导电材料结构电磁热弹性多场行为的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
弹性体电-磁-热-弹性多场理论的发展,对处于强电磁场和高温作用下的结构元件的强度和动态分析具有非常重要的意义。实际工况中,材料不可避免的处于电磁场和温度场的工作环境中,与之相关的力、磁、热、电分析成为结构优化和强度设计的需要。本文建立了一套较为完善的非线性电-磁-热-弹性相互作用的理论,研究了导电薄板在多脉冲磁场和内部固有电场作用下的电流密度分布及热效应,非均匀电磁场对热传导的影响规律,以及电磁场和温度场共同作用下导电薄板的非线性动力响应。
     首先,电磁热弹性理论中包含了复杂的电磁场环境下电场和磁场间的感应关系,进而影响了导体内电磁力的大小和分布,同时针对电磁热效应引入了变温体力密度的概念。在给定的通电悬臂导电薄板多脉冲磁场作用下的物理模型的数值计算中,分析了感应电流密度、温度场、面内电磁体力和变温体力随时间的变化及板内分布形态,薄板在面内电磁体力和变温体力作用下的动态响应与板内固有电场值E0、多脉冲磁场最大磁场值B0、单位时间脉冲次数n以及脉冲参数τ有关。
     其次,从微观Boltzmann方程推导出的电磁热传导方程填补并丰富了电磁场对热传导影响规律这一部分的理论,首次提出了非均匀电磁场对热传导过程影响的主要因素是电场梯度或磁场梯度,磁场对热传导的作用依赖于电场的存在,并从微观物理机理上对本文和已有的实验结果给予了解释。通过数值模拟给出了电磁场梯度沿热传导方向值为正或负,以及电磁场梯度值的大小对热传导升温速度和最终稳定温度的影响规律,数值结果定性上与实验结果总结的规律保持一致。
     最后,针对非均匀电磁场和热载荷作用下的导电薄板,考虑了温度与形变的耦合作用,薄板挠度在面内电磁体力和变温体力作用下出现了拍振现象。拍振的周期和最大振幅在电磁场的作用下得到了大幅的提高,这对于板的稳定性研究具有重要的意义。
     综上所述,通过本文的工作,完善了现有电-磁-热-弹性相互作用理论,为正确预测各类复杂电磁场环境下导电结构的力、磁、热、电特性提供了理论依据,同时也揭示了材料复杂电磁场环境下的物理本质。
With the development of multi-field theoretical for elastomers, it is important to analyze the intensity and dynamic stability of structure components under the effect of strong electromagnetic fields and high temperature. In actual working conditions, materials work in the environment of electromagnetic field and temperature field inevitably, so the relevant analysis of electro-magneto- thermo- mechanics becomes the necessity in the optimization of structure and intensity design. A more perfect theory for the nonlinear electro-magneto- thermo-elastic behaviors is established in this text, and the distribution of current density and thermal effect of conductive thin plate subjected to the multi-pulsed magnetic field and inner inherent electric field, the law of heat conduction influenced by non-uniform electromagnetic field and the nonlinear dynamic response of the plate under the electromagnetic field and temperature field are investigated.
     Firstly, the induction between the electric field and magnetic field is included in the electro-magneto-thermo-mechanical theory, which has effect on the value and distribution of electromagnetic force. The conception of variable temperature volume force is also introduced by considering the electromagnetic heat effect. During the numerical calculation for the physical model that a current conducting thin plate is subjected to a transverse multi-pulsed magnetic field, the distribution forms of induced electric density, temperature field, in-plane electromagnetic volume forces, variable temperature volume force and also their variation with time are analyzed. We find that the dynamic response of plate impelled by in-plane components of electromagnetic force and variable temperature volume force is related to inner inherent electric field Eo, maximum value Bo of multi-pulsed magnetic field, pulse number n per unit of time and pulse parameterτ.
     Secondly, the theory of heat conduction influenced by electromagnetic field is perfected by the electromagnetic heat conduction equation deduced from the Boltzmann equation, and the main influencing factors on the heat conductive process are the electric field gradient and the magnetic gradient which is proposed for the first time. Furthermore, the effect of magnetic field on heat conduction depends on the existence of electric field. The existing experimental results can all be discussed based on the mechanism of microcosmic physics. The numerical simulation reveals the rules that the heating rate of heat conduction and final stable temperature are determined by the positive or negative values of electric field gradient and magnetic gradient along the direction of heat conduction. The numerical results are qualitatively consistent with the experimental results.
