高温超导磁悬浮三维理论模型及其数值计算研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
虽然高温超导磁悬浮的理论研究已突破二维或轴对称情形的局限,逐步向更接近实际情况的三维情形靠拢,但目前的三维理论模型或者忽略高温超导体的电磁各向异性或者对其作过多的简化处理,导致模型对高温超导体电磁特性的描述不够。因此,高温超导磁悬浮的理论研究还有待进一步完善。
     本文从Maxwell方程组和高温超导体电阻率的各向异性出发,结合高温超导体的电磁本构关系,以矢量电位为状态变量,建立了考虑高温超导体电各向异性现象的三维电磁场控制方程。为研究运动状态下高温超导体的热磁耦合问题,给出了高温超导体的温度场控制方程。在数值实现方法上,分别采用Galerkin有限元和Crank-Nicolson-θ有限差分格式对控制方程进行空间离散和时间离散。此外,为模拟永磁轨道中相邻永磁体之间的缝隙引起的外场沿纵向的不均匀性,采用面电流模型建立了永磁轨道磁场的三维解析模型。
     在对模型的验证方面,详细比较讨论了不同运动模式下的数值计算结果与实验测试结果,具体包括竖直运动下平移对称场中的零场冷、场冷悬浮与悬挂三种情形以及轴对称场中零场冷情形;横向运动下场冷悬浮、悬浮高度等于场冷高度与悬挂三种情形;纵向运动下悬浮力随运动时间的变化关系。结果表明本文提出的三维理论模型可以很好地反映高温超导体与外场的电磁作用力。在此基础上,理论研究了三维运动下高温超导块材的磁悬浮特性。
     对于竖直运动,首先分析了工作条件、外场结构、材料性能与几何尺寸等影响因素对悬浮力的作用规律,接着讨论了悬浮力的弛豫特性及其影响因素的作用规律,得出提高块材的材料性能或降低温度,既可显著提高悬浮力,也能有效抑制甚至避免悬浮力弛豫衰减的结论,最后从理论上证实了预载可以有效地抑制悬浮力的弛豫衰减,是提高系统悬浮稳定性的一种有效手段。
     对于横向运动,首先分析了工作条件、最大横向位移、材料性能与几何尺寸等影响因素对电磁力的作用规律,接着讨论了高温超导体的临界场冷高度问题,发现随着悬浮高度的增加、材料性能的提高或者温度的降低,临界场冷高度是逐渐降低的,随后提出了用于研究悬浮体横向可恢复特性的最小能量法,最后就连续横向运动过程中不同条件下悬浮力和导向力随横向运动次数的变化规律进行了深入分析,并从理论上证实预载能够有效地抑制横向运动引起的悬浮力衰减。
     对于纵向运动,分为磁悬浮发射和磁悬浮轨道交通两种应用。就磁悬浮发射应用而言,研究的内容包括轨道缝隙、出口速度和温度对悬浮力的影响规律以及不同出口速度和温度下块材内最大温升的变化规律;就轨道交通应用而言,研究了不同场冷高度、悬浮高度、运动速度和温度下运动过程中悬浮力的变化规律,分析了运动速度和温度对块材内部最大温升的影响规律。研究结果表明,对于任何一种应用,降低块材的温度,都能起到抑制悬浮力衰减和减小温升的作用。此外,研究中还发现,悬浮体的阻浮比很小,这对高温超导磁悬浮技术应用于速度较高的领域是非常有利的。
Theoretical studies on high temperature superconducting (HTS) magnetic levitation (MagLev) are no longer limited to two-dimensional, axisymmetic, or three-dimensional (3D) cases, for which the latter one yields results that, are closer towards practical applications. The present 3D model neglects the electromagnetic (EM) anisotropy phenomena found present in high temperature superconductors (HTSC) and involves too many simplifications when taking this phenomena into account thereby lacking in the total understanding of the EM properties in HTSCs. Therefore, more effort should be done to further improve the theoretical studies of HTS MagLev.
     In this thesis, a current vector potential was introduced to establish the 3D EM governing equations of the HTSC on the basis of Maxwell's equations and the anisotropy of the resistivity in the HTSC combined with the EM constitutive relations of the HTSC. In order to take the thermal-magnetic coupling problem into account, a thermal governing equation was also presented. To numerically solve the governing equations, finite element method via Galerkin's method and finite-difference method via Crank-Nicolson-θmethod were employed, respectively, to implement the study of space discretization and time discretization. Moreover, to simulate the aperture between adjacent permanent magnets composing the Permanent Magnet Guidway (PMG), a 3D analytical model of the PMG was also performed based on the surface current model.
     To confirm the validity of the above-mentioned theoretical model, the numerical and experimental results under different movement types were discussed and compared in detail such as:Zero Field-Cooling (ZFC), Field-Cooling (FC) with levitation and suspension in translational symmetry and ZFC in axisymmetric applied fields under vertical movement; ZFC, identical Field-Cooling Height (FCH) and Levitation Height (LH) and suspension under transverse movement; and the relationship between levitation force (LF) and running time under longtitudinal movement, and the results indicated that the proposed 3D theorectical model is valid to describe the EM interaction between HTSC and applied field. Based on the above-mentioned analysis, the levitation performance of the HTS MagLev under 3D movement was theoretically investigated.
