压电压磁固体断裂理论及数值方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本博士学位论文主要研究压电及电磁材料在力、电、磁载荷作用下的断裂模型及数值分析方法。在压电介质电塑性断裂的PS(Polarization Saturation)模型基础上,讨论了电磁材料条带电磁极化饱和(SEMPS-Strip Electric-Magnetic Polarization Saturation)的断裂行为,给出相应的解析解和数值方法或数值结果。然后,研究力、电、磁及其耦合载荷对断裂行为的影响。主要工作如下:
     (1)利用位错理论和电位错概念,研究压电介质PS模型,得到由传统位错和电位错表示的局部K因子和局部J积分,为位错理论研究电磁材料的SEMPS'情况奠定基础。
     (2)推广电位错,提出磁位错概念。将裂纹上下表面的磁势差看作是磁位错的连续分布,研究得到电磁材料断裂的广义位错理论。
     (3)研究得到电磁材料SEMPS的基本方程和基本方法,其中裂纹尖端电塑性区中的电位移等于饱和电位移,磁塑性区中的磁感应强度等于饱和磁感应强度。根据电磁材料广义Stroh公式和广义位错模型,给出二维无限大电磁固体中电磁均不可穿透边界条件下Griffith裂纹的SEMPS的解析解。研究给出无限大电磁固体裂纹尖端电塑性区和磁塑性区的大小、广义强度因子和局部J积分;研究了力、电、磁等载荷对局部J积分的影响。结果表明:SEMPS模型中的电塑性区和磁塑性区的大小由材料常数、裂纹尺寸、外载荷、饱和电位移和饱和磁感应强度确定;广义强度因子和局部J积分与材料常数、施加的广义强度因子有关,而与饱和电位移和饱和磁感应强度无关。
     (4)针对有限压电介质断裂问题,建立了压电介质的混合广义不连续位移-基本解(HEDD-FS——Hybrid Extended Displacement Discontinuity-Fundamental Solution)数值方法。在这一方法中,裂纹问题的解由无限体控制方程的基本解表出,其中的基本解包括源点作用在临近虚边界上的广义点力基本解和源点作用在裂纹面上及电塑性区上的广义Crouch基本解,其中未知系数由区域边界条件、裂纹面上的边界条件及塑性区上的边界条件来确定。该数值方法的关键是:在无限体中寻找一包含原区域的虚边界,在虚边界上配点,实现了用无限体基本解研究有限体断裂问题。运用有限弹性体和无限压电介质的断裂分析验证该数值方法的有效性和精度。结果表明:根据HEDD-FS方法研究得到的有限弹性体数值解与解析解吻合很好;当介质足够大或无限大,根据HEDD-FS方法研究得到的无限大压电介质PS模型的数值解与解析解同样很吻合;因此,本文所提出的数值方法是可靠的、可以接受的。
     (5)采用所建立的HEDD-FS数值方法,给出了有限压电介质PS模型在不可穿透边界条件和半可穿透边界条件下的定量结果。
     (6)采用广义不连续位移数值方法,研究电磁不可穿透边界条件下的无限大电磁材料SEMPS模型,为其他电磁边界条件的SEMPS模型的断裂研究提供数值方法。
In this doctoral dissertation, fracture model and quantitative analysis method of piezoelectric material and magnetoelectroelastic material are investigated. Based on the PS (Polarization Saturation) model in the piezoelectric media, the fracture behaviors of the magnetoelectroelastic media with the Strip Electric-Magnetic Polarization Saturation (SEMPS) are discussed, including their analytical solutions and numerical methods or results. After that, the effect of mechanical, electric and magnetic loadings on the fracture behaviors is displayed. The main works are as follows:
     (1) By using the dislocation theory and the concept of electric dislocation, the local stress intensity factor and local J-intergal in the PS model are expressed by the conventional dislocation and electric dislocation, which is essential to extend the PS model to the SEMPS case in the magnetoelectroelastic media.
     (2) The concept of magnetic dislocation is proposed by extending the electric dislocation. After that, the magnetic potential discontinuity penetrated the spatial region surrounded by the crack face is expressed by the continuous distribution of magnetic dislocation. The extended dislocation theory of fracture of the magnetoelectroelastic media is studied.
     (3) Basic equations and approach to the study of the Strip Electric-Magnetic Polarization Saturation (SEMPS) are obtained for the fracture behavior of magnetoelectroelastic media, where the electric field in the strip electric yielding zone ahead of the crack tip is equal to the saturation electric displacement, while the magnetic induction in the strip magnetic yielding zone is equal to the saturation magnetic induction. By using the extended Stroh formalism and the extended dislocation modeling of a crack, the analytical solution of SEMPS for the Griffith crack problem under the electrically and magnetically impermeable boundary condition in a magnetoelectroelastic medium is obtained. The sizes of the electric yielding zone and the magnetic yielding zone, the extended intensity factors and the local J-integral are obtained. The effect of the combined mechanical-electric-magnetic loadings on the local J-integral is studied. The results show that the sizes of these two saturation zones are dependent on material constants, the size of crack, the applied mechanical-electric-magnetic loadings, as well as on the saturation electric displacement and the saturation magnetic induction. However, the local J-integral has nothing to do with the saturation electric displacement and the saturation magnetic induction.