     Finally, the conductive thin plate subjected to the non-uniform electromagnetic field and thermal load is considered. The coupling effect between temperature and deformation makes the appearance of beat vibration phenomenon, which the deflection of plate is applied by the in-plane electromagnetic volume forces and variable temperature volume force. The period and the maximum amplitude of beat vibration are enhanced greatly owing to the effect of electromagnetic field, which is important for the research of stability of plate.
     To sum up, the interaction theory of electro-magneto-thermo-elasticity is improved form our work. Simultaneously, the theoretical basis is provided for predicting the electric, magnetic, thermal and mechanical characteristics of conductive structure in various complex electromagnetic environments, as well as the physical essence of materials in complex electromagnetic field is revealed.
引文
[1]周又和,郑晓静,1999.电磁固体结构力学.科学出版社,北京.
    [2]白象忠,田振国,2006.板壳磁弹性力学基础.科学出版社,北京.
    [3]F. C. Moon,1984. Magneto-solid mechanics. John willey & Sons, New York.
    [4]力学学科发展综合报告,2006.
    [5]白象忠,1996.磁弹性、热磁弹性理论及其应用.力学进展,26(3),389-406.
    [6]http://www. iter.org/default. aspx.
    [7]李建刚,2007.我国超导托卡马克的现状及发展.中国科学院院刊,22(5),404-410.
    [8]裴永茂,2007.铁磁智能材料力磁耦合行为研究.清华大学博士学位论文,北京.
    [9]A. G. Mamalis, and D. E. Manolakos,2004. Electromagnetic forming and power processing:Trends and developments. Appl. Mech. Rev.,57(4), 299-324.
    [10]江洪伟,李春峰,2004.电磁成型技术的最新进展.材料科学与工艺,12(3),327-331.
    [11]S. F. Golovashchenko,2007. Material formability and coil design in electromagnetic forming. J. Mater. Eng. Performance,16(3),314-320.
    [12]K. G. Hella,2003. Technical information:Eletronics-Contactless sensors for X-By-Wire systems. http://www.hella.nl/produktion/HellaNL/WebSite/MiscContent/Download/A utomobilindustrie/Electronics/ELO X By Wire.pdf.
    [13]A. Mehendale, C. Lotters, and M. Zwikker,2008.Coriolis flowmeter having a contactless excitation device. United States Patent 7464610, and http://www.freepatentsonline.com/7464610.html.
    [14]J. P. Srivastava,2003. Elements of Solid State Physics. New Dehil: Prentice-Hall.
    [15]阎守胜,2000.固体物理基础.北京大学出版社,北京.
    [16]M. H. Moghaddas, and M. H. Cobble,1988. Experimental and theoretical analysis of a thermoelectric generator. Proc of 1st European Conf on Thermoelectrics, London,370-377.
    [17]V. Raag, and L. C. Hankins,1978. Design concepts of solar thermoelectric generators in space application. Proc of 2nd Int Conf on Thermoelectric Energy Conversion, London,60-75.
    [18]E. Ramsden,2006. Hall-effect sensors:theory and applicatios. Linacre House, Jordan Hill, Oxford.
    [19]M. Geiger, M. Merklein, and M. Pitz,2004. Laser and forming technology-an idea and the way of implementation. J. Mater. Proc. Tech.,151(1-3),3-11.
    [20]E. C. Santos, M. Shiomo, K. Osakada, and T. Laoui,2006. Rapid manufacturing of metal components by laser forming. Int. J. Mach. Tool & Manufacture,46(12-13),1459-1468.
    [21]张杰刚,陈明和,2006.板料激光成型技术.热加工工艺,35(13),87-89.
    [22]刘静,2001.微米/纳米尺度传热学.科学出版社,北京.
    [23]S. Chapman, and T. G. Cowling,1970. The mathematical theory of non-uniform gases. Cambridge University Press.
    [24]J. C. Maxwell,1891. A treatise on electricity and magnetism. Vols.Ⅰ,Ⅱ. Dover, New York.(reprint)
    [25]I. Todhunter, and K. Pearson,1886/1893. A history of the theory of elasticity. Vols. Ⅰ, Ⅱ. Dover, New York.1960(reprint)
    [26]W. F. Brown,1966. Magnetoelastic interactions. Tracts in Natural Philosophy, Springer, Berlin.
    [27]A. C. Eringen,1980. Mechanics of continua. Wiley, New York.
