Evaluation of dynamic magnetic force of high Tc superconductor with flux flow and creep. Int. J. Appl. Electromagn. Mater.,5,83-89.
    [121]Y. Yoshida, M. Uesaka and K. Miya,1994. Magnetic field and force analysis of high Tc superconductor with flux flow and creep. IEEE Trans. Magn.,30(5),3503-3506.
    [122]J. Paasi and M. Lahtinen,1998. AC losses in high-temperature superconductors:revisting the fundamentals of the loss modelling. Physica C,310,57-61.
    [123]A. A. Kordyuk,1998. Magnetic levitation for hard superconductor. J. Appl. Phys,83,610-612.
    [124]Y. Yang and X. J. Zheng (郑晓静),2007. Method for solution of the interaction between superconductor and permanent magnet. J. Appl. Phys.,101,113922(1-8).
    [125]M. Uesaka, A. Suzuki, N. Takeda, et al.,1995. A. c. Magnetic properties of bulk YBCO superconductor in high Tc superconducting levitation. Cryogenics,35(4),243-247.
    [126]SCML-02高温超导磁悬浮测试系统使用手册.
    [127]S. Y. Wang, J. S. Wang, C. Y. Deng, Y. Y. Lu, Y. W. Zeng, H. H. Song, H. Y. Huang, H. Jing, Y. G. Huang, J. Zheng, X. Z.Wang and Y. Zhang,2007. An update high-temperature superconducting maglev measurement system. IEEE Trans. Appl. Supercond.,17,2067- 2070.
    [128]高香院,1990.现代低温泵.陕西:西安交通大学出版社.
    [129]X. S. Gao,2001. High quality NdFeB permanent magnet materials. J. Magn. Mater. Devices,32,50-53.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700