电磁场无网格分析方法及纸基高频感应封合系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无网格法无需采用网格近似,对于计算时模型几何尺寸经常发生变化的问题,可以避免网格基方法所存在的网格畸变或重复划分网格的困扰。很多电磁问题,如含刚体运动的电磁场问题、电磁场逆问题、金属融化和铸造问题,薄板以及小空气间隙等问题,采用网格基方法时也面临着网格畸变或网格重复剖分的瓶颈,故无网格法作为一种潜在能解决上述问题的方法,引起了众多学者的注意。当前,电磁场计算的难点和热点问题在于与工程应用相结合的运动电磁问题和耦合电磁场问题的研究。纸基复合材料感应封合系统是一个含运动导体的电、磁、热相耦合的多材料非线性系统,具备可靠封合效果是无菌灌装设备封合系统的关键要求。本文针对无网格法在电磁场计算研究中的几个基本问题如数值模型建立方法、交界面条件处理和含运动的电磁场无网格法等问题,进行了系统的研究,并在对无菌饮料灌装的纸基复合材料感应封合问题进行研究和模拟的基础上,设计出了具有可靠封合效果的感应封合系统。
     电磁场控制方程无网格法数值模型的建立是应用无网格法开展电磁问题研究的基础。文章对Maxwell方程组做一定假设,引入磁矢量位(A)和电标量位(φ),建立由A-φ-A描述的谐波电磁场控制方程。然后,针对一大类可以采用圆柱坐标系表示的电磁问题,采用矢量检验函数和标量检验函数,应用Galerkin加权余量法和无网格迦辽金法形函数对控制方程进行离散,详细推导出了谐波电磁场在圆柱坐标系下的无网格迦辽金法频域数值模型,为后续应用算例的研究打下了良好基础。
     无网格法对于电磁场边、交界条件,尤其是交界面条件处理的不足是限制无网格法在电磁场计算中应用的关键问题。文章在对无网格法中处理不连续性问题的方法进行分析的基础上,提出采用分割加修改弱形式法如Lagrange乘子法和罚函数法处理电磁场交界面条件,并就处理过程进行描述和推导,建立其处理模型。所采用的几个应用算例证实了所建立的谐波电磁场无网格法数值模型的正确性,表明无网格法可以有效用于电磁场的数值计算;所建议的电磁场交界面条件处理方法可以引入必要的不连续性,也可以弥补产生期待的连续性。指出罚函数法施加电磁场交界面条件的精度取决于罚系数的取值,并给出了罚系数的合理取值;而Lagrange乘子法施加交界面条件的精度取决于交界面上插值点的数目,数目越多,越精确,但过多插值点将导致系统矩阵的奇异。
     含刚体运动的电磁问题是计算电磁学的重要问题。文章提出采用无网格法求解带速度项的电磁场控制方程,发现速度和控制节点影响域尺寸大小的参数dmax是使运动电磁场无网格法解中包含数值伪振荡的主要因素。加密节点可以抑制带速度项电磁场控制方程的无网格法解中的数值伪振荡,但随速度和dmax的增大,所需节点数也越多,计算量也越大。因此,文章将streamline迎风稳定方法引入到运动电磁场无网格法中,指出无网格法中迎风稳定因子不再是优化的,并详细推导出了带速度项电磁场控制方程的streamline迎风无网格迦辽金法数值模型。所采用的两个应用算例证实streamline迎风法和无网格迦辽金法的结合可以有效求解带速度项的电磁场控制方程,证实了所建立的数值模型的正确性。尽管迎风稳定因子不再是优化的,但streamline迎风仍然能显著抑制运动导体电磁场无网格法解中的数值伪振荡,得到稳定的解。
     纸基复合材料(包材)高频感应封合过程是电、磁、热相耦合的过程。文章在分析影响封合效果因素的基础上,对感应封合系统进行设计,建立封合系统的电磁场无网格法模型,并就电磁场与温度场的耦合进行有限元模拟,研究不同因素对包装材料中涡流分布、温度分布以及所需加热时间的影响,得到感应封合无网格法解的参考解。所设计的封合系统能在封合线上得到均匀的温度分布。激励电流大小是影响封合的主要因素,大电流短时间加热比小电流长时间加热更有效;激励电流频率的增大有助于涡流密度和热量向封合线集中。磁通集中器是实现包材有效封合必不可少的因素,它可显著提高包材封合线及厚度方向上的涡流和温度,从而提高封合速度和效率。在进行上述模拟和分析的基础上,给出了适合纸基复合材料感应横封的封合参数。砖包感应横封实验表明所建议的封合参数的正确性。
In computational electromagnetics, for such problems that the model geometry changes frequently in computation process as electromagnetic field involving moving conductor, the electromagnetic inverse problem, the thin plate problem, and the melting and casting of metal, the grids-based method faces the bottleneck of re-meshing and grid-distortion, so the meshless method due to no grids needed is looked as a potential method to solve the above electromagnetic problems, and attracts the attentions of some researchers. At present, the difficult point and hotspot in computational electromagnetics lie in the research on the coupling or moving electromagnetic problem combined with engineering design. The induction sealing system of paper-based composite material is a nonlinear multi-material system coupling electric, magnetic and thermo. The reliable sealing effect is the key requirement of the induction sealing system in aseptic beverage packaging machine. This paper aims at a few basic problems of meshless method in computational electromagnetic field, including the method for building meshless numerical model, the disposal of interface condition, the meshless method in moving electromagnetic field and so on, systematic researches were carried out. At the same time, based on the study and simulation on the induction sealing problem of paper-based composite material in aseptic beverage packaging machine, an induction sealing system with reliable sealing effect was designed.