    [28]A. C. Eringen,1989. Theory of electromagnetic elastic plates. Int. J. Eng. Sci.,27(4),363-375.
    [29]G. A. Maugin,1979. A continuum approach to magnon-phonon couplings Ⅰ: General equations, background solution. Int. J. Eng. Sci.,17(10),1073-1091.
    [30]G. A. Maugin, and C. Goudjo,1982. The equations of soft ferromagnetic elastic plates. Int. J. Sol. Stru.,18(10),889-912.
    [31]A. A. F. van de Ven,1984. Magnetoelastic buckling of a beam of elliptic cross section. Acta Mech.,51(3-4),119-138.
    [32]P. H. van Lieshout, P. M. J. Pongen, and A. A. F. van de Ven,1987. A variational principle for magneto-elastic buckling. J. Eng. Math.,21(3), 227-252.
    [33]Y. H. Pao, and C. S. Yeh,1973. A linear theory for soft ferromagnetic elastic solids. Int. J. Eng. Sci.,11(4),415-436.
    [34]F. C. Moon, and Y. H. Pao,1968. Magnetoelastic buckling of a thin plate. J. Appl. Mech.,35(1),53-58.
    [35]Y. H. Zhou, and X. J. Zheng,1996. A theoretical model of magnetoelastic buckling for soft ferromagnetic thin plate. Acta Mech. Sini.,12(3),213-224.
    [36]Y. H. Zhou, X. J. Zheng, and I. E. Harik,1995. Free vibration analysis of compressed clamped circular plates. J. Eng. Mach.,121(12),1372-1376.
    [37]Y. H. Zhou, X. J. Zheng, and K. Miya,1996. A generalized variational principle of magnetoelastic interaction for ferromagnetic thin plates and its applications.19th Int. Cong. Theor. and Appl. Mech. (ICTAM),729.
    [38]Y. H. Zhou, and X. J. Zheng,1997. A variational principle on magnetoelastic interaction of ferromagnetic thin plate. Acta Mech. Sol. Sin.,10(1),1-10.
    [39]周又和,郑晓静,1999.铁磁体磁弹性相互作用的广义变分原理与理论模型.中国科学(A辑),29(1),61-68.
    [40]Y. H. Zhou, and X. J. Zheng,1997. A general expression of magnetic force for soft ferromagnetic plates in complex magnetic fields. Int. J. Eng. Sci., 35(15),1405-1417.
    [41]Y. H. Zhou, and X. J. Zheng,1999. A generalized variational principle and theoretical model for magnetoelastic interaction of ferromagnetic bodies. Sci. in China(Series A),42(6),618-626.
    [42]F. C. Moon, and Y. H. Pao,1969. Vibration and dynamic instability of a beam-plate in a transverse magnetic field. J. Appl. Mech.,36(1),1-9.
    [43]K. Miya, K. Hara, and K. Someya,1978. Experimental and theoretical study on magnetoelastic buckling of a ferromagnetic cantilevered beam-plate. J. Appl. Mech.,45(2),355-360.
    [44]T. Takagi, J. Tani, Y Matsubara, and I. Mogi,1993. Electro-magneo-mechanical coupling effects for non-ferromagnetic and ferromagnetic structures. Proc 2nd Int. Workshop on Electromagnetic Forces and Related Effects on Blankets and Other Structures Surrounding the Fusion Plasma Torus., Miya, Ed.,81-90.
    [45]T. Takaga, J. Tani, Y. Matsubara, and I. Mogi,1995. Dynamic behavior of fusion structure components under strong magnetic fields. Fusion Eng. Des., 27,481-489.
    [46]Y. H. Zhou, and X. J. Zheng,1994. Finite element and finite difference analyses of bending and snapping of a ferromagnetic cantilevered beam-plate. Proc. IACM third world congress on computer mechanics. Tokyo, Japan, August.
    [47]Y. H. Zhou, X. J. Zheng, and I. E. Harik,1995. A seminumerical method for buckling of sector plates. Comput. Stru.,57(5),847-854.
    [48]Y. H. Zhou, X. J. Zheng, and K. Miya,1995. Magnetoelastic bending and snapping of ferromagnetic plates in oblique magnetic fields. Fusion Eng. and Design,30(4),325-337.
    [49]周又和,郑晓静,王省哲,1998.悬臂铁磁板磁弹性耦合作用的力学分析.固体力学学报,19(3),239-244.