     (4) The Hybrid Extended Displacement Discontinuity-Fundamental Solution Method (HEDD-FSM) of the PS model of a crack in a piezoelectric medium is proposed. In this HEDD-FSM, the solution is expressed approximately by a combination of fundamental solutions of the governing equations, which includes the extended point force fundamental solutions with sources placed at chosen points outside the domain of the problem under consideration, and the extended Crouch fundamental solutions with extended displacement discontinuities placed on the crack and on the electric yielding zone. The unknown constants in the solutions are determined by letting the approximated solution satisfy the prescribed conditions on the boundary of the domain, on the crack face and on the electric yielding zone. One key step of this method is choosing a suitable virtual boundary, which circles the real zone boundary. The efficiency and the accuracy of the HEDD-FS method are verified on fracture analysis of finite elastic media and infinite piezoelectric media. The obtained results exhibit that the numerical data on the basis of the HEDD-FS method for the case of finite elastic media agree well with the analytical solution. When the media becomes large enough or infinite, the numerical results of PS model on the basis of the HEDD-FS method for the case of infinite piezoelectric media also agree well with the analytical solution. In such case, the proposed numerical method is acceptable and reliable.
     (5) By using the HEDD-FS method, the PS model of a crack is studied quantitatively in finite piezoelectric media under the electrically impermeable boundary condition and electrically semi-permeable boundary condition.
     (6) The SEMPS model of a crack are studied in infinite magnetoelectroelastic media under the electrically and magnetrically impermeable boundary condition by using the extended displacement discontinuity (EDD) method, which could be used to study fracture of SEMPS model under other boundary condition.
引文
[1]国家中长期科学和技术发展规划纲要.中华人民共和国国务院.2006年2月.
    [2]Kudriavtsev BA, Parton VZ, Rakitin VI. Fracture mechanics of piezoelectric materials. Axisymmetric crack on the boundary with a conductor. Journal of Applied Mathematics and Mechanics (English translation of Prikladnaya Matematikai Mekhanika),1975,39(1):328-338.
    [3]Kudriavtsev BA, Parton VZ, Rakitin VI. Fracture mechanics of piezoelectric materials. Rectilinear tunnel crack on the boundary with a conductor. Journal of Applied Mathematics and Mechanics (English translation of Prikladnaya Matematikai Mekhanika),1975,39(1):136-146.
    [4]Parton VZ. Fracture mechanics of piezoelectric materials. Acta Astronautica,1976,3:671-683.
    [5]Deeg WF. The analysis of dislocation crack and inclusion problems in piezoelectric solid. Ph.D.Dissertation.Stanford University,1980.
    [6]Suo Z, Kuo CM, Barnett DM. Willis J R. Fracture mechanics for piezoelectric ceramics. Journal of the Mechanics and Physics of Solids,1992,40:739-765.
    [7]杨卫.电致失效力学.力学进展,1996,26:338-352.
    [8]陈增涛,余寿文.压电介质损伤、断裂力学研究的现状.力学进展,1999,29:187-196.
    [9]Qin QH. Fracture mechanics of piezoelectric materals. Southampyon:WIT Press.2001.
    [10]Zhang TY, Zhao MH, Tong P. Fracture of Piezoelectric Ceramics. Advances in Applied Mechanics,2002,38:147-289.
    [11]Chen YH, Lu TJ. Cracks and fracture in piezoelectric materials. Advances in Applied Mechanics, 2002,39:121-215.
    [12]Fang DN, Zhang ZK, Soh AK, Lee KL. Fracture criteria of piezoelectric ceramics with defects. Mechanics of Materials,2004,36:917-928.
    [13]Zhang TY, Gao CF. Fracture behaviors of piezoelectric materials. Theoretical and Applied Fracture Mechanics,2004,41:339-379.
    [14]Sih GC, Jones R, Song ZF. Piezomagnetic and piezoelectric poling effects on mode I and II crack initiation behavior of magnetoelectroelastic materials. Theoretical and Applied Fracture Mechanics,2003,40:161-186.
    [15]Wang BL, Mai YW. Crack tip field in piezoelectric/piezomagnetic media. European Journal of Mechanics, A/Solids,2003,22:591-602.
    [16]Gao CF, Kessler H, Balke H. Crack problems in magnetoelectroelastic solids. Part I:exact solution of a crack. International Journal of Engineering Science,2003,41:969-981.
    [17]Gao CF, Kessler H, Balke H. Crack problems in magnetoelectroelastic solids. Part II:general solution of a crack. International Journal of Engineering Science,2003,41:983-994.
    [18]Yong HD, Zhou YH. Transient anti-plane crack problem for two bonded functionally graded piezoelectric materials. Archive of Applied Mechanics,2006,76:497-509.
    [19]Yong HD, Zhou YH. A mode III crack in a functionally graded piezoelectric strip bonded to two dissimilar piezoelectric half-planes. Composite Structures,2007,79:404-410.
    [20]Soh AK, Liu JX. Interfacial debonding of a circular inhomogeneity in piezoelectric-piezomagnetic composites under anti-plane mechanical and in-plane electromagnetic loading. Composites Science and Technology,2005,65:1347-1353.
    [21]Qin TY, Yu YS, Noda NA, Finite-part integral and boundary element method to solve three-dimensional crack problems in piezoelectric materials, International Journal of Solids and Structures,2007,44:4770-4783.
    [22]Zhao MH, Fan CY, Liu T, Yang F. Extended displacement discontinuity Green's functions for three dimensionaltransversely isotropic magneto-electro-elastic media and applications. Engineering Analysis with Boundary Elements,2007,31(6):547-558.