     The foundation of meshless numerical model of electromagnetic field governing equation is the basis of the application of meshless method in electromagnetic problem. Omitting the displacement current and accumulation charge in Maxwell equations and introducing the magnetic vector potential A and the electric scalar potentialφ, the harmonic electromagnetic field governing equation formulated by A-φ-A approach was completed. Then, aiming at the electromagnetic problem which can be expressed in cylindrical coordinates, using the vector and scalar test function, the detailed implementation of the governing equation was described with the meshless method, and the common 3D numerical model in frequency domain was derived by using Galerkin residual method.
     The disposal of boundary and interface conditions, especially the interface conditions, is the key problem to restrict the application of the meshless method in numerical computation of engineering electromagnetic field. Based on the analysis about the present methods for the discontinuity disposal in meshless method, this paper presents such methods based on the modification of the weak form as Lagrange multiplier method and penalty method to deal with electromagnetic interface conditions. Using above two methods, the detailed disposal process and models of the electromagnetic interface conditions were described further in the meshless method. The application examples used prove that the above meshless method numerical model of electromagnetic field is corrected, and the meshless method is found to be reliable to give reasonable computational results for electromagnetic field; the suggested methods for enforcing the electromagnetic interfaces can introduce the necessary discontinuity and also guarantee the expected continuity; the disposal accuracy of penalty method for electromagnetic interfaces is decided by the value of penalty coefficient, and the suitable value is (1e2-1e5)×(Kii)max; the disposal accuracy of Lagrange multiplier method for electromagnetic interfaces is decided by the number of the interpolation point at interface, the number is larger, the results are more accurate, but too large point number would cause deteriorated result, and even a singular system matrix
     The numerical modeling of rigid body motion is an important problem in computational electromagnetics. In this paper, the meshless method was proposed to solve the electromagnetic field governing equation with velocity term, and the computational result indicates that the velocity and the parameter dmax controlling the size of nodal influence domain are the major factors to lead to the numerical oscillation contained in the meshless method solution. The nodal refinement method used can suppress the numerical oscillation, but with the increasing velocity and dmax, the nodal number increases. So, the streamline upwinding stabilization method in FEM was introduced into the meshless method for electromagnetic field involving moving conductor, and the streamline upwinding meshless method numerical model was derived for electromagnetic governing equation with velocity term formulated by A-φ-A method. Different numerical examples show that the combination streamline upwinding and the meshless method can solve effectively the electromagnetic governing equation with velocity term. Although the stabilization factor is no longer optimal in meshless method, the streamline upwinding can still suppress significantly the numerical oscillation in meshless method solution of electromagnetic field governing equation with velocity term.
     The induction sealing system of paper-based composite material is a nonlinear system coupling electric, magnetic and thermo. In this paper, based on analysis on the factors influencing sealing effect, an induction sealing system was designed, the meshless method model of sealing electromagnetic field was founded, and the coupling of electromagnetic and thermal field was simulated by FEM. The influences of different factors to heating time, eddy current and temperature distribution were studied, and the reference solution of the meshless method solution of sealing system was obtained. The uniform temperature in sealing line can be obtained by the designed induction sealing system. The exciting current is the major factor influencing the seal, the instant seal only can be realized by large current; the larger the current frequency is, the more the eddy current density and Joule heat concentrate to the seal line. The magnetic flux concentrator is necessary to realize the effective and fast sealing of packaging material, and it can increase significantly the eddy current and temperature at the seal line and thickness direction of packaging material. Based on above analyses and simulations, the suitable sealing parameters of paper-based composite material are given, the experiments prove that the proposed sealing parameters are correct.
引文
[1] Z. Yan, L. Li, D. Chen, K. Shao, J. Sheng. Calculation of eddy current problems using new-type equivalent source-wavelet method[C]. Proc. Fourth Int. Conf. Electromagnetic Field Problems and Applications. Tianjin. 2000. 70-73.
    [2] Takahashi Y., Fujishima Y. Wakao S. Large-scale analysis of surface charge in eddy-current problems by the fast multipole method[J]. IEEE Transactions on Magnetics. 2005, 41(5): 1700-1703.