     For movement along the vertical direction, the performance of LF under different operating conditions, applied field structures, material properties and geometries were firstly analyzed, and then the relaxation characterstic of LF and associated rules of the various influencing factors were discussed, and the conclusion that, LF can be improved and the force decay can be suppressed by enhancing the material property or lowering the operating temperature of the HTSC, were derived. In the end, it is theoretically proved that pre-loading is an effective approach to reduce the force decay during relaxation, and then the stability of the levitation system can be improved by this approach.
     For movement along the transverse direction, the performance of the magnetic force under differenet operating conditions, maximum lateral diaplacements, material properties and geometries were firstly analyzed, and then the critical FCH problem of the HTSC was discussed, and we found that the critical FCH decreases with the increase of the LH, improvement of the material property as well as decrement of the the operating temperature. Subsequently, a minimum energy method to evaluate the restorable characteristics of a levitated body during transverse movement was proposed. Lastly, the changing trendency of the LF and guidance force under different operating conditions during continuous transverse movement was thoroughly studied. Furthermore, theoretical verification of pre-loading which is considered to be effective to reduce LF decay due to transverse movement was achieved.
     For movement along the longitudinal direction, two different appliacable fields were considered, MagLev launch and MagLev rail transit. For the MagLev launch application, the main aspects studied included the influence of the aperture of the PMG, exit velocities and operating temperatures on the LF and the changing rule of Maximum Temperature Raise (MTR) under different exit velocities and operating temperatures. For the MagLev rail transit application, the changing tendency of the LF under different FCHs, LHs, velocities and operating temperatures was calculated, and the velocity and operating temperature dependence of the MTR in the HTSC were also monitored. The results showed that, for any application, lowering the operating temperature of the HTSC can suppress not only the LF decay but also the temperature raise during the longitudinal movement. In addition, we also found that, the drag-to-lift ratio of levitated body is small, and this is beneficial for the application the HTS MagLev in the high-speed field.
引文
[1]V. Arkadiev. A Floating Magnet, Nature.1947 160:330.
    [2]I. Simon. Forces Acting on Superconductors in Magnetic Fields. J. Appl. Phys.1953, 24:19-24
    [3]J. Hull. Topic Review:Superconducting bearing. Supercond. Sci. Technol.2000, 13:R1-R15
    [4]C. Chu, P. Hor, R. Meng, et al. Evidence for superconductivity above 40 K in the La-Ba-Cu-O compound system. Phys. Rev. Lett.1987,58:405-407
    [5]M. Wu, J. Ashburn, C. Torng, et al. Superconductivity at 93 K in a new mixed-phase Y-Ba-Cu-O compound system at ambient pressure. Phys. Rev. Lett.1987, 58:908-910
    [6]赵忠贤,陈立泉,杨乾声等.Ba-Y-Cu氧化物液氮温区的超导电性.1987,6:412-414
    [7]F. Hellman, E. Gyorgy, D. Johnson, et al. Levitation of a magnet over a flat type Ⅱ superconductor. J. Appl. Phys.1988,63:447-450
    [8]E. Brandt. Friction in levitated superconductors. Appl. Phys. Lett.1988, 53:1554-1556
    [9]E. Brandt. Rigid levitation and suspension of high-temperature superconductors by magnets. Am. J. Phys.1990,58(1):43-49
    [10]F. Moon, M. Yanoviak and R. Ware. Hysteretic levitation forces in superconducting ceramics. J. Appl. Phys.1988,52(18):1534-1536
    [11]E. Brandt. Levitation in Physics. Science.1989,243:349-355
    [12]P. Ball. Superconducting boost for goldfish. Nature.1990,347:123
    [13]M. Murakami, T. Oyama, H. Fujimoto, et al. Large Levitation Force due to Flux Pinning in YBaCuO Superconductors Fabricated by Melt-Powder-Melt-Growth Process. Jpn.J. Appl. Phys.1990,29(11):L1991-L1994
    [14]S. Basinger, J. Hull, and T. Mulcahy. Amplitude dependence of magnetic stiffness in bulk high-temperature superconductors. Appl. Phys. Lett.1990,57(27):2942-2944
    [15]Z. Yang, T. Johansen, H. Bratsberg, et al. Potential and force between a magnet and a bulk YBa2Cu3O7-δ superconductor studied by a mechanical pendulum. Supercond. Sci. Technol.1990,3(12):591-597
    [16]F. Moon. Raised to a higher plane. Nature.1991,350:270
    [17]M. Murakami. Melt processed High-temperature Superconductors. Singapore:World Scientific Publishing Co. Pte. Ltd.1992
    [18]B. Weinberger, L. Lynds, and J. Hull. Magnetic bearings using high-temperature superconductors:some practical considerations. Supercond. Sci. Technol.1990, 3:381-388
    [19]F. Moon, Superconducting Levitation:Applications to Bearings and Magnetic Transportation. John Wiley & Sons, Inc.,1994
    [20]M. Tsuchimoto and T. Honma. Numerical Evaluation of Levitation Force of HTSC Flywheel. IEEE Trans. Applied Supercond.1994,4(4):211-215
    [21]H.Weh. Future Steps in Developing HTcSC Bulk Material Levitation Technique for Transportation Systems. Proceedings of 15th International Conference on Magnet Technology, Science Press,1998:833-838
    [22]J. Wang, S. Wang, C. Deng, et al. Laboratory-scale high temperature superconducting maglev launch system. IEEE Trans. Applied Supercond.2007,17(2):2091-2.094.
