微波场均匀性设计及干燥过程数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微波干燥技术自上世纪四十年代产生以来,经过几十年的研究和实践,理论研究获得长足进步,应用范围已日趋广泛。由于微波干燥独特的干燥机理,决定了其具有效率高、耗时短、能源利用率高、低污染以及优良的产品质量等特点,已经逐渐得到广泛的认可和应用。
     本文首先叙述了微波干燥基础知识,对微波的概念及特性,微波干燥的原理及特点以及介质的相关情况有了较为全面的综述和分析;然后介绍了模拟微波干燥过程所要用到的有关传热传质的理论知识,最后主要围绕着矩形谐振腔的设计、矩形谐振腔内电场和磁场的矢量分布以及微波干燥过程数值模拟三部分内容进行研究。
     微波干燥过程中,微波场的均匀性对干燥的结果有着十分重要的影响。为了得到均匀的微波场,方法之一就是使谐振腔内微波谐振模式数取得最大值。在特定的微波谐振频率下,谐振模式数主要取决于谐振腔的尺寸。通过编程求出在特定谐振频率下的最大模式数,从而得出相应的谐振腔体尺寸。在上述矩形谐振腔结构尺寸设计的基础上,借助于ANSYS软件模拟出微波场内电场和磁场的矢量分布,并对电场和磁场的矢量分布进行理论分析。微波干燥过程主要是在谐振腔内发生,是一个非常复杂的传热传质过程。本文采用近似的处理方式,选择胡萝卜作为干燥介质进行微波干燥过程数值模拟,通过改变微波功率、频率及介质介电常数等参数得出相应的介质温度、含水率等随时间的变化情况,并与热风干燥方式作比较,得出微波干燥较热风干燥具有升温快、干燥时间短、物料含水率低等特点。
The microwave drying technology appeared in 1940s. Through several dozens of years'research and practice, the fundamental research has made great strides, and the application scope has already spreaded widely day by day. Because of microwave drying's unique mechanism, which makes it have many special characteristics, such as high efficiency, short time, high energy usage rate, low pollution, good product quality and so on, it has already gradually obtained widespread approval and application.
     At first, this article introduces some elementary knowledge of microwave drying, summarizes and analyses comprehensively the relative information about the concept and the characteristics of microwave, the principle and the characteristics of microwave drying. And then introducing some theory knowledge about heat transfer & mass transfer which is used in the simulation of microwave drying. Finally, this article conducts the research mainly about three parts of contents, which are the design of rectangular resonant cavity, the vector distribution of the electric field and the magnetic field in the rectangular resonant cavity vector as well as the numerical simulation of the microwave drying.
     In the process of microwave drying, the microwave field uniformity has an extremely important influence to the drying result. One of the methods for obtaining uniform microwave field is to maximize the resonant model number in the cavity. Under specific microwave resonance frequency, the resonant model number mainly is decided by the resonant cavity size. Through programming, extracting the most large model number under the specific resonance frequency, thus obtaining the corresponding resonant cavity size. In the foundation about the rectangular resonant cavity structure size design, simulating the vector distribution of the electric field and the magnetic field in the microwave field with the aid of ANSYS, and carries on the theoretical analysis to the electric field and the magnetic field vector distribution. The microwave drying process is an extremely complex heat transfer & mass transfer process which is mainly conducted in the resonant cavity. This article uses the approximate processing method, choosing carrot as drying medium to carry on the microwave drying numerical simulation. Through changing parameters, such as microwave power, frequency and medium coefficient and so on, to obtain the corresponding medium temperature and the moisture content which are changed with time, and then making the comparison with the hot air drying method, obtains that, comparing with the hot air drying, the microwave drying has some characteristics such as quick temperature rising, short drying time, low material moisture content and so on.