    [50]X. J. Zheng, Y. H. Zhou, X. Z. Wang, and J. S. Lee,1999. Bending and buckling of ferroelastic plates. J. Eng. Mech.,125(2),180-185.
    [51]Y H. Zhou, Y. W. Gao, X. J. Zheng, and Q. Jiang,2000. Buckling and post-buckling of a ferromagnetic beam-plate induced by magnetoelastic interactions. Int. J. N-LMech.,35(6),1059-1065.
    [52]X. J. Zheng, and X. Z. Wang,2001. Analysis of magnetoelastic interaction of rectangular ferromagnetic plates with nonlinear magnetization. Int. J. Sol. Stru.,38(12),8641-8652.
    [53]Y. H. Zhou, Y. W. Gao, and X. J. Zheng,2003. Buckling and post-buckling analysis for magneto-elastic-plastic ferromagnetic beam-plates with unmovable simple supports. Int. J. Sol. Stru,40(11),2875-2887.
    [54]M. F. Liu, and T. P. Chang,2005. Vibration analysis of a magneto-elastic beam with general boundary conditions subjected to axial load and external force. J. Sound Vib,288(1-2),399-411.
    [55]X. Z. Wang, and J. S. Lee,2006. Dynamic stability of ferromagnetic beam-plates with magnetoelastic interaction and magnetic damping in transverse magnetic fields. J. Eng. Mech,132(4),422-428.
    [56]X. Z. Wang, and X. J. Zheng,2009. Analyses on nonlinear coupling of magneto-Thermo-Elasticity of a ferromagnetic thin shell Ⅱ:finite element modeling and application. Acta Mech. Sol. Sin.,22(3),197-205.
    [57]A. Nobili, and A. M. Tarantino,2008. Magnetostriction of a hard ferromagnetic and elastic thin-film structure. Math. Mech. Sol,13(2), 95-123.
    [58]D. J. Hasanyan, and S. Harutyunyan,2009. Magnetoelastic interactions in a soft ferromagnetic body with a nonlinear law of magnetization:Some applications. Int. J. Sol. Stru.,46(10),2172-2185.
    [59]Y. Shindo,1977. The linear magnetoelastic problem for a soft ferromagnetic elastic solid with a finite crack. J. Appl. Mech.,44,47-50.
    [60]Y. Shindo,1980. Singular stresess in a soft ferromagnetic elastic solid with two coplanar Griffith cracks. Int. J. Sol. Stru.,16(6),537-543.
    [61]G. Y. Bagdasarian, and D. J. Hasanian,2000. Magnetoelastic interaction between a soft ferromagnetic elastic half-plane with a crack and a constant magnetic field. Int. J. Sol. Stru.,37(38),5371-5383.
    [62]C. B. Lin, and C. S. Yeh,2002. The magnetoelastic problem of a crack in a soft ferromagnetic solid. Int. J. Sol. Stru.,39(1),1-17.
    [63]W. Liang, D.N. Fang, Y.P. Shen, and A. K. Soh,2002. Nonlinear magnetoelastic coupling effects in a soft ferromagnetic material with a crack. Int. J. Sol. Stru.,39(15),3997-4011.
    [64]C. S. Yeh, and C. W. Ren,2009. The magnetoelastic problem for a soft ferromagnetic elastic half-plate with a crack and a constant magnetic induction. J. Mech.,25(1),95-102.
    [65]S. A. Ambartsumian,1982. Magneto-elasticity of thin plates and shells. Appl. Mech. Rev.,35(1),1-5.
    [66]T. Q.Hua, M. J. Knott, L. R. Turner, and R. B. Wehrle,1986. Experimental modeling of eddy currents and deflection for Tokamak limiters. Fusion Tech., 10(3),1047-1052.
    [67]T. Q. Hua, R. E. Nygren, and L. R. Turner,1986. Studies of coupling between displacement and eddy currents in the FELIX plate experiments. Fusion Tech.,10,3.
    [68]L. R. Turner, and T. Q. Hua,1987. Experimental study of coupling between eddy currents and deflections in cantilevered beams as models of Tokamak limiters. Electromagnetomechanical Internationals in Deformable Solids and Structures, North Holland, Amsterdam,81-86.
    [69]L. R. Turner, and T. Q. Hua,1990. Results for the cantilever beam moving in crossed magnetic fields. Compel,9(3),205-216.