    [3] Weidong Zhang, Xiang Cui, Tiebing Lu. Busbar transient current computation based on singularity expansion method[C]. Proceedings Asia-Pacific Conference on Environmental Electromagnetics. Shanghai. 2000.122-125.
    [4] M. A. Jaswon. Integral equation methods in potential theory[M]. Proc. R. Soc. A. pp.23, 1963.
    [5] J. Simkin and C. W. Trowbridge. Magnetostatic fields computed using an integral equation derived from Green’s theorem[C]. Presented at the Compumag Conf. Computation of Magnetic Fields, 1976.
    [6] Dexin Xie, and Renyuan Tang. Development of Computational Electromagnetics in China[J]. IEEE TRANSACTIONS ON MAGNETICS. 2006, 42(4): 509-514
    [7] C. W. Trowbridge, J. K. Sykulski. Some Key Developments in Computational Electromagnetics and Their Attribution[J]. IEEE TRANSACTIONS ON MAGNETICS, 2006, 42(4): 503-508.
    [8] C W Trowbridge, J K Sykulski. Some Key Developments in CEM and their Attribution(invited keynote paper)[C]. COMPUMAG. Shenyang. 2005.
    [9] R. F. Harrington. Field Computation by Moment Methods[M]. New York: Macmillan, 1968.
    [10] Z. Sipus, N. Burum, S. Skokic and P.-S. Kildal. Analysis of spherical arrays of microstrip antennas using moment method in spectral domain[J]. IEE Proc.-Microw. Antennas Propag. 2006, 153(6): 533-543.
    [11] Wenhui Shen, Guoxin Zhen, Xuexia Yang, Wei Cao. The Model of Moment Method Approach to Millimeter Wave Propagation Loss over Irregular Terrain[C]. IEEE International Symposium on Antennas and Propagation Society. Singapore. 2006. 4763-4766.
    [12] Yisok Oh, Jin-Young Hong. Moment method/ Monte Carlo simulation of the microwave backscatter of wet-land rice fields[C]. IEEE International Geoscience and Remote SensingSymposium. Barcelona. 2007. 69-72.
    [13] R. L. Stoll. The Analysis of Eddy Currents[M]. Oxford, U.K.: Clarendon. 1974.
    [14] W. Muller, W. Wolff. General numerical solution of the magnetostatic Equations[M]. AEG Telfunken, Tech. Rep. 1976, 49(3): 77-86.
    [15] II-Suek Koh, Hyun Kim, Jung-Mi Lee, Jong-Gwan Yook, Chang Sung Pil. Novel Explicit 2-D FDTD Scheme With Isotropic Dispersion and Enhanced Stability[J]. IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2006, 54(11): 3505-3510.
    [16] L. J. Pesik, D. L. Paul, C. J. Railton, G. S. Hilton, M. A. Beach. FDTD technique for modelling eight-element circular antenna array[J]. Electronics Letters. 2006, 42(14): 787-788.
    [17] K. S. Yee. Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media[J]. IEEE Trans. Antennas Propag. 1966, AP-14: 302-307.
    [18] Namiki T. A new FDTD algorithm based on alternatingdirection implement method[J]. IEEE Trans. Microwave Theory Tech. 1999, 47: 2003-2007.
    [19] Toshihiro Hanawa, Soichiro Ikuno. Investigations on the stability of the 3-D alternating implicit block overlapped-FDTD method[C]. Record of COMPUMAG. Shenyang, 2005. II: 240-241.
    [20] Weiland T. Time domain electromagnetic field computation with finite difference methods[J]. Int. Journal ofNumerical Modelling, 1996, 9: 295-319.
    [21] Johns P B. Application of the transmission-line matrix method to homogeneous waveguides of arbitrary cross Section[J]. Proc. Inst. Electr. Eng., 1974, 119: 209-215.
    [22] A. M. Winslow. Numerical calculation of static magnetic fields in anirregular triangle mesh[J]. J. Comput. Phys. 1966, 1: 149.
    [23] A. M. Winslow. Numerical solution of the quasi-linear Poisson equation in a non-uniform triangle mesh[J]. Journal of Computational Physics. 1967, 2: 149-172.
    [24] O. C. Zienkiewicz, R. Taylor. The Finite Element Method, 4th ed[M]. New York: McGraw-Hill, 1991.
    [25] P. P. Silvester. Finite element solution of homogeneous waveguide problem[J]. Alta Frequenza, 1969, 38: 313-317.
    [26] M. V. K. Chari, P. P. Silvester. Finite element analysis of magnetically saturated dc machines[J]. IEEE Trans. Power App. Syst., 1970, PAS-89(7): 1642-1651. 1971, PAS-90(2): 454-464.
    [27] P. P. Silvester. High-order polynomial triangular finite elements for potential Problems[J]. Int. J. Eng. Sci., 1969, 7: 849-861.
    [28] T. Nakata, N. Takahashi. Direct finite element analysis of flux and current distributionsunder specified conditions[J]. IEEE Trans. Magn., 1982, MAG-18(2): 325-330.