    [23]W. Yang, Z. Wen, Y. Duan, et al. Construction and performance of HTS maglev launch assist test vehicle. IEEE Trans. Applied Supercond.2006,16(2):1108-1111.
    [24]Quansheng S. Shu, Guangfeng F. Cheng, Joseph Susta et al. A Six-Meter Long Prototype of the Mag-Lev Cryogen Transfer Line. IEEE Trans. Appl. Supercond. 2005,15(2):2297-2230
    [25]F. Koyama, S. Akiyama and M. Murakami. Developments of superconducting mixers for medical applications. Supercond. Sci. Technol.2006,19:S572-S574
    [26]M. Tsuda, T. Kojima, T. Yagai, et al. Vibration Characteristics in Magnetic Levitation Type Seismic Isolation Device Composed of Multiple HTS Bulks and Permanent Magnets. IEEE Trans. Appl. Supercond.2007,17(2):2059-2062
    [27]J. Wang, S. Wang, Y. Zeng, et al. The first man-loading high temperature superconducting maglev test vehicle in the world. Physica C.2002,378-381:809-814
    [28]K. Kovalev. Magnetically Levitated High-Speed Carriages On Basis of Bulk HTS Elements.8th International Symposium on Magnetic Suspension Technology. Dresden, Germany,2005:51
    [29]L. Schultz, O. Haas, P. Verges, et al. Superconductively Levitated Transport System-The SupraTrans Project. IEEE Trans. Appl. Supercond.2005, 15(2):2301-2305
    [30]R. Stephan, R. Nicolsky, M. Neves, et al. A superconducting levitation vehicle prototype. Physica C.2004,408-410:932-934
    [31]M. Okano, T. Iwamoto, M. Furuse, et al. Running Performance of a Pinning-Type Superconducting Magnetic Levitation Guide. Journal of Physics:Conference Series. 2006,43:999-1002
    [32]G. D'Ovidio, F. Crisi and G. Lanzara. A "V" shaped superconducting levitation module for lift and guidance of a magnetic transportation system. Physica C.2008, 468:1036-1040
    [33]H. Jing, J. Wang, S. Wang, et al. A two-pole Halbach permanent magnet guideway for high temperature superconducting Maglev vehicle. Physica C.2007, 463-465:426-430
    [34]冯端.金属物理学第四卷:超导电性和磁性.科学出版社,1998:172
    [35]S. Hagen, T. Jing, Z. Wang, et al. Out-of-plane conductivity in single-crystal YBa2Cu307. Phys. Rev. B.1988,37:7928-7931
    [36]T. Dinger, T. Worthington, W. Gallagher, et al. Direct observation of electronic anisotropy in single-crystal Y1Ba2Cu307-x. Phys. Rev. Lett.1987,58:2687-2690
    [37]M. Murakami, T. Oyama, H. Fujimoto, et al. Melt processing of bulk high Tc superconductors and their application. IEEE Trans. Magn.1991,27(2):1479-1486
    [38]S. Awaji, K. Watanabe, N. Kobayashi. Crossover from intrinsic to extrinsic pinning for YBa2Cu307 films. Cryogenics.1999,39:569-577
    [39]P. Anderson. Theory of flux creep in hard superconductor. Phys. Rev. Lett.1962, 9(7):309-311
    [40]高温超导基础研究.周午纵,梁维耀.上海科学技术出版社,1999
    [41]Y. Yeshurun and A. P. Malozemoff. Giant Flux Creep and Irreversibility in an Y-Ba-Cu-O Crystal:An Alternative to the Superconducting-Glass Model. Phys. Rev. Lett.1988,60(21):2202-2205
    [42]Y. Yeshurun, A. Malozemoff, and A. Shaulov. Magnetic relaxation in high-temperature superconductors. Rev. Mod. Phys.1996,68(3):911-949.