    [23]Zhao MH, Fan CY, Yang F, Liu T. Analysis method of planar cracks of arbitrary shape in the isotropic plane of a three-dimensional transversely isotropic magnetoelectroelastic medium. International Journal of Solids and Structures,2007,44:4505-4523.
    [24]Chue CH, Hsu WH. Antiplane internal crack normal to the edge of a functionally graded piezoelectric/piezomagnetic half plane. Meccanica,2008,43:307-325.
    [25]Liang J. The dynamic behavior of two parallel symmetric cracks in functionally graded piezoelectric/piezomagnetic materials. Archive of Applied Mechanics,2008,78:443-464.
    [26]Zhou ZG, Chen ZT. Basic solution of a Mode-I limited-permeable crack in functionally graded piezoelectric/piezomagnetic materials. International Journal of Solids and Structures,2008,45: 2265-2296.
    [27]Zhong XC, Li XF. Fracture analysis of a magnetoelectroelastic solid with a penny-shaped crack by considering the effects of the opening crack interior. International Journal of Engineering Science,2008,46:374-390.
    [28]Zhong XC, Li XF. T-stress analysis for a Griffith crack in a magnetoelectroelastic solid. Archive of Applied Mechanics,2008,78:117-125.
    [29]Wang BL, Sun YG, Zhang HY. Analysis of a penny-shaped crack in magnetoelectroelastic materials. Journal of Applied Physics,2008,103:083530.
    [30]Zhao MH, Li N, Fan CY, Liu T. Extended displacement discontinuity method for crack analysis in 3D two-phase transversely isotropic magnetoelectroelastic media. Journal of Mechanics of Materials and Structures,2008,3:545-566.
    [31]Zhao MH, Li N, Fan CY, Xu GT. Analysis method of planar interface cracks of arbitrary shape in three-dimensional transversely isotropic magnetoelectroelastic bimaterials. International Journal of Solids and Structures,2008,45:1804-1824.
    [32]Li YD, Lee KY. Anti-plane crack intersecting the interface in a bonded smart structure with graded magnetoelectroelastic properties. Theoretical and Applied Fracture Mechanics,2008,50: 235-242.
    [33]Li YD, Lee KY. Fracture analysis and improved design for a symmetrically bonded smart structure with linearly non-homogeneous magnetoelectroelastic properties. Engineering Fracture Mechanics,2008,75:3161-3172
    [34]Tupholme GE. Shear crack in a transversely isotropic magnetoelectroelastic half-space. Mechanics Research Communications,2008,35:466-474.
    [35]Tupholme GE. Moving antiplane shear crack in transversely isotropic magnetoelectroelastic media. Acta Mechanica,2009,202:153-162.
    [36]Solis M, Sanz JA, Ariza MP, Dominguez J. Analysis of cracked piezoelectric solids by a mixed three-dimensional BE approach. Engineering Analysis with Boundary Elements,2009,33: 271-282.
    [37]Westram I, Kungl H, Hoffmann MJ, Rodel J. Influence of crystal structure on crack propagation under cyclic electric loading in lead-zirconate-titanate. Journal of the European Ceramic Society,2009,29:425-430.
    [38]Wang X. Pan E, Chung PW. On a semi-infinite crack penetrating a piezoelectric circular inhomogeneity with a viscous interface. International Journal of Solids and Structures,2009,46: 203-216.
    [39]Wang BL, Sun YG, Han JC, Du SY. An interface electrode between two piezoelectric layers. Mechanics of Materials,2009,41:1-11.
    [40]Li Q, Chen YH. The Coulombic traction on the surfaces of an interface crack in dielectric/piezoelectric or metal/piezoelectric bimaterials. Acta Mechanica,2009,202:111-126.
    [41]Ma L, Wu LZ, Feng LP. Surface crack problem for functionally graded magnetoelectroelastic coating-homogeneous elastic j substrate system under anti-plane mechanical and in-plane electric and magnetic loading. Engineering Fracture Mechanics,2009,76:269-285.
    [42]Zhou ZG, Wang B. Non-local theory solution for an anti-plane shear permeable crack in functionally graded piezoelectric materials. Applied Composite Materials,2006,13(6): 345-367.
    [43]Cady WA. Piezoelectricity. Dover:NewYOrk.1978.
    [44]Pisarenko GG. Anisotropy of fracture toughness of piezoelectric ceramics. Pergamon Press, 1984,2711-2719.
    [45]Pisarenko GG, Chushko VM, Kovalev SP. Anisotropy of fracture toughness of piezoelectric ceramics. Journal of the American Ceramic Society,1985,68(5):110-22.
    [46]Kovalev SP, Chushko VM. Analysis of Crack Growth Resistance in Piezoelectric Ceramics. Problemy Prochnosti,1986,7:17-21.
    [47]Koepke BG, McHenry KD, Seifried LM, Stokes RJ. Mechanical integrity of piezoelectric and dielectric ceramics. Ultrasonics Symposium Proceedings,1986:675-683
    [48]Sosa HA, Pak YE. Three-dimensional eigenfunction analysis of a crack in a piezoelectric material. International Journal of Solids and Structures,1990,26(1):1-15.
    [49]Pak YE. Crack extension force in a piezoelectric material. Journal of Applied Mechanics-Transactions of the Asme,1990,57:647-653.
    [50]Ou ZC, Wu XJ. On the crack-tip stress singularity of interfacial cracks in transversely isotropic piezoelectric bimaterials. International Journal of Solids and Structures,2003,40:7499-7511.