    [29] E. Cardelli. Numerical Modelling of 3-D Coupled Electromagnetic and Heating Diffusion Problems[J]. IEEE TRANSACTIONS ON MAGNETICS, 1994, 30(5): 3335-3338.
    [30] K. S. Ismail, R. A. Marzouk. Iterative hybrid finite element-boundary element method for the analysis of induction heating system with nonlinear charge[J]. IEEE TRANSACTIONS ON MAGNETICS, 1996, 32(4): 3212-3218.
    [31] A. Babini, R. Borsari, F. Dughiero, A. Fontanini, M. Forzan. 3D FEM models for numerical simulation of induction sealing of packaging material[J]. COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 2003, 22(1): 170-180.
    [32] Trowbridge C W. Computing electromagnetic fields for research and industry: major achievements and future trends[J]. IEEE Trans. on Magnetics, 1996, 32 (3): 627-630.
    [33] Bossavit A, Verite J C. A mixed FEM-BIEM method to solve 3-D eddy current problem[J]. IEEE Trans. On Magnetics, 1982, 18: 431-435.
    [34] Karl Hollaus, Christian Magele, Robert Merwa, Hermann Scharfetter. Numerical simulation of the eddy current problem in magnetic induction tomography for biomedical applications by edge elements[J]. IEEE TRANSACTIONS ON MAGNETICS, 2004, 40(2): 623-526.
    [35] F. Rapetti, F. Bouillault, L. Santandrea, A. Buffa, Y. Maday, A. Razek. Calculation of eddy currents with edge elements on non-matching grids in moving structures[J]. IEEE TRANSACTIONS ON MAGNETICS, 2000, 36(4): 1351-1355.
    [36] A. Demenko, J.K. Sykulski, R. Wojciechowski. Calculation of inducted currents using edge elements and T–T0 formulation[J]. IET Sci. Meas. Technol., 2008, 2(6): 434-439.
    [37]谢德馨,唐任远.计算电磁学近年来的若干重要成果——第15届COMPUMAG会议概述[J].电工技术学报, 2005, 20(9): 1-6.
    [38] Vlatko Cingoski, Naoki Miyamoto, Hideo Yamashita. Element-Free Galerkin Method for Electromagnetic Field Computations[J]. IEEE TRANSACTIONS ON MAGNETICS, 1998, 34(5): 3236-3239.
    [39] Yang Qingxin Liu Suzhen Chen Haiyan. Three-Dimensional Element Free Galerkin Method and Its Applications in Electromagnetic Field Numerical Analysis[J]. TRANSACTIONS OF CHINA ELECTROTECHNICAL SOCIETY, 2006, 21(9): 116-121.
    [40] Qiang Li, Kok-Meng Lee. An Adaptive Meshless Method for Magnetic Field Computation[J]. IEEE TRANSACTIONS ON MAGNETICS, 2006, 42(8): 1996-2003.
    [41]尹华杰.无网格法及其在电磁场计算中的应用展望[J].电机与控制学报, 2003, 7(2):107-111.
    [42] G. R. Liu and Y. T. Gu. An introduction to meshfree methods and their programming[M]. Springer, 1 edition, Netherlands, 2005, pp: 37-38.
    [43] Perrone N, Kao R. A general finite difference method for arbitrary meshes[J]. Comput. Struct., 1975, 5(1): 45-48.
    [44] Liszka T, Orkisz J. Finite difference method arbitrary irregular meshes in nonlinear problems of applied mechanics[Z]. In: IV SMiRt, San Francisco, 1977.
    [45] LISZKA T, ORKISZ J. The finite difference method at arbitrary irregular grids and its application in applied mechanics[J]. Computers and Structures, 1979, 11 (1-2): 83-95.
    [46] LUCY L B. A numerical approach to the testing of the fission hypothesis[J]. The Astronomical Journal, 1977, 82(12): 1013-1024.
    [47] Gingold R A, Monaghan J J. Smoothed particle hydrodynamics: theory and application to non-spherical stars[J]. Mon. Not. Roy. Astrou. Soc., 1977, 181: 375-389.
    [48] G. R. Liu and Y. T. Gu. An introduction to meshfree methods and their programming[M]. Springer, 1 edition, Netherlands, 2005, pp: 44-49.
    [49] Belytschko T, Lu Y Y, Gu L. Element free Galerkin methods[J]. Int. J. Num. Meth. Engng., 1994, 37: 229-256.
    [50] Roberto Brighenti. Application of the element-free Galerkin meshless method to 3-D fracture mechanics problems[J]. Engineering Fracture Mechanics, 2005, 72: 2808-2820.
    [51] Liu G R, Gu Y T. A point interpolation method for two-dimensional solids[J]. Int. J. Num. Meth. Engng., 2001, 50: 937-951.
    [52] Wang J G, Liu G R. A point interpolation meshless method based on radial basis functions[J]. Int. J. Num. Meth. Engng., 2002, 54: 1623-1648.