    [43]F. Moon, P. Chang, H. Hojaji, et al. Levitation Forces, Relaxation and Magnetic Stiffness of Melt-Quenched YBa2Cu30x, Jpn. J. Appl. Phys.1991,29(1):1257-1258
    [44]王家素,王素玉.超导技术应用.成都科技大学出版社,1995
    [45]Y. Luo, T. Takagi, K. Miya. Reduction of levitation decay in high Tc superconducting magnetic bearings. Cryogenics,1999,39:331-338
    [46]P. Vanderbemden, Z. Hong, T. A. Coombs, et al. Remagnetization of bulk high-temperature superconductors subjected to crossed and rotating magnetic fields. Supercond. Sci. Technol.2007,20:S174-S183
    [47]M. Chattopadhyay. AC loss in HTSC bulk and tapes:a review. Journal of superconductivity:Incorporating Novel Magnetism.2000,13(3):429-439
    [48]Z. Yang, J. Hull, T. Mulcahy, et al. Amplitude and frequency dependence of hysteresis loss iin a magnet-superconductor levitation system. J. Appl. Phys.1995, 78(3):2097-2100
    [49]C. Bean. Magnetization of high-field superconductors. Rev. Mod. Phys.1964, 36:31-39
    [50]J. Rhyner. Magnetic properties and AC-losses of superconductors with power law current-voltage characteristics. Physica C.1993,212:292-300
    [51]K. Yamafuji, Y. Mawatari. Electromagnetic properties of high Tc superconductors: relaxation of magnetization. Cryogenics.1992,32(6):569-577
    [52]L. Davis, E. Logothetis and R. Soltis. Stability of magnets levitated above superconductors. J. Appl. Phys.1988,64(8):4212-4218
    [53]A. Kordyuk. Magnetic levitation for hard superconductor. J. Appl. Phys.1998, 83(1):610-612
    [54]J. Hull, and A. Cansiz. Vertical and lateral forces between a permanent magnet and a high-temperature superconductor. J. Appl. Phys.1999,86(11):6396-6404
    [55]Y. Yang, and X. Zheng. Method for solution of the interaction between superconductor and permanent magnet. J. Appl. Phys.2007,101:113922(8pp)
    [56]杨勇.高温超导悬浮体面内移动时的精力特性研究.兰州大学博士学位论文,2007
    [57]A. Sanchez and C. Navau. Magnetic properties of finite superconducting cylinders. Ⅰ. Uniform applied field. Phys. Rev. B.2001,64(21):214506(10pp)
    [58]C. Navau and A. Sanchez. Magnetic properties of finite superconducting cylinders. Ⅱ. Nonuniform applied field and levitation force. Phys. Rev. B.2001, 64(21):214507(10pp)
    [59]A. Sanchez, N. Valle, E. Pardo, et al. Magnetic levitation of superconducting bars. J. Appl. Phys.2006,99:113904(8pp)
    [60]C. Navau and A. Sanchez. Stiffness and energy losses in cylindrically symmetric superconductor levitating systems. Supercond. Sci. Technol.2002,15:1445-1453
    [61]N. Valle, A. Sanchez, C. Navau, et al. Lateral-displacement influence on the levitation force in a superconducting system with translational symmetry. Appl. Phys. Lett.2008,92:042505(3pp)
    [62]N. Valle, A. Sanchez, C. Navau, et al. A theoretical study of the influence of superconductor and magnet dimensions on the levitation force and stability of maglev systems. Supercond. Sci. Technol.2008,21:125008(7pp)
    [63]H. Teshima, M. Sawamura, M. Morita, et al. Levitation forces of a single-grained Y-Ba-Cu-O bulk superconductor of 48 mm in diameter, Cryogenics.1997, 37(9):505-509
    [64]D. Camacho, J. Mora, J. Fontcuberta, et al. Calculation of levitation forces in permanent magnet-superconductor systems using finite element analysis, J. Appl. Phys.1997,82(3):1461-1468
    [65]D. Alonso, T. Coombs and A. Campbell. Numerical solutions to the critical state in a magnet-high temperature superconductor interaction. Supercond. Sci. Technol.2005, 18:S209-S214
    [66]D. Alonso, T. Coombs and A. Campbell. Numerical analysis of high-temperature superconductors with the critical-state model. IEEE Trans. Appl. Supercond.2004, 14(4):2053-2063
    [67]D. Alonso, T. Coombs and A. Campbell. Computer modelling of high-temperature superconductors using an A-V formulation. Supercond. Sci. Technol.2004, 17:S305-S310
    [68]M. Qin, G. Li, H. Liu, et al. Calculation of the hysteretic force between a superconductor and a magnet. Phys. Rev. B.2002,66:024516(10pp)
    [69]G. Li, M. Qin, H. Liu, et al. Effects of the Field Dependent Jc on the Vertical Levitation Force Between a Superconductor and a Magnet. IEEE Trans. Appl. Supercond.2003,13(2):2142-2145
    [70]C. Hofmann and G. Ries. Modelling the interactions between magnets and granular high-Tc superconductor material with a finite-element method. Supercond. Sci. Technol.2001,14:34-40
    [71]L. Prigozhin. Analysis of Critical-State Problems in Type-Ⅱ Superconductivity. IEEE Trans. Appl. Supercond.1997,7(4):3866-3873
    [72]宋宏海.对称和非对称外场中高温超导体YBCO电磁特性研究.西南交通大学硕士学位论文,2004
    [73]任仲友.永磁导轨上高温超导磁悬浮的实验研究与数值计算.西南交通大学博士学位论文,2004
    [74]王晓融.高温超导YBCO块材在永磁导轨上方导向力的研究.西南交通大学硕士学位论文,2003
    [75]Y. Sanagawa, H. Ueda, M. Tsuda, et al. Characteristics of Lift and Restoring Force in HTS Bulk-Application to Two-Dimensional Maglev Transporter, IEEE Trans. Appl. Supercond.2001,11(1):1797-1800