    [51]Ou ZC, Chen YH. Interface crack-tip generalized stress field and stress intensity factors in transversely isotropic piezoelectric bimaterials. Mechanics Research Communications,2004, 31:421-428.
    [52]Zhao MH, Li N, Fan CY. Solution method of interface cracks in three-dimensional transversely isotropic piezoelectric bimaterials. Engineering Analysis with Boundary Elements,2008, 32:545-555.
    [53]Sosa Horacio. On the fracture mechanics of piezoelectric solids. International Journal of Solids and Structures,1992,29:2613-2622.
    [54]Lee JS, Jiang LZ. A boundary integral formulation and 2D fundamental solution for piezoelastic media. Mechanics Research Communications,1994,21:47-54.
    [55]Ding HJ, Wang GQ, Chen WQ. Fundamental solutions for plane problem of piezoelectric materials. Science in China (E),1997,40:331-336.
    [56]Gao CF, Fan WX. A general solution for the plane problem in piezoelectric media with collinear cracks. International Journal of Engineering Science,1999,37:347-363.
    [57]Gao CF, Fan WX. Exact solutions for the plane problem in piezoelectric materials with an elliptic or a crack. International Journal of Solids and Structures,1999,36:2527-2540
    [58]Wu KC. A new boundary integral equation method for cracked piezoelectric bodies. Key Engineering Materials,2006,306-308:465-470.
    [59]Garcia-Sanchez F, Saez Andres, Dominguez J. Anisotropic and piezoelectric materials fracture analysis by BEM. Computers and Structures,2005,83:804-820.
    [60]Zhao MH, Yang F, Liu T, Liu MS. Boundary integral equation method for conductive cracks in two and three-dimensional transversely isotropic piezoelectric media. Engineering Analysis with Boundary Elements,2005,29(5):466-476.
    [61]Wang CY, Zhang C.3-D and 2-D Dynamic Green's functions and time-domain BIEs for piezoelectric solids. Engineering Analysis with Boundary Elements,2005,29:454-465.
    [62]Garcia-Sanchez F, Zhang Ch, Sladek J, Sladek V.2D transient dynamic crack analysis in piezoelectric solids by BEM. Computational Materials Science,2007,39:179-186.
    [63]Chen TY. Green's functions and the non-uniform transformation problem in piezoelectric medium. Mechanics Research Communications,1993,20(3):271-278.
    [64]Chen TY. Numerical evaluation of derivatives of the anisotropic piezoelectric Green's functions. Mechanics Research Communications,1993,20(6):501-506.
    [65]Dunn ML. Electroelastic Green's functions for transversely isotropic piezoelectric media and their application to the solution of inclusion and in homogeneity problems. International Journal of Engineering Science,1994,32(1):119-131.
    [66]Wang ZK, Chen GC. A general solution and the application of space axisymmetric problem in piezoelectric materials. Applied Mathematics and Mechancs,1994,15(7):615-626.
    [67]Wang ZK, Zheng BL. The general solution of three-dimensional problems in piezoelectric media. International Journal of Solids and Structures,1995,32(1):105-115.
    [68]Ding HJ, Liang J, Chen B. Fundamental solution for transversely isotropic piezoelectric media. Science in China(series A),1996,39(7):766-775.
    [69]Zhao MH, Shen YP, Liu YJ, Liu GL. Isolated crack in three-dimensional piezoelectric solid: Part Ⅰ:Solution by Hankel transform. Theoretical and Applied Fracture Mechanics,1997,26: 129-139.
    [70]Zhao MH, Shen YP, Liu YJ, Liu GL. Isolated crack in three-dimensional piezoelectric solid: Part Ⅱ:Stress intensity factors for circular crack. Theoretical and Applied Fracture Mechanics, 1997,26:141-149.
    [71]Sih GC, Zuo JZ. Multiscale behavior of crack initiation and growth in piezoelectric ceramics. Theoretical and Applied Fracture Mechanics,2000,34:123-141.
    [72]Ru CQ, Mao SX. Effect of microcracking on electric field-induced stress intensity factors in dielectric ceramics. Philosophical Magazine,2003,83:277-294.
    [73]Zhao MH, Shen YP, Liu YJ, Liu GL. Crack analysis in semi-infinite transversely isotropic piezoelectric solid. I. Green's functions. Theoretical and Applied Fracture Mechanics,1999,32: 223-232.
    [74]Zhao MH, Shen YP, Liu YJ, Liu GL. Crack analysis in semi-infinite transversely isotropic piezoelectric solid. II.Penny-shaped crack near the surface. Theoretical and Applied Fracture Mechanics,1999,32:233-240.
    [75]Li XF. Electroelastic analysis of an internal interface crack in a half-plane consisting of two bonded dissimilar piezoelectric quarter-planes. Mechanica,2003,38:309-323.
    [76]Liu M, Hsia KJ. Interfacial cracks between piezoelectric and elastic materials under in-plane electric loading. Journal of the Mechanics and Physics of Solids,2003,51:921-944.
    [77]Zhao MH, Fang PZ, Shen YP. Boundary integral-differential equations and boundary element method for interfacial cracks in three-dimensional piezoelectric media. Engineering Analysis with Boundary Elements,2004,28:753-762.
    [78]Du JK, Shen YP, Wang X. Scattering of anti-plane shear waves by a partially debonded piezoelectric circular cylindrical inclusion. Acta Mechanica,2002,158:169-183.