    [53] Liu W K, Jun S. Reproducing kernel particle methods[J]. Int. J. Num. Meth. Engng., 1995, 20: 1081-1106.
    [54] K.M. Liew, T.Y. Ng, Y.C. Wu. Meshfree method for large deformation analysis–a reproducing kernel particle approach[J]. Engineering Structures, 2002, 24: 543-551.
    [55] Atluri S N, Zhu T. A new meshless local Petrov-Galerkin(MLPG) approach in computational mechanics[J]. Comput. Mech., 1998, 22: 117-127.
    [56] J.R. Xiao. Local Heaviside weighted MLPG meshless method for two-dimensional solids using compactly supported radial basis functions[J]. Comput. Methods Appl. Mech. Engrg., 2004, 193: 117-138.
    [57] Duarte C A, Oden J T. Hp clouds: a h-p meshless method[J]. Numerical methods for partial differential equations, 1996, 12: 673-705.
    [58] Carcia O, Fancello E A, De Barcellos C S, Duarte, C. Armando. hp-clouds in Mindlin'sthick plate model[J]. International Journal for Numerical Methods in Engineering, 2000, 47(8): 1381-1400.
    [59] Melenk J M, Babuska I. The partition of unity finite element methods: basic theory and application[J]. Comput. Methods Appl. Mech. Engrg., 1996, 139: 263-288.
    [60] Romero I, Armero F. The partition of unity quadrature in meshless methods[J]. International Journal for Numerical Methods in Engineering, 2002, 54(7): 987-1006.
    [61] N. R. Aluru. A point collocation method based on reproducing kernel approximations[J]. Int. J. Num. Meth. Engng., 2000, 47: 1083-1121.
    [62] Kim Yongsik, Kim Do Wan, Jun, Sukky, Lee, Jin Ho. Meshfree point collocation method for the stream-vorticity formulation of 2D incompressible Navier-Stokes equations[J]. Comput. Methods Appl. Mech. Eng., 2007, 196(33-34): 3095-3109.
    [63] Randles P W, Libersky L D. Smoothed particle hydrodynamics: some recent improvements and applications[J]. Comput. Methods Appl. Mech. Engrg., 1996, 139: 375-408.
    [64] R.C. Batra, G.M. Zhang. Modified Smoothed Particle Hydrodynamics (MSPH) basis functions for meshless methods, and their application to axisymmetric Taylor impact test[J]. Journal of Computational Physics, 2008, 227(3): 1962-1981.
    [65] Kansa E J. Multiquadrics—a scattered data approximation scheme with applications to computational fluid dynamics~I and II[J]. Compu. Math. Applic., 1990, 19(8/9): 127-145, 147-161.
    [66] Naffa Mahmoud, Al-Gahtani Husain J. RBF-based meshless method for large deflection of thin plates[J]. 2007, 31(4): 311-317.
    [67] Onate E, Idelsohn S, Zienkiewicz O C et al. A finite point method in computational mechanics: Application to convective transport and fluid flow[J]. Int. J. Num. Meth. Engng., 1996, 39: 3839-3866.
    [68] Zhang Lei, Rong Yi-Ming, Shen Hou-Fa, Huang Tian-You. Solidification modeling in continuous casting by finite point method[J]. Journal of Materials Processing Technology, 2007, 192-193: 511-517.
    [69] Liu G R, Gu Y T. A meshfree method: Meshfree weak-strong (MWS) form method, for 2-D solids[J]. Computational Mechanics, 2003, 33(1): 2-14.
    [70] Zhang Xiong, Liu Xiaohu, Song Kangzu. Least-square collocation meshless method[J]. Int. J. Num. Meth. Engng., 2001, 51(9): 1089-1100.
    [71]张雄,胡炜,潘小飞等.加权最小二乘无网格法[J].力学学报, 2003, 35(4): 425-431.
    [72] Marechal Y, Coulomb J L, Meunier G, et al. Use of the diffuse element method for electromagnetic field computation [J]. IEEE Trans Mag, 1993, 23(2):1 475-1478.
    [73] Marechal Y. Some meshless methods for electromagnetic field computations [J]. IEEE Transactions on Magnetics, 1998, 34(5): 3351-3354.
    [74] S A Viana, Renato Cardoso Mesquita. Moving Least Square Reproducing Kernel Method for Electromagnetic Field Computation [J]. IEEE TRANSACTIONS ON MAGNETICS, 1999, 35(3): 1372-1375.
    [75] Vlatko Cingoski, Naoki Miyamoto, Hideo Yamashita. Hybrid Element-Free Galerkin—Finite Element Method for Electromagnetic Field Computations[J]. IEEE TRANSACTIONS ON MAGNETICS, 2000, 36(4): 1543-1547.
    [76] S L L Verardi, J M Machado, J R Cardoso. The Element-Free Galerkin Method Applied to the Study of Fully Developed Magnetohydrodynamic Duct Flows[J]. IEEE TRANSACTIONS ON MAGNETICS, 2002, 38(2): 941-944.