    [76]H. Ueda, S. Azumaya, S. Tsuchiya, et al.3D electromagnetic analysis of levitating transporter using bulk superconductor, IEEE Trans. Appl. Supercond.2006, 16(2):1092-1095
    [77]H. Ueda, M. Tsuchiya, and A. Ishiyama. Development of Pipeline Transporter System Using Pinning Effect of High-Temperature Superconducting Bulks. IEEE Trans. Appl. Supercond.2007,17(2):2323-2326
    [78]L. Alloui, F. Bouillault, and S.M. Mimoune. Numerical study of the influence of flux creep and of thermal effect on dynamic behaviour of magnetic levitation systems with a high-Tc-superconductor using control volume method. Eur. Phys. J. Appl. Phys. 2009,45:20801(9pp)
    [79]D. Dias, E. Motta, G. Sotelo, et al. Simulations and Tests of Superconducting Linear Bearings for a MAGLEV Prototype, IEEE Trans. Appl. Supercond.2009, 19(3):2120-2123
    [80]T. Preston, and A. Reece. Solution of Three-Dimnsional Eddy Current Problems:the T-Q Method. IEEE Trans, on Magn.1982,18(2):486-491
    [81]K.. Miya and H. Hashizume. Application of T-method to A.C. problem based on boundary element method. IEEE Trans. Magn.1988,24(1):134-137
    [82]M. Uesaka, Y. Yoshida, N. Takeda, et al. Experimental and numerical analysis of three-dimensional high-Tc superconducting levitation. Int. J. Appl. Electromagn. Mater.1993,3:13-25
    [83]Y. Yoshida, M. Uesaka, and K. Miya. Evaluation of dynamic magnetic force of high-Tc superconductor with flux flow and creep. Int. J. of Applied Electromagnetics in Materials.1994,5:83-89
    [84]Y. Yoshida, M. Uesaka and K. Miya. Magnetic field and force analysis of high-Tc superconductor with flux flow and creep. IEEE Trans. Magn.1994,30(5):3503-3506
    [85]N. Takeda, M. Uesaka, and K. Miya. Computation and experiments on the static and dynamic characteristics of high Tc superconducting levitation. Cryogenics.1994, 34(9):745-752
    [86]N. Takeda, M. Uesaka, and K. Miya. Influence of an applied magnetic field on shielding current paths in a high TC superconductor. Cryogenics.1995, 35(12):893-899
    [87]X. Gou, X. Zheng, and Y. Zhou. Drift of Levitated/Suspended Body in High-Tc Superconducting Levitation Systems Under Vibration-Part I:A Criterion Based on Magnetic Force-Gap Relation for Gap Varying With Time. IEEE Trans. Appl. Supercond.2007,17(3):3795-3802
    [88]X. Gou, X. Zheng, and Y. Zhou. Drift of Levitated/Suspended Body in High-Tc Superconducting Levitation Systems Under Vibration-Part II:Drift Velocity for Gap Varying With Time. IEEE Trans. Appl. Supercond.2007,17(3):3803-3808
    [89]苟晓凡.高温超导悬浮体的静、动力特性分析.兰州大学博士学位论文,2004
    [90]M. Tsuchimoto, and T. Honma. Numerical Evaluation of Levitation Force of HTSC Flywheel. IEEE Trans. Appl. Supercond.1994,4(4):211-215
    [91]K. Demachi, A. Miura, T. Uchimoto et al. Numerical Analysis of Rotation Loss of Superconducting Magnetic Bearing. IEEE Trans. Appl. Supercond.2001, 11(1):1653-1656
    [92]K. Demachia, R. Numataa, R. Shimizua, et al. AC loss of HTSC bulks for magnetic levitation. Journal of Materials Processing Technology.2001,108:141-144
    [93]K. Demachi, A. Miura, T. Uchimoto, et al. Experimental and numerical evaluation of rotation speed degradation of radial type superconducting magnetic bearing. Physica C.2001,357-360:882-885
    [94]R. Shiraishi, K. Demachi, and M. Uesaka. Numerical simulation of coupled problem of electromagnetic field and heat conduction in superconducting magnetic bearing. Physica C.2003,392-396:734-738
    [95]K. Demachi and K. Matsunaga. Numerical and experimental evaluation of rotation speed degradation of superconducting magnetic bearing, Physica C.2004, 412-414:789-794
    [96]I. Masaie, K. Demachi, T. Ichihara, et al. Rotational Loss Modeling in Superconducting Magnetic Bearing. IEEE Trans. Appl. Supercond.2006, 16(2):1807-1810
    [97]Y. Teranishi, H. Ueda, M. Tsuda, et al. Static and Dynamic Characteristics in Levitating X-Y Transporter Using HTS Bulks, IEEE Trans. Appl. Supercond.2002, 12(1):911-914
    [98]T. Akamatsu, H. Ueda and A. Ishiyama. Characteristics of Levitating X-Y Transporter using HTS Bulks. IEEE Trans. Appl. Supercond.2003,13(2):2161-2164
    [99]J. Zhang, Y. Zeng, J. Cheng, et al. Optimization of Permanent Magnet Guideway for HTS Maglev Vehicle with Numerical Methods. IEEE Trans. Appl. Supercond.2008, 18(3):1681-1686
    [100]Y. Lu, J. Wang, S. Wang, et al.3D-Modeling Numerical Solutions of Electromagnetic Behavior of HTSC Bulk above Permanent Magnetic Guideway. J. Supercond. Nov. Magn.2008,21(8):467-472
    [101]芦逸云.永磁轨道上方高温超导块材磁悬浮实验与仿真研究.西南交通大学博士学位论文,2009
    [102]R. Pecher, M. McCulloch, S. Chapman, et al.3D-modelling of bulk type-Ⅱ superconductors using unconstrained H-formulation. EUCAS2003
    [103]J. Wu, P. Hsieh, A. McGuire, et al. Anisotropic properties of the high-quality epitaxial YBa2Cu3O7-δ(110) thin film. Phys. Rev. B.1191,44(22):12643-12646
    [104]邓自刚.运动外磁场下高温超导YBCO块材的动态悬浮特性实验研究.西南交通大学博士学位论文,2009
    [105]E. Zeldov, N. M. Amer, G. Koren, et al. Optical and electrical enhancement of flux creep in YBa2Cu3O7-δ epitaxial films. Phys. Rev. Lett.1989,62(26):3093-3096