    [79]Fang QH, Liu YW, Wen PH. A piezoelectric screw dislocation interacting with an elliptical inclusion containing electrically conductive interfacial rigid lines. International Journal of Mechanical Sciences,2008,50:683-693.
    [80]Wang BL, Mai YW. Thermal shock fracture of piezoelectric materials. Philosophical Magazine A,2003,83:631-657.
    [81]Chao LP, Huang JH. Fracture criteria for piezoelectric materials containing multiple cracks. Journal of Applied Physics,1999,85:6695-6703.
    [82]Zuo JZ, Sih GC. Energy density theory formulation and interpretation of cracking behavior for piezoelectric ceramics. Theoretical and Applied Fracture Mechanics,2000,34:17-33.
    [83]Lin S, Narita F, Shindo Y. Comparison of energy release rate and energy density criteria for a piezoelectric layered composite with a crack normal to interface. Theoretical and Applied Fracture Mechanics,2003,39:229-243.
    [84]Mehta K, Virkar AV. Fracture mechanisms in ferroelectric-ferroelastic lead ZirconateTitanate (Zr:Ti=0.54:0.46) ceramics. Journal of the American Ceramic Society,1990,73:567-574.
    [85]Schneider GA, Heyer V. Influence of the electric field on Vickers indentation crack growth in BaTiO3. Journal of the European Ceramic Society,1999,19:1299-1306.
    [86]Cao HC, Evans AG Electric-field-induced fatigue crack growth in piezoelectrics. Journal of the American Ceramic Society,1994,77:1783-1786.
    [87]Park SB, Sun CT. Fracture criteria for piezoelectric ceramics. Journal of the American Ceramic Society,1995,78:1475-1480.
    [88]Fu R, Zhang T-Y. Effects of an electric field on the facture toughness of poled lead zirconatetitanate ceramics. Journal of the American Ceramic Society,2000,83:1215-1218.
    [89]Wang H, Singh RN. Crack propagation in piezoelectric ceramics:Effect of applied electric fields. Journal of Applied Physics,1997,81:7471-7479.
    [90]Heyer V, Schneider GA, Balke H, Drescher J, Bahr HA. A fracture criterion for conducting cracks in homogeneously poled piezoelectric PZT-PIC151 ceramics. Acta Materialia,1998,46: 6615-6622.
    [91]Zhang T-Y, Zhao MH, Liu GN. Failure behavior and failure criterion of conductive cracks (deep notches) in piezoelectric ceramics. Ⅰ:The charge free zone model. Acta Materialia,2004,52: 2013-2024.
    [92]Zhang T-Y, Liu GN, Wang Y. Failure behavior and failure criterion of conductive cracks (deep notches) in piezoelectric ceramics. Ⅱ:Experimental verification. Acta Materialia,2004,52: 2025-2035.
    [93]Lynch CS. Fracture of ferroelectric and relax or electro-ceramics. Acta materialia,1998,46: 599-608.
    [94]Forderreuther A, Thurn G, Zimmermann A, Aldinger F. R-curve effect, influence of electric field and process zone in BaTiO3 ceramics. Journal of the European Ceramic Society,2002,22: 2023-2031.
    [95]Schneider GA. Influence of Electric Field and Mechanical Stresses on the Fracture of Ferroelectrics. Annual Review Materials Research,2007,37:491-538.
    [96]Meinhard Kuna. Fracture mechanics of piezoelectric materials-Where are we right now? Engineering Fracture Mechanics,2010,77:309-326.
    [97]Hao TH, Shen ZY. A new electric boundary condition of electric fracture mechanics and its applications. Engineering Fracture Mechanics,1994,47(6):793-802.
    [98]Zhang TY, Qian CF, Tong P. Linear electro-elastic analysis of a cavity or a crack in a piezoelectric material. International Journal of Solids and Structures,1998,35:2121-2149.
    [99]Dunn Martin L. Effects of crack face boundary conditions on the fracture mechanics of piezoelectric solids. Engineering Fracture Mechanics,1994,48(1):25-39.
    [100]Kumar SS, Raj N. Influence of applied electric field and mechanical boundary condition on the stress distribution at the crack tip in piezoelectric materials. Materials Science & Engineering A: Structural Materials:Properties, Microstructure and Processing,1997,231(1-2):1-9.
    [101]Ou ZC, Chen YH, Discussion of the crack face electric boundary condition in piezoelectric fracture mechanics. International Journal of Fracture,2003,123(1-2):151-155.
    [102]Huang ZY, Kuang ZB. A mixed electric boundary value problem for a two-dimensional
    piezoelectric crack. International Journal of Solids and Structures,2003,40(6):1433-1453.
    [103]Zhou ZG, Wang B, Cao MS. The behavior of permeable multi-cracks in a piezoelectric material. Mechanics Research Communications,2003,30(4):395-402.
    [104]Li Q, Chen YH. The Bueckner work conjugate integral for a permeable crack in piezoelectric materials. Acta Mechanica,2007,190(1-4):237-243.
    [105]Zhou ZG, Zhang PW, Wu LZ. Two parallel limited-permeable mode-I cracks or four parallel limited-permeable mode-I cracks in the piezoelectric materials. International Journal of Solids and Structures,2007,44(11-12):4184-4205.
    [106]Nam BG, Watanabe K. Effect of electric boundary conditions on crack energy density and its derivatives for piezoelectric material. Engineering Fracture Mechanics,2008,75(2):207-222.