    [77] Liang Xuan, Zhiwei Zeng, Balasubramaniam Shanker, Lalita Udpa. Meshless Method for Numerical Modeling of Pulsed Eddy Currents[J]. IEEE TRANSACTIONS ON MAGNETICS, 2004, 40(6): 3457-3462.
    [78] Liang Xuan, Zhiwei Zeng, Balasubramaniam Shanker, Lalita Udpa. Element-Free Galerkin Method for Static and Quasi-Static Electromagnetic Field Computation[J]. IEEE TRANSACTIONS ON MAGNETICS, 2004, 40(1): 12-20.
    [79] S.A. Viana, D. Rodger, H.C. Lai. Meshless local Petrov–Galerkin method with radial basis functions applied to electromagnetics[J]. IEE Proc.-Sci. Meas. Technol., 2004, 151(6): 449-451.
    [80] Romesh C. Batra, Maurizio Porfiri, Davide Spinello. Analysis of electrostatic MEMS using meshless local Petrov–Galerkin (MLPG) method[J]. Engineering Analysis with Boundary Elements, 2006, 30: 949-962.
    [81] S. L. Ho, S. Yang, J. M. Machado, H. C. Wong. Application of a Meshless Method in Electromagnetics[J]. IEEE TRANSACTIONS ON MAGNETICS, 2001, 37(5): 3198-3202.
    [82] S. L. Ho, Shiyou Yang, Guangzheng Ni, H. C. Wong, Yuhuai Wang. Numerical Analysis of Thin Skin Depths of 3-D Eddy-Current Problems Using a Combination of Finite Element and Meshless Methods[J]. IEEE TRANSACTIONS ON MAGNETICS, 2004, 40(2): 1354-1357.
    [83] Shiyou Yang, Guangzheng Ni, J. R. Cardoso, S. L. Ho, J. M. Machado. A Combined Wavelet-Element Free Galerkin Method for Numerical Calculations of Electromagnetic Fields[J]. IEEE TRANSACTIONS ON MAGNETICS, 2003, 39(3): 1413-1416.
    [84] Kok-Meng Lee, Qiang Li, Hungson Sun. Effects of Numerical Formulation on Magnetic Field Computation Using Meshless Methods[J]. IEEE TRANSACTIONS ONMAGNETICS, 2006, 42(9): 2164-2171.
    [85] Oriano Bottauscio, Mario Chiampi, Alessandra Manzin. Eddy current problems in nonlinear media by the element-free Galerkin method[J]. Journal of Magnetism and Magnetic Materials, 2006,304: e823–e825.
    [86] Alessandra Manzin. Element-Free Galerkin Modeling of Electromagnetic Phenomena in Ferromagnetic Deformable Bodies[J]. IEEE TRANSACTIONS ON MAGNETICS, 2007, 43(4): 1285-1288.
    [87] Guilherme F. Parreira, Elson J. Silva, Alexandre R. Fonseca, Renato C. Mesquita. The Element-Free Galerkin Method in Three-Dimensional Electromagnetic Problems[J]. IEEE TRANSACTIONS ON MAGNETICS, 2006, 42(4): 711-714.
    [88] F.Z. Louai, N. Nait-Said, S, Drid. Implementation of an efficient element-free Galerkin method for electromagnetic computation[J]. Engineering Analysis with Boundary Elements, 2007, 31: 191-199.
    [89] G N Marques, J M Machado, S L L Verardi, S Stephany, A J Preto. Interpolating EFGM for computing continuous and discontinuous electromagnetic fields[J]. The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 2007, 26(5): 1411-1438.
    [90] G Ala, E Francomano, A Tortorici, E Toscano, F Viola. A Mesh-Free Particle Method for Transient Full-Wave Simulation[J]. IEEE TRANSACTIONS ON MAGNETICS, 2007, 43(4): 1333-13336.
    [91] G Ala, E Francomano, A Tortorici, E Toscano, F Viola. Corrective meshless particle formulations for time domain Maxwell’s equations[J]. Journal of Computational and Applied Mathematics, 2007, 210: 34-46.
    [92] Suzhen Liu, Qingxin Yang, Haiyan Chen, Guizhi Xu, Fugui Liu. Improvement of the Element-Free Galerkin Method for Electromagnetic Field Calculation[J]. IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2004, 14(2): 1866-1869.
    [93] Haiyan Chen, Qingxin Yang, Suzhen Liu, Wenrong Yang, Rongge Yan, Weili Yan. Element-Free Galerkin Modeling of Giant Magnetostrictive Thin Films[J]. IEEE TRANSACTIONS ON MAGNETICS, 2005, 41(5): 1512-1515.
    [94] Yong Zhang, K. R. Shao, Youguang Guo, J. D. Lavers. A Boundary Meshless Method for Transient Eddy Current Problems[J]. IEEE TRANSACTIONS ON MAGNETICS, 2005, 41(10): 4090-4092.