    [106]Y. Kim, C. Hempstead and A. Strand. Flux-flow resistance in type-Ⅱ superconductors. Phys. Rev.1965,139:A1163-A1172
    [107]E. Brandt. Superconductors of finite thickness in a perpendicular magnetic field: Strips and slabs. Phys. Rev. B.1996,54(6):4246-4264
    [108]L. Elbaum, A. Malozemoff, Y. Yeshurun, et al. Temperature dependence of lower critical fields in Y-Ba-Cu-O crystals. Phys. Rev. B.1989,39(4):2936-2939
    [109]R. Liang, P. Dosanjh, D. Bonn, et al. Lower critical fields in an ellipsoid-shaped YBa2Cu306.95 single crystal. Phys. Rev. B.1994,50(6):4212-4216
    [110]Y. Yeshurun, A. Malozemoff, F. Holtzberg, et al. Magnetic relaxation and the lower critical fields in a Y-Ba-Cu-O crystal. Phys. Rev. B.1988,38(16):11828-11833
    [111]R. Liang, D. Bonn, W. Hardy, et al. Lower Critical Field and Superfluid Density of Highly Underdoped YBa2Cu306-x Single Crystals. Phys. Rev. Lett.2005, 94:117001(4pp)
    [112]K. Gray, D. Kim, B. Veal, et al. High anisotropy and a dimensinality crossover in the irreversibility behavior of oxygen-deficient YBa2Cu307-y Phys. Rev. B.1992, 45(17):10071-10074
    [113]G. Mikitik and E. Brandt. Critical state in thin anisotropic superconductors of arbitrary shape. Phys. Rev. B.2000,62:6800-6811
    [114]M. Sawamura and M. Tsuchimoto. Numerical analysis for superconductor in sheet and bulk form. Japan J. Indust. Appl. Math.2000,17(2):199-208
    [115]W. Yang Y. Feng, L. Zhou, et al. The effect of the grain alignment on the levitation force in single domain YBa2Cu3Oy bulk superconductors. Physica C.1999, 319:164-168
    [116]R. Morris, R. Coleman and R. Bhandari. Superconductivity and Magnetoresistance in NbSe2. Phys. Rev. B.1972,15(3):895-901
    [117]H. Song, J. Wang, S. Wang, et al. Studies of YBCO Electromagnetic Properties for High-Temperature Superconductor Maglev Technology in New Topics in Superconductivity Research, Barry P. Martins Ed., New York:Nova Science Publishers,2006:107-156
    [118]A. Napoli and R. Paggi. A Model of Anisotropic Grain-Oriented Steel. IEEE Trans. Magn.1983,19(4):1557-1561
    [119]Y. Kim, C. Hempstead and A. Strnad. Resistive states of hard superconductors. Rev. Mod. Phys.1964,36:43-45
    [120]W. Fietz, M. Beasley, J. Silcox, et al. Magnetization of Superconducting Nb-25%Zr Wire. Phys. Rev.1964,136(2):A335-345.
    [121]M. Xu, D. Shi and R. Fox. Generalized critical state model for superconductors. Phys. Rev.B.1990,42(16):10773-10776
    [122]T. Matsushita. Flux pinning in superconductors. Springer,2007
    [123]M. Tsuchimoto and H. Kamijo. Maximum trapped field of a ring bulk superconductor by low pulsed field magnetization. Physica C.2007,463-465:1352-1355
    [124]T. Matsushita, E. S. Otabe, T. Fukunaga, et al. Weak link property in superconducting Y-Ba-Cu-O prepared by QMG process. IEEE Trans. Appl. Supercond.1993, 3(1):1045-1048
    [125]D. Chen, A. Sanchez, C. Navau, et al.Critical-current density of melt-grown single-grain Y-Ba-Cu-O disks determined by ac susceptibility measurements. Supercond. Sci. Technol.20087,21:085013(6pp)
    [126]谢德馨,姚缨英,白保东等.三维涡流场的有限元分析.机械工业出版社,2008
    [127]F. Moon. Magneto-Solid Mechanics. John Wiley & Sons, Inc.,1984:26-31
    [128]J. Jackson. Classical Electrodynamics.3rd ed. Wiley, New York,2001:241
    [129]H. Hashizume, T. Sugiura, K. Miya, et al. Numerical analysis of a. c. losses in superconductors. Cryogenics.1991,31:601-606
    [130]周又和,郑晓静.电磁固体结构力学.科学出版社,1999
    [131]P. Tixador, G. David, T. Chevalier, et al. Thermal-electromagnetic modeling of superconductors. Cryogenics.2007,47:539-545
    [132]D. Varshney, K. Choudhary, and R. Singh. Analysis of in-plane thermal conductivity anomalies in YBa2Cu3O7-δcuprate superconductors. New Journal of Physics.2003, 5(72):1-17
    [133]Cao Shao-Chun, Zhang Dong-Ming, Zhang Dian-Lin, et al. Anisotropic thermal conductivity of Tl2Ba2CaCu208 and YBa2Cu3O7 single crystals:Anomaly in both in-plane and out-of-plane directions. Phys. Rev. B.1991,44:12571-12574
    [134]Y. Iwasa. Cases studies in superconducting magnets. Plenum Press,1994
    [135]L.Rostila, J. Lehtonen, M. Masti, et al. Fault current analysis for a superconducting 1 kA YBCO cable. Journal of Physics:Conference Series.2006,43:865-868
    [136]K. Yamagishi, J. Ogawa, O. Tsukamoto, et al. Decay of trapped magnetic field in HTS bulk caused by application of AC magnetic field. Physica C.2003,392-396:659-663
    [137]K. Yamagishi, I. Asaba, S. Sekizawa, O et al. AC Losses in HTS Bulk at Various Temperatures. IEEE Trans. Appl. Supercond.2005,15(2):2879-2882
    [138]Y. Zushi, I. Asaba, J. Ogawa, et al. AC losses in HTS bulk and their influence on trapped magnetic field. Cryogenics.2005,45:17-22
    [139]F. Grilli, S. Stavrev, Y. Floch, et al. Finite-Element Method Modeling of Superconductors:From 2-D to 3-D. IEEE Trans. Appl. Supercond.2005, 15(1):17-25.