    [107]Qi H, Fang DN, Yao ZH. Analysis of electric boundary condition effects on crack propagation in piezoelectric ceramics. Acta Mechanica Sinica,2001,17(1):59-70.
    [108]Wang BL, Mai YW. On the electrical boundary conditions on the crack surfaces in piezoelectric ceramics. International Journal of Engineering Science,2003,41(6):633-652.
    [109]赵明皞,韩海涛.三维压电固体中不同电边界条件的裂纹分析.机械强度,2003,25(4):445-449. (Zhao MH, Han HT. Crack Analysis of Different Electric Boundary Conditions in Three Dimensional Transversely Isotropic Piezoelectric Media. Journal of Mechanical Strength, 2003,25(4):445-449.)
    [110]Zhao MH, Xu GT, Fan CY. Hybrid extended displacement discontinuity-charge simulation method for analysis of cracks in 2D piezoelectric media. Engineering Analysis with Boundary Elements,2009,33:592-600.
    [111]Gao H, Barnett DM. An invariance property of local energy release rates in a strip saturation model of piezoelectric fracture. International Journal of Fracture,1996,79:R25-R29.
    [112]Gao H, Zhang TY, Tong P. Local and global energy release rates for an electrically yielded crack in a piezoelectric ceramic. Journal of the Mechanics and Physics of Solids,1997,45: 491-510.
    [113]Zhang TY. Wang TH, Zhao MH. Failure behavior and failure criterion of conductive cracks (deep notches) in thermally depoled PZT-4 ceramics. Acta Materialia,2003,51:4881-4895.
    [114]Zhang TY, Zhao MH, Cao CF. The strip dielectric breakdown model. International Journal of Fracture,2005,132:311-327.
    [115]Dugdale DS. Yielding of steel sheets containing slits. Journal of the Mechanics and Physics of Solids,1960,8:100-104.
    [116]Ru CQ, Mao SX. Conducting cracks in a piezoelectric ceramic of limited electrical polarization. Journal of the Mechanics and Physics of Solids,1999,47(10):2125-2146.
    [117]Ru CQ. Effect of electrical polarization saturation on stress intensity factors in a piezoelectric ceramic. International Journal of Solids and Structures,1999,36:869-883.
    [118]Wang TC. Analysis of strip electric saturation model of crack problem in piezoelectric materials. International Journal of Solids and Structures,2000,37:6031-6049.
    [119]Jeong KM, Kim IO, Beom HG. Effect of electric displacement saturation on the stress intensity factor for a crack in a ferroelectric ceramic. Mechanics Research Communications,2004,31: 373-382.
    [120]Beom HG, Kim YH, Cho C, Kim CB. A crack with an electric displacement saturation zone in an electrostrictive material. Archive of Applied Mechanics,2006,76:19-31.
    [121]Beom HG, Kim YH, Cho C, Kim CB. Asymptotic analysis of an impermeable crack in an electrostrictive material subjected to electric loading. International Journal of Solids and Structures,2006,43:6869-6886.
    [122]Loboda V, Lapusta Y, Govorukha V. Mechanical and electrical yielding for an electrically insulated crack in an interlayer between piezoelectric materials. International Journal of Engineering Science,2008,46:260-272.
    [123]Van Suchtelen J. Product properties:A new application of composite materials. Philips Res Rapts,1972,27:28-37.
    [124]Van Den Boomgaard J, Terrell DR, Born RAJ. An in situ grown eutectic magnetoelectric composite material. Part 1 Composition and unidirectional solidification. Journal of Materials Science,1974,9:1705-1709.
    [125]Van Run AMJG, Terrell DR, Scholing JH. An in situ grown eutectic magnetoelectric composite material. Part 2 Physical properties. Journal of Materials Science,1974,9:1710-1714.
    [126]Bracke LPM, Van Vliet TG. A broadband magneto-electric transducer using a composite material. International Journal of Electronics,1981,51:255-262.
    [127]Avellaneda M, Harshe G. Magneto-electric effect in piezoelectric/magnetostrictive multiplayer (2-2) composites. Journal of Intelligent Material Systems and Structures,1994,5:501-513.
    [128]Nan CW. Magneto-electric effect in composites of piezoelectric and piezomagnetic phases. Phys Rev B,1994,50; 6082-6088.
    [129]Benveniste Y. Magneto-electric effect in fibrous composites with piezoelectric and piezomagnetic phases. Phys Rev B,1995, B51:16424-16427.
    [130]周又和,郑晓静.电磁固体结构力学.科学出版社,1999.
    [131]Ryu J, Priya S, Uchino KJ, Kim HE. Magnetoelectric Effect in Composites of Magnetostrictive and Piezoelectric Materials. Journal of Electroceramics 2002,8(2):107-119.
    [132]Huang JH, Chiu YH, Liu HK. Magneto-electro-elastic Eshelby tensors for a piezoelectric-piezomagnetic composite reinforced ellipsoidal inclusions. Journal of Applied Physics,1998,83:5364-5370.
    [133]Huang JH, Kuo WS. The analysis of piezoelectric/piezomagnetic composite materials containing an ellipsoidal inclusion. Journal of Applied Physics,1997,81:1378-1386.
    [134]Wang X, Shen YP. The general solution of three-dimensional problems in magnetoelectroelastic media. International Journal of Engineering Science,2002,40: 1069-1080.
    [135]Ding HJ, Jiang AM, Hou PF, Chen WQ. Green's functions for two-phase transversely isotropic magnetoelectroelastic media. Engineering Analysis with Boundary Elements,2005,29: 551-561.