引文
[1]廖承恩.微波技术基础.西安电子科技大学出版社,1994
    [2]李晓蓉,陈章友,吴正娴.微波技术.科学出版社,2005
    [3]任伟,赵家升.电磁场与微波技术.电子工业出版社,2005
    [4]牛忠霞.微波技术及应用.国防工业出版社,2005
    [5]刘歧山.微波能应用.电子工业出版社,1990
    [6]刘忠栋.微波技术在食品工业中的应用.中国轻工业出版社,1998
    [7]王绍林.微波加热工艺及国外专利精选.专利文献出版社,1995
    [8]王绍林.微波加热技术的应用:干燥和杀菌.机械工业出版社,2004
    [9]Kashyap.S.C. and Wyslouzil.W. Methods for improving heating uniformity of microwave ovens. Microwave power.1977,2(3),223
    [10]Okress. Microwave Power Engineering. London.Metaxes Co Ltd.1968
    [11]张兆镗,钟若青编译.微波加热技术基础.电子工业出版社,1988
    [12]王绍林.微波食品工程.机械工业出版社,1994
    [13]Medeni Maskan. Drying.shrinkage and rehydration characteristics of kiwifruits drying hot air and microwave drying [J]. Journal of Food Engineering,2001(48):177-182
    [14]Medeni Maskan. Drying.shrinkage and microwave finish drying of banana [J]. Journal of Food Engineering,2000(44):71-78
    [15]Sharma.G.P., Prasad, Surash. Drying of garlic(Allium sativum) cloves by microwave hot air combination [J]. Journal of Food Engineering,2000(44):71-78
    [16]D.G.Prabhanjan, H.S.Ramawamy & G.S.V.Raghavan. Microwave assisted Convective air Drying of Thin Layer Carrots [J],1995,25:283-293
    [17]Benjamin Adu, Lambert Otta. Diffusion Characteristics of White Beans During Microwave Drying [J], J.agric. Engng. Res,1996,64:61-70
    [18]Torringa, Erik, Esveld, Scheewe. Osmotic dehydration as a pre-treatment before combined microwave-hot air drying of mushrooms [J]. Journal of Food Engineering, 2001(49):185-191
    [19]F.Prothon, L.Ahrne, Tomas Funebo, Siw Kidman, Maud Langton and I.Sjoholm. Effects of combined osmotic and microwave dehydration of apple on texture [J]. Microwave and rehydration characteristics,2001(34):95-101
    [20]Erie, Ulrich, Schubert, Helmar. Conbined osmotic and microwave-vacuum dehydration of apples and strawberries [J]. Journal of Food Engineering,2001(49):193-199
    [21]Lin, Tein M., Durance, Timothy D., Scaman, Christine H.. Characterization of vacuum microwave air and freeze dried carrot slices [J]. Food Research International,1998, 31(2):111-117
    [22]Drouzas A H., Schubert H.. Microwave application in vacuum drying of fruits [J]. Journal of Food Engineering,2001(49):271-289
    [23]A.Dedic, M.Zlatanovic. Some aspects and comparisons of microwave drying of beech(Fagus moesiaca) and fir wood(Abies alba) [J]. Holz als Roh-und werkstoff, 2001(59):246-249
    [24]Khraisheh M A, McMinn W A, Magee T R. Quality and structural changes in starchy foods during microwave and convective drying[J]. Food Research International,2004, 37(5):497-503
    [25]Sumnu G, Turabi E, Oztop M. Drying of carrots in microwave and halogen lamp-microwave combination ovens[J]. LWT-Food Science and Technology,2005, 38(5):549-553
    [26]Joanna B, Marek M, Wioletta B. Effect of drying conditions on the quality of vacuum-microwave dried potato cubes[J]. Journal of Food Engineering,2007, 81(2):306-312
    [27]Ilknur A. microwave, air and combined microwave-air drying parameters of pumpkin slices[J]. LWT-Food Science and Technology,2007,40(8):1445-1451
    [28]Varith J, Dijkanarukkul P, Achariyaviriya A. Conbined microwave-hot air drying of peeled longan[J]. Journal of Food Engineering,2007,81(2):459-468