    [140]D. Kershaw. The incomplete Cholesky-conjugate gradient method for the iterative solution of systems of linear equations. Journal of Computational Physics.1978, 26:43-65
    [141]崔翔.一种新型的预处理共轭梯度算法.华北电力大学学报.1989,2:1-8
    [142]K. Fujiwara, T. Nakata and H. Fusayasu. Acceleration of Convergence Characteristic of the ICCG Method. IEEE Trans. Magn.1993,29(2):1958-1961
    [143]A. Badia-Majosa. Understanding stable levitation of superconductors from intermediate electromagnetics. Am. J. Phys.2006,74(12):1136-1142
    [144]X. Gou, Y. Yang and X. Zheng. An Analytic Expression of Magnetic Field Distribution of Rectangular Permanent Magnets. Applied Mathematics and Mechanics. 2004,25(3):297-306
    [145]E. Furlani. Permanent Magnet and Electromechanical Devices. Academic press,2001
    [146]王家素,王素玉,林国彬等.高温超导磁悬浮测试系统.高技术通讯.2000,10(8):55-58
    [147]K. Halbach. Application of permanent magnets in accelerators and electron storage rings (invited). J. Appl. Phys.1985,57:3605-3908
    [148]M. Liu, S. Wang, J. Wang and G. Ma. Influence of the Air Gap between Adjacent Permanent Magnets on the Performance of NdFeB Guideway for HTS Maglev System. J. Supercond. Nov. Magn.2008,21:431-435
    [149]M. Okano, T. Iwamoto, M. Senokuchi, et al. Magnetic rail construction for a low loss superconducting magnetic levitation linear guide. IEEE Trans. Appl. Supercond.2004, 13(2):944-947.
    [150]Y. Yao, D. Xie, J. Wang, et al. A Multi-Step Method for 3-D Nonlinear Transient Eddy Current Problems. IEEE Trans. Magn.2001,37(5):3194-3197
    [151]S. Wang, J. Wang, C. Deng, et al. An update High-Temperature Superconducting Maglev Measurement System. IEEE Trans. Appl. Supercond.2007,17(2):2067-2070
    [152]A. Terentiev and A. Kuznetsov. Drift of levitated YBCO superconductor induced by both a variable magnetic field and a vibration. Physica C.1992,195:41-46
    [153]J. Wang, S. Wang, C. Deng, et al. A High-Temperature Superconducting Maglev Dynamic Measurement System. IEEE Trans. Appl. Supercond.2008,18(2):791-794
    [154]M. Murakami. Melt Processed High-Temperature Superconductors. Singapore:World Scientific, 1992
    [155]K. Kuroda. The time-decaying critical current density of a type-Ⅱ superconductor and its measuring method. Cryogenics.2008,48:106-111
    [156]荆华.不同温度下高温超导磁悬浮系统悬浮性能实验研究.西南交通大学博士学位论文,2009
    [157]H. Jiang, J. Wang, S. Wang, et al. The magnetic levitation performance of YBaCuO bulk at different temperature. Physica C.2002,378-381:869-872
    [158]T. Suzuki, E. Ito, T. Sakai, et al. Temperature Dependency of Levitation Force and Its Relaxation in HTS. IEEE Trans. Appl. Supercond.2007,17(2):3020-3023
    [159]E. Postrekhin, K. Ma, H. Ye, et al. Dynamics and Relaxation of Magnetic Stress between Magnet and Superconductor in a Levitation System. IEEE Trans. Appl. Supercond.2001,11(1):1984-1987
    [160]W. Wang, J. Wang, Q. Lin, et al. Thermo-Coupled Study of High-Tc Superconductor Moving with Different Speeds in Applied Magnetic Fields. Submited to IEEE Trans. Appl. Supercond.