    [136]Chung MY, Ting TCT. The Green function for a piezoelectric piezomagnetic anisotropic elastic medium with an elliptic hole or rigid inclusion. Philosophical Magazine Letter,1995,72: 405-410.
    [137]Liu JX, Liu XG, Zhao YB. Green's functions for anisotropic magnetoelectroelastic solids with an elliptical cavity or a crack. International Journal of Engineering Science,2001,39: 1405-1418.
    [138]Zhao MH, Wang H, Yang F, Liu T. A magnetoelectroelastic medium with an elliptical cavity under combined mechanical-electric-magnetic loading. Theoretical and Applied Fracture Mechanics,2006,45:227-237.
    [139]Pan E. Three-dimensional Green's functions in anisotropic magneto-electro-elastic bimaterials. Zeitschrift Fur Angewandte Mathematik and Physik,2002,53:815-838.
    [140]Qin QH. Green's functions of magnetoelectroelastic solids with a half-plane boundary or bimaterial interface. Philosophical Magazine Letter,2004,84:771-779.
    [141]Feng WJ, Xue Y, Zou ZZ. Crack growth of an interface crack between two dissimilar magneto-electro-elastic materials under anti-plane mechanical and in-plane electric magnetic impact. Theoretical and Applied Fracture Mechanics,2005,43:376-394.
    [142]Song ZF, Sih GC. Crack initiation behavior in magnetoelectroelastic composite under in-plane deformation. Theoretical and Applied Fracture Mechanics,2003,39:189-207.
    [143]Hou PF, Leung YTA, Ding HJ. The elliptical Hertzian contact of transversely isotropic magnetoelectroelastic bodies. International Journal of Solids and Structures,2003,40: 2833-2850.
    [144]Wang X, ShenYP. Inclusions of arbitrary shape in magnetoelectroelastic composite materials. International Journal of Engineering Science,2003,41:85-102.
    [145]Jiang X, Pan E. Exact solution for 2D polygonal inclusion problem in anisotropic magnetoelectroelastic full-, half-, and bimaterial-planes. International Journal of Solids and Structures,2004,41:4361-4382.
    [146]Tian WY, Gabbert U. Multiple crack interaction problem in magnetoelectroelastic solids. European Journal of Mechanics A/Solids,2004,23:599-614.
    [147]Zhao MH, Yang F, Liu T. Analysis of a penny-shaped crack in a magnetoelectroelastic medium. Philosophical Magazine,2006,86:4397-4416.
    [148]Yong HD, Zhou YH. Transient response of a cracked magnetoelectroelastic strip under anti-plane impact. International Journal of Solids and Structures,2007,44:705-717.
    [149]赵明皞,杨峰.电磁介质中的裂纹分析.机械强度,2004,26(S):077-080. (Zhao MH,Yang F. Cracks analysis in two-dimensional magnetoelectroelasticc media. Journal of Mechanical Strength,2004,26(S):077-080.)
    [150]Wang BL, Mai YW. Applicability of the crack-face electromagnetic boundary conditions for fracture of magnetoelectroelastic materials. International Journal of Solids and Structures,2007, 44:387-98.
    [151]Gao CF, Tong P, Zhang TY. Fracture mechanics for a mode III crack in a magnetoelectroelastic solid. International Journal of Solids and Structures,2004,41:6613-6629.
    [152]Hu KQ, Li GQ. Electro-magneto-elastic analysis of a piezoelectromagnetic strip with a finite crack under longitudinal shear. Mechanics of Materials,2005,37:925-934.
    [153]Gao CF, Tong P, Zhang TY. Interfacial crack problems in magneto-electroelastic solids. International Journal of Engineering Science,2003,41(18):2105-2121.
    [154]Zhao MH, Fan CY, Li N, Chen F. Extended Displacement Discontinuity Method of Two-dimensional Magnetoelectroelastic Media. WSEAS International Conference on Engineering Mechanics, Structures, and Engineering Geology. New Aspects of Engineering Mechanics, Structures, Engineering Geology,2008:54-60.
    [155]Naillon M, Coursant RH, Besnier F. Analysis of piezoelectric structures by a finite-element method. Acta Electronica,1983,25:341-362.
    [156]Kuna M. Finite element analyses of crack problems in piezoelectric structures. Computational Materials Science,1998,13:67-80.
    [157]Kuna M. Finite element analyses of cracks in piezoelectric structures:a survey. Archive of Applied Mechanics,2006,76:725-745.
    [158]Shang FL, Kuna M, Abendroth M. Finite element analyses of three-dimensional crack problems in piezoelectric structures. Engineering Fracture Mechanics,2003,70:143-160.
    [159]Sze KY, Pan YS. Nonlinear fracture analysis of piezoelectric ceramics by finite element method. Engineering Fracture Mechanics,2001,68:1335-1351.
    [160]Wang BL, Mai YW. Self-consistent analysis of coupled magnetoelectroelastic fracture-theoretical investigation and finite element verification. Computer Methods in Applied Mechanics and Engineering,2007,196:2044-2054.
    [161]Pan E. A BEM analysis of fracture mechanics in 2D anisotropic piezoelectric solids. Engineering Analysis with Boundary Elements,1999,23:67-76.
    [162]Xu XL, Rajapakse RKND. Boundary element analysis of piezoelectric solids with defects. Composites Part B-Engineering,1998,29:655-669.