    [95] Yong Zhang, K. R. Shao, Youguang Guo, Jianguo Zhu, D. X. Xie, J. D. Lavers. A Comparison of Point Interpolative Boundary Meshless Method Based on PBF and RBF for Transient Eddy-Current Analysis[J]. IEEE TRANSACTIONS ON MAGNETICS,2007, 43(4): 1497-1500.
    [96] Yin Huajie Yu Haitao. Meshless method for electromagnetic computation in frequence Domain[J]. Journal of South China University of Technology, 2005, 33(8): 6-10.
    [97] C. Herault, V. Leconte, Y. Marechal, G. Meunier. The node distribution for meshless methods[J]. The European Physical Journal Applied Physics, 2001, 15:135-140.
    [98] Shanazari Kamal, Rabie Nima. A three dimensional adaptive nodes technique applied to meshless-type methods[J]. Applied Numerical Mathematics 2009, 59: 1187-1197.
    [99] Heaviside, O. The induction of currents in cores[J]. The Electrician, 1884, 12: 583 et seq.
    [100] Northrup, E.F. Some newly observed manifestations of forces in the interior of electric currents[J]. Phys. Rev., 1907, 24: 474 et seq.
    [101] Mühlbauer, A. Innovative Induction Melting Technologies: A Historical Review[C]. International Scientific Colloquium Modelling for Material Processing, 2006, Riga, pp13-20.
    [102] The EPRI Center for Materials Fabriction. TECHCOMMENTARY: Induction heating technology[Z]. 1993, 2(1): 2-9.
    [103] De Santana Ivan J, Paulo Balsamo, Modenesi Paulo J. High frequency induction welding simulating on ferritic stainless steels[J]. Journal of Materials Processing Technology, 2006, 179(1-3): 225-230.
    [104] Keith Thompson, Yogesh B. Gianchandani. Direct Silicon–Silicon Bonding by Electromagnetic Induction Heating[J]. Journal of Microelectromechanical Systems, 2002, 11(4): 285-292.
    [105] Nomura S., Mukasa S., Miyoshi T. Prediction of thermal coagulation by AC inductive heating of Mg 1-xCaxFe2O4 ferrite powder[J]. Journal of Materials Science, 2006, 41(10): 2989-2992.
    [106] Muiznieks A., Krauze, A., State of the art of numerical modelling of industrial single crystal CZ and FZ growth[C]. Int. Symp. on Heating by Electromagnetic Sources, 2004, pp.423-30.
    [107] Andrew Cao, Liwei Lin. Selective induction heating for MEMS packaging and fabrication[C]. Proceedings of 2001 ASME, New York, USA. 2001.763-767.
    [108] A. Babini, R. Borsari, F. Dughiero, A. Fontanini, M. Forzan. 3D FEM models for numerical simulation of induction sealing of packaging material[J]. COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 2003, 22 (1): 170-180.
    [109] Hosseini Seyed Hossein, Kashtiban Atabak Mashhadi, Alizadeh Ghasem. Particle swarm optimization and finite-element based approach for induction heating cooker design[C].SICE-ICASE International Joint Conference, Busan, Korea. 2006. 4624-4627.
    [110] Jason Clendenin, Steven tung, Nasser budra, et al. Microwave bonding of silicon dies with thin metal films for MEMS applications[C]. Proc. Of IEEE-ECTC, 2003. 18-23.
    [111] J. D. Balenovich, W. H. Karstaedt. INDUCTION HEATING EFFECTS ON SEMICONDUCTOR DISC PACKAGES[C]. IAS (IEEE Ind Appl Soc) Annu Meet, 10th Conf Rec, 1975. 340-342.
    [112] Hsueh-An Yang, Mingching Wu, Weileun fang. Localized induction heating solder bonding for wafer level MEMS packaging[J]. J. Micromech. Microeng., 2005, 15: 394-399.
    [113] Benedikt J. Knauf, D. Patrick Webb, Changqing Liu, Paul P. Conway. Plastic Packaging Using Low Frequency Induction Heating (LFIH) For Microsystems[C]. 10th' Electronics Packaging Technology Conference. 2008. 172-180.
    [114]陈明祥.基于感应加热的MEMS封装技术与应用研究[D].武汉:华中科技大学. 2005.
    [115] Zito Bill. Induction sealing: The basics, the history and present and future trends[J]. Technical Paper-Society of Manufacturing Engineers. CM, 1996, CM96-261.
    [116] Zito Bill. Induction's new gig: Capless sealing [J]. Machine design, 2003, 75(21): 88-90.
    [117] Induction sealing today: better technology, lower cost: an interview with Bill Zito[Z]. Food & Drug Packaging, Jan, 2004.
    [118] Todaka T., Enozkizono M. Optimal design method with the boundary element method for a high frequency quenching coil [J]. IEEE Trans. Magnetics, 1996, 32:.1262-1265.