    [161]张江华.高温超导磁悬浮轴承数值计算与实验.西南交通大学硕士学位论文,2007
    [162]J. Unsworth, J. Du, B. Crosby, et al. Magnetic levitation force measurement on high Tc superconducting ceramic/polymer composites, IEEE Trans. Magn.1993, 29(1):108-112
    [163]朱敏,任仲友,王素玉等.YBCO超导块的厚度和形状对其悬浮力的影响.低温物理学报.2002,24(3):213-217
    [164]H. Song, J. Zheng, M. Liu, et al. Optimization and Design of the Permanent Magnet Guideway with the High Temperature Superconductor. IEEE Trans. Appl. Supercond. 2006,16(2):1023-1026
    [165]A. Riise, T. Johansen, H. Bratsberg, et al. Logarrithmic relaxation in the levitation force in a magnet-high Tc superconductor system. Appl. Phys. Lett.1992, 60(18):2294-2296
    [166]Y. Tseng, W. Chiang and W. Chan. Levitation force relaxation in YBCO superconductors. Physical C.2004,411:32-34
    [167]Y. Zhou, X. Zhang and J. Zhou. Relaxation transition due to different cooling processes in a superconducting levitation system, J. Appl. Phys.2008, 103:123901(5pp)
    [168]X. Zhang, Y. Zhou and J. Zhou. Suppression of Magnetic Force Relaxation in a Magnet-High Tc Superconductor System. IEEE Trans. Appl. Supercond.2008, 18(3):1687-1691
    [169]X. Zhang, J. Zhou, Y. Zhou, et al. Relaxation properties of magnetic force between a magnet and superconductor in an unsymmetrical levitation system. Supercond. Sci. Technol. 2009,22:025006(5pp)
    [170]S. Araki, K. Nagashima, H. Seino, et al. Discussions About Measurement Results of Levitation Force and Its Time Relaxation Between GdBCO Bulk Superconductors and Superconducting Magnet With a High Magnetic Field Gradient. IEEE Trans. Appl. Supercond.2009,19(3):2111-2115
    [171]H. Song, O. Haas, C. Beyer, et al. Influence of the lateral movement on the levitation and guidance force in the high-temperature superconductor maglev system. Appl. Phys. Lett.2005,86:195206(3pp)
    [172]王璐琳.永磁外场中高温超导体悬浮力弛豫的研究.西南交通大学硕士学位论文,2008
    [173]Q. He, J. Wang, and S. Wang, et al. Levitation force relaxation under reloading in a HTS Maglev system. Physica C.2009,469:91-94
    [174]Q. He, J. Wang, and S. Wang, et al. Levitation Force Relaxation of HTS YBCO Bulk under Load. J. Supercond. Nov. Magn.2009,22:409-415
    [175]张龙财.时变外磁场下高温超导块材YBCO的导向力性能研究.西南交通大学博士学位论文,2008
    [176]R. Kasal, R. Andrade, Jr., Guilherme G. Sotelo, et al. Simulation of Dynamic Levitation Force Taking Flux Creep Into Account, IEEE Trans. Appl. Supercond. 2007,17(2):2158-2161
    [177]D. Dias, G. Sotelo, R. Kasal, et al. The Flux Creep Effect in Superconducting Magnetic Bearings Levitation Force,2008, Journal of Physics:Conference Series. 2008,97:012216(6pp)
    [178]B. Smolyak, G. Perelshtein, G. Ermakov, et al. Stopping of levitation force relaxation in superconductors:the flux-locking effect, Physica C.2000,341-348(2):1129-1130
    [179]B. Smolyak, G. Perelshtein and G. Ermakow. Effects of relaxation in levitating superconductors. Cryogenics.2002,42:635-644
    [180]K. Takase, S. Shindo, K. Demachi, et al. A study on the relaxation of levitation property in an HTSC magnetic bearing. Journal of Materials Processing Technology. 2001,1-08:152-155
    [181]Y. Komano, E. Ito, K. Sawa, Y. Iwasa, et al. Effect of preloading on the relaxation of the levitation force in bulk Y-Ba-Cu-O superconductors, Physica C.2005, 426-431(1):789-793
    [182]X. Zheng and Y. Yang. Transition Cooling Height of High-Temperature Superconductor Levitation System. IEEE Trans. Appl. Supercond.2007, 17(4):3862-3866
    [183]Y. Yang and X. Zheng. Effect of parameters of a high-temperature superconductor levitation system on the lateral force. Supercond. Sci. Technol.2008,21:015021(6pp)
    [184]R. Williams and J.Matey, Equilibrium of a magnet floating above a superconducting disk. Appl. Phys. Lett.1988,52(9):751-753
    [185]L.Davis, lateral restoring force on a magnet levitated above a superconductor. J. Appl. Phys.1990,67(5):2631-2636
    [186]T. Johansen, H. Bratsberg, Z. Yang, et al. A pendulum feedback system to measure the lateral force on a magnet placed above a high-Tc superconductor. Rev. Sci. Instrum.1990,61(12):3827-3829
    [187]T. Johansen, H. Bratsberg, Z. Yang, et al. Transition from elastic to dissiptative motion in a magnet-high-Tc superconductor system. J. Appl. Phys.1991, 70(12):7496-7499
    [188]X. Wang, H.Song, Z.Ren, et al. Levitation force and guidance force of YBaCuO bulk in applied field. Physica C.2003,386:536-539
    [189]G. Ma, J. Wang, Q. Lin, et al. Lateral restorable characteristics of the high-Tc superconducting maglev vehicle above the permanent magnet guideway. Physica C. 2009,469:1954-1957
    [190]马光同,王家素,王素玉等.高温超导块材与永磁体组成的混合悬浮系统.稀有金属材料与工程.2008,37(4):342-345
    [191]G. Ma, Q. Lin, J. Wang, et al. Method to reduce levitation force decay of the bulk HTSC above the NdFeB guideway due to lateral movement. Supercond. Sci. Technol. 2008,21:065020(5pp)
    [192]Magnetic levitation space propulsion. Florida Space Institute, NASA,2000

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700