    [70]T. Takagi, J. Tani, S. Kawamura, and K. Miya,1991. Coupling effect between magnetic field and deflection in thin structure. Fusion Eng. Des.,18, 425-433.
    [71]T. Takagi, J. Tani, S. Matsuda, and S. Kawamura,1992. Analysis and experiment of dynamic deflection of a thin plate with a coupling effect. IEEE Tran. Magn.,28(2),1259-1262
    [72]T. Takagi, J. Tani, and S. Kawamura,1992. Analysis and experiment of dynamic behavior on a thin conducting plate under magnetic field. Trans. Japan Soc. Mech. Eng.,58(556),3537-3542.
    [73]T. Morisue,1990. Analysis of a coupled problem:the FELIX cantilevered beam. IEEE Trans. Magn.,26(2),540-543.
    [74]N. J. Siakavellas,1994. Analytical modeling of eddy currents induced by a time-varying magnetic field in a conductive plate. IEEE J. Comput. Math., 13(3),497-508.
    [75]J. S. Lee, J. H. Prevost, and P. C. Y. Lee,1990. Finite element analysis of magnetically induced vibration of conductive plates. Fusion Eng. Des.,13(2), 125-141.
    [76]J. S. Lee,1991. A direct field formulation for transient eddy current calculations in thin conductors. IEEE Trans. Magn.,27(5),4000-4003.
    [77]Z. Ren, and A. Razek,1990. A coupling electromagnetic-mechanical model for thin conductive plate deflection analysis. IEEE Tran. Magn.,26(5), 1642-1649.
    [78]H. Tsuboi, M. Tanaka, and T. Misaki,1990. Eddy current and deflection analysis of thin plate in time-changing magnetic field. IEEE Tran. Magn., 26(5),1647-1649.
    [79]T. Takagi, M. Hashimoto, S. Arita, S. Norimatsu, T. Susiura, and K. Miya, 1990. Experimental verification of 3D eddy current analysis code using T-method. IEEE Trans. Magn.,26(2),474-477.
    [80]T. Takagi, J. Tani, S. Matsuda, and S. Kawamura,1992. Analysis and experiment of dynamic deflection of a thin plate with a coupling effect. IEEE Tran. Magn.,28(2),1259-1262.
    [81]K. Miya, J. E. Akin, and S. Hanai,1981. Finite element analysis of an eddy current induced in thin structure of magnetic fusion reactor. Int. J. Numer. Meth.Eng.,17,1613-1629.
    [82]T. Kabashima, Y. Ueda, Y. Nose, and M. Ohto,1990. A study of the cantilever beam in time varying magnetic field. IEEE Trans. Magn., 26(2),563-566.
    [83]T. Takagi, J. Tani,1993. A new numerical analysis method of dynamic behavior of a thin plate under magnetic field considering magnetic viscous damping effect. Int. J. Appl. Elec. Mater.,4,35-42.
    [84]T. Takagi, J. Tani,1994. Dynamic behavior analysis of a plate in magnetic field by full coupling and MMD methods. IEEE Tran. Magn.,30(5), 3296-3299.
    [85]T. Horie, T. Niho,1997. Electromagnetic and structural coupled analysis with the effect of large deflection. IEEE Tran. Magn.,33(2),1658-1661.
    [86]张建平,王记增,王振亭,2001.矩形薄板涡电流问题的两种求解方法.兰州大学学报(自然科学版),37(2),41-46.
    [87]F. Henrotte, and K. Hameyer,2004. Computation of electromagnetic force densities:Maxwell stress tensor vs. virtual principle. J. Comput. Appl. Math., 168(1-2),235-243.
    [88]F. Ossart, L. Hirsinger, and R. Billardon,1999. Computation of electromagnetic losses including stress dependence of magnetic hysteresis. J. Magn. Mater.,196(1-3),924-926.
    [89]J. S. Lee,1992. Destabilizing effect of a magnetic damping in plate strip. J. Eng.Mech.,118(1),161-73.
    [90]J. S. Lee,1996. Dynamic stability of conducting beam-plate in transverse magnetic fields. J. Eng. Mech.,122(2),89-94.
    [91]Q. S. Lu, W. S. To, and K. L. Huang,1995. Dynamic stability and bifurcation of an alternating load and magnetic field excited magnetoelastic beam. J. Sound Vib.,181(5),873-891.
    [92]X. J. Zheng, J. P. Zhang, and Y. H. Zhou,2005. Dynamic stability of a cantilever conductive plate in transverse impulsive magnetic field. Int. J. Sol. Stru.,42(8),2417-2430.