    [163]Sanz JA, Ariza MP, Dominguez J. Three-dimensional BEM for piezoelectric fracture analysis. Engineering Analysis with Boundary Elements,2005,2:586-596.
    [164]Garcia-Sanchez F, Rojas-Diaz R, Saez A, Zhang C. Fracture of magnetoelectroelastic composite materials using boundary element method (BEM). Theoretical and Applied Fracture Mechanics,2007,47:192-204.
    [165]Crouch SL. Solution of plane elasticity problems by the displacement discontinuity method. International Journal for Numerical Methods in Engineering,1976,10:301-343.
    [166]Wen PH. Displacement Discontinuity Method, Topic in Engineering, Computational Mechanics Publication,1996,29.
    [167]Ioakimidis NI. A natural approach to the introduction of finite-part intregrals to crack problems of three-dimensional elasticity. Engineering Fracture Mechanics,1982,16:669-673.
    [168]Sladek J, Sladek V. Dynamic stress intensity factors studied by boundary integro-differential equations. International Journal for Numerical Methods in Engineering,1986,23:919-928.
    [169]Li H, Liu CL, Mizuta Y, Kayupov MA. Crack edge element of three-dimensional displacement discontinuity method with boundary division into triangular leaf elements. Communications in Numerical Methods in Engineering,2001,17:365-378.
    [170]Chen MC. Application of finite-part integrals to three-dimensional fracture problems for piezoelectric media Part Ⅰ:Hypersingular integral equation and theoretical analysis. International Journal of Fracture,2003,121:133-148.
    [171]Zhu BJ, Qin TY. Hypersingular integral equation method for a three-dimensional crack in anisotropic electro-magneto-elastic bimaterials. Theoretical and Applied Fracture Mechanics, 2007,47:219-232.
    [172]Berger JR, Karageorghis A. The method of fundamental solutions for layered elastic materials. Engineering Analysis with Boundary Elements,2001,25:877-86.
    [173]Li XL, Zhu JL. The method of fundamental solutions for nonlinear elliptic problems. Engineering Analysis with Boundary Elements,2009,33:322-329.
    [174]Chantasiriwan S, Johansson BT, Lesnic D. The method of fundamental solutions for free surface Stefan problems. Engineering Analysis with Boundary Elements,2009,33:529-538.
    [175]Yao WA, Wang H. Virtual boundary element integral method for 2-D piezoelectric media. Finite Elements in Analysis and Design,2005,41:875-891.
    [176]Li XC, Yao WA. Virtual boundary element-integral collocation method for the plane magnetoelectroelastic solids. Engineering Analysis with Boundary Elements,2006,30: 709-717.
    [177]Raamachandran J. Bending of plates with varying thickness by charge simulation method. Engineering Analysis with Boundary Elements,1992,10:143-145.
    [178]Raamachandran J. Vibration of plates using charge simulation method. Composite Structures, 1991,2:247-249.
    [179]Kimura K. Application of the charge simulation method to analysis of large deflection of elastic plates. Journal of Strain Analysis for Engineering Design,2007,42:543-550.
    [180]Patterson C, Sheikh MA. On the use of fundamental solutions in Trefftz method for potential and elasticity problems. In:Brebbia CA, editor. Boundary Element Methods in Engineering, Proceedings of the Fourth International Seminar on Boundary Element Methods. New York: Springer; 1982. p.43-54.
    [181]Redekop D. Fundamental solutions for the collocation method in planar elastostatics. Appl Math Modelling,1982,6:390-393.
    [182]Burgess G, Mahajerin D. A comparison of the boundary element and superposition methods. Composite Structures,1984,19:697-705.
    [183]Redekop D, Thompson JC. Use of fundamental solutions in the collocation method in axisymmetric elastostatics. Composite Structures,1983,17:485-490.
    [184]Redekop D, Cheung RSW. Fundamental solutions for the collocation method in three-dimensional elastostatics. Composite Structures,1987,26:703-707.
    [185]Barnett DM, Lothe J. Dislocation and line charge in anisotropic piezoelectric insulators. Phys. Status Solidi(b),1975,67:105-111.
    [186]王敏中,赵颖涛.二维各向异性弹性力学的Stroh公式及其推广.力学与实践,2001,23:7-15.
    [187]李灏,陈树坚.断裂理论基础.四川人民出版社,1983年10月.
    [188]张宏图,陈易之.固体的形变与断裂.高等教育出版社,1989年5月.
    [189]Pak YE. Linear electric-elastic fracture mechanics of piezoelectric materials. International Journal of Fracture,1992,54:79-100.
    [190]黄克智,余寿文.弹塑性断裂力学.清华大学出版社,1985年8月.
    [191]Bilby BA, Cottrell AH, Swinden KH. The spread of plastic yield from a notch. Proc. Roy. Soc. 1963,272:304-314.
    [192]Sokolnikoff IS. Mathematical theory of elasticity. McGRaw-Hill. New York.1956.
    [193]Tian WY, Gabbert U. Macrocrack-microcrack interaction problem in magnetoelectroelastic solids. Mechanics of Materials,2005,37:565-592.
    [194]徐汉忠.不连续位移基本解的简单推倒法.应用力学学报,1991,8(2):105-108.
    [195]范翠英.电磁固体广义不连续位移边界积分方程方法.郑州大学硕士学位论文,2007.
    [196]Tada H, Paris PC, Irwin GR. The stress analysis of cracks handbook. Del Research Corp, Hellertown, PA,1973.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700