    [29]Ozkan I A, Akbudak B, Akbudak N. Microwave drying characteristics of spinach[J]. Journal of Food Engineering,2007,78(2):577-583
    [30]Rami Y. Jumah, G.S.V.Raghavan. Analysis of Heat and Mass Transfer During Combined Microwave-convective Spouted-bed Drying [J]. Drying Technology, 2001(19):485-506
    [31]A.V.Markov, Yu.P.Yulents. Mass-Transfer Mechanisms in High-Intensity Drying in the Presence of Internal Heat Sources [J]. Theoretical Foundation of Chemical Engineering, 2002,36(3):241-246
    [32]E.C.M.Sanga, A.S.Mujumdar, GS.V.Raghavan. Simulation of convection microwave drying for shrinking material [J]. Chemical Engineering and Processing, 2002(41)487-499
    [33]张晓辛,肖宏儒.利用微波—气流组合干燥技术干燥菊花的试验研究.山东轻工业学院学报,1996,10(1):58-62
    [34]邓茉香,刘学文.青稞麦片生产新工艺开发研究.食品工业科技,2004,25(10):102-105
    [35]施明恒,余莉,刘雅琴.中药丸微波对流干燥的试验研究.南京林业大学学报,1997,21:147-150
    [36]刘雅琴,范红途.胶体类多孔介质微波对流干燥的研究.山东轻工业学院学报,1996,10(1):57-60
    [37]王俊,胥芳,蒋生昕.微波干燥黄桃及预处理对其影响的研究[J].食品科学,1996,17(4):39-42
    [38]王金双,熊永森,王俊.微波干制胡萝卜片干燥特性试验研究[J],金华职业技术学院学报,2002,2:22-24
    [39]王金双,王俊,永森,刘正怀.土豆片的微波干燥规律研究[J],金华职业技术学院学报,2002,14:42-45
    [40]王俊,王美芳.微波干燥刀豆的特性及工艺研究[J],农业与食品机械,1995,2:9-10
    [41]王俊,王剑平,张京平,许乃章.微波干燥黄桃内传热传质传递过程模型[J],农业工程学报,1997,2:235-238
    [42]王玫,陈壁州,伍军,艾启俊.微波干燥桃脯、苹果脯的影响因素和节能效果的研 究[J].农业工程学报,1998,14(3):253-255
    [43]王朝晖,施明恒.牛肉的微波冷冻干燥特性[J].南京林业大学学报,1997,Vol.21:53-57
    [44]徐艳阳,张敏,陈亦辉,钟齐丰.热风和微波真空联合干燥甘蓝的试验研究.第九届全国干燥会议论文集,杭州,2003:302-305
    [45]冉旭,吕联通,刘学文等.片状食品微波干燥特性及温度和水分变化模拟[J].四川大学学报,2004,36(2):69-85
    [46]陈燕,陈羽白.龙眼微波干燥的试验研究[J].广西大学学报,2004,29(1):58-61
    [47]张洁,秦俊哲.果蔬片微波干燥特性及最佳工艺研究[J].食品研究与开发,2005,26(2):60-62
    [48]曹小红,常学东.板栗的微波干燥特性及其干后品质的变化[J].食品工业科技,2005,26(1):63-65
    [49]韩清华,李树君,马季威等.微波真空干燥膨化苹果脆片的研究[J].农业机械学报,2006,37(8):155-167
    [50]陈振国.微波技术基础与应用.北京邮电大学出版社,2002
    [51]祝圣远,王国恒.微波干燥过程数学描述.工业炉,2004,26(1):15-18
    [52]税平安,王书媚,刘平安,曾令可,王慧,程小苏.微波辅助干燥技术的应用进展.陶瓷.2007,3:5-8
    [53]吕丽爽.微波干燥技术在食品中的应用.食品与机械,2006,22(5):119-122
    [54]殷之文.电介质物理学.科学出版社,2005
    [55]孟中岩等.电介质理论基础.国防工业出版社,1980
    [56]武岳山,于利亚.介电常数的概念研究.现代电子技术,2008
    [57]Robert.V.Decareau. Microwave in the Food Processing Industry, New York, Academic Press. INC.1985
    [58]任世诤.传热学.冶金工业出版社,2008
    [59]曹红奋等.传热学-理论基础及工程应用.人民交通出版社,2006
    [60]祝圣远.微波干燥过程二维传热传质理论分析与数值模拟[D].东北大学,2004
    [61]杨祥林等编.微波器件原理.电子工业出版社,1985
    [62]倪光正.面向21世纪课程教材-工程电磁场原理.高等教育出版社,2002
    [63]S.Ramo, J.R.Whinnery & T.Van Duzer. Fields and Waves in Communication Electronics. John Weley & Sons,1984
    [64]H.A.Haus, J.R.Melcher. Electromagnetics Fields and Energy. Prentice Hall,1989
    [65]Carl T.A.Johnk. Engineering Electromagnetic Fields. John Weley & Sons, Inc,1975
    [66]Liang-chi Shen, Jin Kong. Applied Electromagnetism. PWS Publishing Company, 1995
    [67]唐兴伦,范群波,张朝晖,李春阳.ANSYS工程应用教程:热与电磁学篇.中国铁道出版社,2003
    [68]王国强.使用工程数值模拟技术及其在ANSYS上的实践.西北工业大学出版社,2000
    [69]李皓月,周田朋,刘相新.ANSYS工程计算应用教程.中国铁道出版社,2003
    [70]胡景川,沈锦林.农产品物料干燥技术[M].杭州:浙江大学出版社,1990,1-9
    [71]Ansoft软件帮助文档(英文版)
    [72]刘国强,赵凌志,蒋继娅.Ansoft工程电磁场有限元分析.电子工业出版社,2005
    [73]谢拥军,王鹏,李磊,周建华,雷振亚.Ansoft HFSS基础及应用.西安电子科技大学出版社,2007
    [74]熊永森,王俊,王金双,程国耀.微波干制胡萝卜片试验研究.科技通报,2002,18(3):251-255

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700