    [93]张建平,2003.导电举行薄板在时变磁场作用下的动力分析.兰州大学博士学位论文.兰州.
    [94]L. L. Zhu, J. P. Zhang, and X. J. Zheng,2006. Multi-field coupling behavior of simply-supported conductive plate under condition of a transverse strong impulsive magnetic field. Acta Mech. Sol. Sin.,19(3),203-211.
    [95]张建平,李志能,2006.悬臂导电薄板磁弹性耦合作用下的动力失稳.浙江大学学报.40(3),414-418.
    [96]X. Z. Wang, and J. S. Lee,2006. Dynamic stability of ferromagnetic plate under transverse magnetic field in-plane periodic compression. Int. J. Mech. Sci.,48(8),889-898.
    [97]高原文,郭占东,徐榜,2008.导电举行薄板的弹塑性动力失稳特征的研究.振动工程学报,21(3),228-234.
    [98]胡宇达,徐耀玲,白象忠,1999.横向磁场中矩形金属薄板的振动问题.燕山大学学报,23(1),18-19.
    [99]胡宇达,白象忠,2000.圆柱壳体的非线性磁弹性振动问题.工程力学.17(1),35-40.
    [100]胡宇达,杜国君,2007.磁场环境下导电圆形薄板的磁弹性强迫振动.工程力学,24(7),184-188.
    [101]Y. D. Hu, and J. Li,2009. The magneto-elastic subharmonic resonance of current-conducting thin plate in magnetic field. J. Sound Vib.,319(3-5), 1107-1120.
    [102]W. G. Zhu, and X. Z. Bai,2009. Bifurcation and chaos of a 4-side fixed rectangular thin plate in electromagnetic and mechanical fields. J. Zhejiang Univ. Sci.A,10(1),62-71.
    [103]朱为国,白象忠,杨阳,2008.横向磁场中对边简支对边固支矩形薄板的分岔与混沌.工程力学,25(1),38-43.
    [104]Y. Lee, H. B. Lee, and S. Y. Hahn,1997. Temperature analysis of induction motor with distributed heat sources by finite element method. IEEE Trans. Magn.,33(2),1718-1721.
    [105]M. G. Pantelyat,1998. Coupled electromagnetic, thermal and elastic-plastic simulation of multi-impulse inductive heating. Int. J. Appl. Elec. Mech.,9(1), 11-24.
    [106]J. Zgraja, and M. G. Pantelyat,1999. Induction heating of large steel disks: coupled electromagnetic, thermal and mechanical simulation. Int. J. Appl. Elec. Mech.,10(4),303-313.
    [107]M. G. Pantelyat, M. Feliach,2002. Magneto-thermo-elastic-plastic simulation of inductive heating of metals. Eur. Phys. J. Appl. Phy.,17(1), 29-33.
    [108]M. Higuchi, M. Kawamura, and Y. Tanigawa,2007. Magneto-thermo-elastic stresses induced by a transient magnetic field in a conducting solid circular cylinder. Int. J. Sol. Stru.,44(16),5316-5335.
    [109]Y. W. Gao, and B. Xu,2010. Dynamic behaviors of conductive circular plate in time-varying magnetic fields. Acta Mech. Sol. Sin.,23(1),66-76.
    [110]Y. W. Gao, B. Xu, and H. Hoon,2010. Electromagneto-thermo-mechanical behaviors of conductive circular plate subject to time-dependent magnetic fields. Acta Mech.,210(1-2),99-116.
    [111]X. Z. Wang, Y. H. Zhou, and X. J. Zheng,2002. A generalized variational model of magnetothermoelasticity for nonlinearly magnetized ferroelastiic bodies. Int. J. Eng. Sci.,40(17),1957-1973.
    [112]X. Z. Wang, J. S. Lee, and X. J. Zheng,2003. Magneto-thermo-elastic instability of ferromagnetic plates in thermal and magnetic fields. Int. J. Sol. Stru.,40(22),6125-6142.
    [113]H. L. Dai, and X. Wang,2005. Thermo-electro-elastic transient responses in piezoelectric hollow structures. Int. J. Sol. Stru.,42(3-4),1151-1171.
    [114]H. L. Dai, and X. Wang,2006. Stress wave propagation in piezoelectric fiber reinforced laminated composites subjected to thermal shock. Compos. Stru., 74(1),51-62.
    [115]G. Y. Wu,2005. The analysis of dynamic instability and vibration motions of a pinned beam with transverse magnetic fields and thermal loads. J. Sound Vib.,284(1-2),343-360.
    [116]G. Y. Wu,2007. The analysis of dynamic instability on the large amplitude vibrations of a beam with transverse magnetic fields and thermal loads, J. Sound Vib.,302,167-177.
    [117]G. Y. Wu,2009. The analysis of dynamic instability of a bimaterial beam with alternating magnetic fields and thermal loads. J. Sound Vib.,327(1-2), 197-210.
    [118]朱为国,白象忠,2009.四边固支热磁弹性矩形薄板的分岔与混沌.振动与冲击,28(5),59-62.
    [119]S. Kaliski,1962. Magnetoelastic vibration of perfectly conducting plates and bars assuming the principle of plane sections. Proc. Vib. Probl.,3(4), 225-234.
    [120]G. E. Bagdasaryan,1983. Equations of magnetoelastic vibrations of thin perfectly conducting plates. Soviet Appl.Mech.19(12),1120-1124.
    [121]K. Hutter, and Y. H. Pao,1974. A dynamic theory for magnetizable elastic solids with thermal and electrical conduction. J. Elast.,4(2),89-114.
    [122]S. Chattopadhyay,1979. Magnetoelastic instability of structures carrying electric current. Int. J. Sol. Stru.,15(6),467-477.
    [123]D.L. Littlefield,1996. Magnetomechanical instability in elastic-plastic cylinders, Part Ⅱ:Plastic response. J. Appl. Mech.63(3),742-749
    [124]D.L. Littlefield,1996. Magnetomechanical instabilities in elastic-plastic cylinders, Part I:Elastic response. ASME J. Appl. Mech.,63(3),734-741.
    [125]F. Q. Chang, Y. L. Xu, and X. Z. Bai,1997. Nonlinear problems of current-carrying round plates with varying thickness in the electromagnetic field. Appl. Math. Mech.,18(4),331-339.
    [126]L. Librescu, D. Hasanyan, and D. R. Ambur,2004. Electromagneticallyconducting elastic plates in a magnetic field:modeling and dynamic implications. Int. J. Non-linear Mech.,39(5),723-739.
    [127]D. J. Hasanyan, L. Librescu, and D. R. Ambur,2005. Buckling and postbuckling of magnetoelastic flat plates carrying an electric current. Int. J. Sol. Stru.,43(16),4971-4996.
    [128]S. R. Bilyk, and K. T. Ramesh,2005. Wright T W, Finite deformations of metal cylinders subjected to electromagnetic fields and mechanical forces. J. Mech. Phy. Sol.,53(3),525-544.
    [129]Z. R. Wang, P. Wang, and X. Z. Bai,2008. Magnetic-elastic buckling of a thin current carrying plate simply supported at three edges, Chin. J. Mech. Eng.,21(5),75-79.
    [130]田振国,白象忠,2009.载流板壳电磁、热、机械场耦合的弹性效应分析.应用基础与工程科学学报,17(2),318-325.
    [131]A. E. Azab, M. Garnich, and A. Kapoor,2003. Modeling of the electromagnetic forming of sheet metals:state-of-the-art and future needs. J. Meter. Proc. Tech,142(3),744-754.
    [132]A. G. Mamalis, D. E. Manolakos, A. G. Kladas, and A. K. Koumoutsos,2005. Physical principle of electromagnetic forming process:a constitutive finite element model, J. Meter. Proc. Tech,161(1-2),294-299.
    [133]X. Z. Na, M. Xue, X. Z. Zhang, and Y. Gan,2007. Numerical simulation of heat transfer and deformation of initial shell in soft contact continuous casting mold under high frequency electromagnetic field. Int. J. Iron Steel Res,14(6),14-21.
    [134]J. P. M. Correia, M. A. Siddiqui, S. Ahzi, S. Belouettar, and R. Davies,2008. A simple model to simulate electromagnetic sheet free bulging process. Int. J. Mech. Sci.,50(10-11),1466-1475.
    [135]G. Bartels, W. Schaetzing, H. P. Scheibe, and M. Leone,2009. Simulation models of the electromagnetic forming process. Acta Phy. Pol. A,115(6), 1128-1129.
    [136]H. P. Yu, C. F. Li, and J. H. Deng,2009. Sequential coupling simulation for electromagnetic-mechanical tube compression by finite element analysis.J. Meter. Proc. Tech.,209(2),707-713.
    [137]M. Bau, V. Ferrari, D. Marioli, E. Sardini, M. Serpelloni, and A. Taroni,2008. Contactless electromagnetic excitation of resonant sensors made of conductive miniaturized structure. Sensors and Actuator A:,Phy.,148(1), 44-50.
    [138]M. Bau, V. Ferrari, and D. Marioli,2009. Contactless excitation of MEMS resonant sensors by electromagnetic driving. Proceeding of the COMSOL Conference, Milan.
    [139]B. Ando, S. Baglio, M. Bau, V. Ferrari, and C. Trigona,2009. Numerical and experimental investigation on contactless resonant sensors. Procedia Chem., 1(1),1391-1394.
    [140]J. D. Hagopian, and J. Mahfoud,2010. Electromagnetic antuator design for the control of light structures. Smart Stru. Sys.,6(1),29-38.
    [141]J. M. Ziman,1960. Electrons and Phonons. Oxford University Press.
    [142]K. G. Kibler, and H. G. Carter,1974, Electrocooling in gases. J. Appl. Phy., 45(10),4436-4440.
    [143]Y. Asakawa,1976. Promotion and retardation of heat transfer by electric field. Nature,261(5557),220-221.
    [144]T. Ryde, S. Arajs, and R. J. Nunge,1991. Heat transfer from a wire to hexane in a nonuniform electric field. J. Appl. Phys.,69(2),606-609.
    [145]J. P. Friedberg, R. W. Mitchell, and R. L. Morse,1972. Resonant absorption of laser light by plasma targets. Phys. Rev. Lett.,28(13),795-799.
    [146]M. S. Aawar, A. Latif, M. Iqbal, M. S. Rafique, M. K. Rahman, and S. Siddique,2006. Theoretical model for heat conduction in metals during interaction with ultra short laser pulse. Laser Part.,24(3),347-353.
    [147]A. Lange, A. Cramer, and E. Beyer,2009. Thermoelectric currents in laser induced melts pools. J. Laser Appl.,21(2),82-87.
    [148]A. K. Kalkan, and G. Talmage,1994. Heat transfer in liquid metals with electric currents and magnetic fields:the conduction case. Int. J. Mass Tans., 37(3),511-521.
    [149]Y. H. Guan, G. Fan, J. T. Zhang, and H. G Wang,1998. Study of heat conduction equation under electromagnetic field condition during laser heat treatment. Proc. SPIE,3550,372-377.
    [150]L. L. Zhu, and X. J. Zheng,2006. A theory for electromagnetic heat conduction and a numerical model based on Boltzmann equation. Int. J. N-L Sci. Numer. Simul.,7(3),339-344.
    [151]姜任秋,1997.热传导、质扩散与动量传递中的瞬态冲击效应.科学出版社,北京.
    [152]赵凯华,陈熙谋,1985.电磁学.高等教育出版社,北京.
    [153]A. Krawczy, and J. Turowski,1987. Recent development in eddy current analysis. IEEE Tran. Magn.,23(5),3032-3037.
    [154]汪映海,1993.电动力学.兰州大学出版社,兰州.
    [155]J.D.杰克逊(著),朱培豫(译),1978.经典电动力学.人民教育出版社,北京.
    [156]K. Miya, and H. Hashizume,1988. Application of T-method to A. C. problem based on boundary element method. IEEE Trans. Magn.,24(1),134-137.
    [157]C. L. Tien, A. Majumdar, and F. M. Gerner,1998. Microscale energy transport. London:Taylor & Francis.
    [158]王洪刚,1989.热弹性力学概论.清华大学出版社,北京.
    [159]严宗达,王洪礼,1993.热应力.高等教育出版社,北京.
    [160]吴连元,1989.板壳理论.上海交通大学出版社,上海.
    [161]王震鸣,1991.复合材料力学和复合材料结构力学.机械工业出版社,北京.
    [162]黄克智,薛明德,陆明万,2003.张量分析.清华大学出版社,北京.
    [163]金建铭(美),王建国(译),1998.电磁场有限元方法.西安电子科技大学出版社,西安.
    [164]王勖成,邵敏,1997.有限单元法基本原理和数值方法.清华大学出版社,北京.
    [165]梁轶瑞,2010.铁磁类材料若干多场耦合行为的实验研究.兰州大学博士学位论文.兰州.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700