    [119] Pascal R., Conraux P., Bergheau J-M. Coupling between finite elements and boundary elements for the numerical simulation of induction heating processes using a harmonic balance method [J]. IEEE Trans. Magnetics, 2003, 39: 1535-1538.
    [120] J.D. Lavers. State of the art of numerical modeling for induction processes [J]. COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 2008, 27(2): 335-349.
    [121]杨晓光.横向磁通感应加热及其优化问题的研究[D].天津:河北工业大学.2004.
    [122] M. E. H. Benbouzid, C. Body, G. Reyne, and G. Meunier.Finite element modeling of giant magnetostriction in thin films[J].IEEE Trans. Magn., 1995, 31(6):3563-3565.
    [123] Thomas-Peter Fries and Hermann G Matthies, A stabilized and coupled meshfree/meshbaed method for incompressible Navier-Stokes equations-Part I: Stabilization[J], Scient Comput, Mar, 2004.
    [124] P. Lancaster, K. Salkauskas. Surfaces generated by moving least-squares methods[J]. Math. Comput., 1981, 37: 141-158.
    [125] B. Nayroles, G. Touzot, P. Villon. Generalizing the finite element method: diffuse approximation and diffuse elements [J]. Comput. Mech., 1992, 10: 307-318.
    [126] G. R. Liu and Y. T. Gu. An introduction to meshfree methods and their programming[M]. Springer, 1 edition, Netherlands, 2005, pp: 58-59.
    [127] Xiong Zhang, Mingwan Lu, J L Wegner. A 2-D meshless model for joint rock structures[J]. Int. J. Num. Meth. Engng., 2000, 47(10): 1649-1661.
    [128] Beissel S, Belytschko T. Nodal integration of the element-free Galerkin method[J]. Comput. Methods Appl. Mech. Engrg., 1996, 139: 49-74.
    [129] H. Song, N. Ida. An eddy current constraint formulation for 3D electromagnetic field calculations[C]. IEEE Transactions on Magnetics, 1991, 27(5): 4012-4015.
    [130] Sonia Fernandez-Mendez, Antonio Huerta. Imposing essential boundary conditions in mesh-free methods[J]. Comput. Methods Appl. Mech. Engrg. 2004, 193: 1257-1275.
    [131] D. Organ, M. Fleming, T. Terry, T. Belytschko. Continuous meshless approximations for nonconvex bodies by diffraction and transparency[J]. Computational Mechanics, 1996, 18: 225-235.
    [132] Y. Krongauz, T. Belytschko. EFG approximation with discontinuous derivatives[J]. Int J Numer Meth Eng, 1998, 41: 1215-1233.
    [133] Vincenzo Cutrupi, Alessandro Formisano, Raffaele Martone. A mesh-free approach for coupled electromagnetic-mechanical problems[J]. International Journal of Applied Electromagnetics and Mechanics, 2007, 25: 69-76.
    [134] Fleming M, Chu Y, Moran B, Belytschko T. Enriched element-free galerkin methods for crack tip fields[J]. Int J Numer Meth Eng, 1997, 40: 1483-1504.
    [135] Vinh Phu Nguyen, Timon Rabczuk, Stephane Bordas, Marc Duflot. Meshless methods: A review and computer implementation aspects[J]. Math. Comput. Simul., 2008, doi:10.1016/j.matcom.2008.01.003.
    [136] L.W. Cordes, B. Moran. Treatment of material discontinuity in the Element-free Galerkin-method[J]. Computer methods in applied mechanics and engineering, 1996, 139: 75-89.
    [137] A. Carpinteri, G. Ferro, G. Ventura. An augmented lagrangian approach to material discontinuities in meshless methods[J]. Comput Mech, 2006, 37: 207-220.
    [138] A. Carpinteri, G. Ferro, G. Ventura. An augmented Lagrangian element-free (ALEF) approach for crack discontinuities[J]. Comput Methods Appl Mech Engrg, 2001, 191: 941-957.
    [139] Y.C. Cai, H. H. Zhu. Direct imposition of essential boundary conditions and treatment of material discontinuities in the EFG method[J]. Computational Mechanics, 2004, 34:330-338.
    [140] Oriano Bottauscio, Mario Chiampi, Alessandra Manzin. Element-Free Galerkin Method in Eddy-Current Problems With Ferromagnetic Media[J]. IEEE Transactions on Magnetics 2006, 42: 1577-1584.
    [141] C. Herault, Y. Marechal, Boundary and interface conditions in meshless methods[J]. IEEE Transactions on Magnetics, 1999, 35: 1450-1453.
    [142] John T. Conway. Trigonometric integrals for the magnetic field of the coil of rectangular cross section[J]. IEEE Transactions on Magnetics, 2006, 42: 1538-1548.
    [143] I. Babuska. The finite element method with Lagrange multipliers[J]. Numer. Math., 1973, 20:179-192.
    [144] Nathan Ida. Modeling of velocity effects in eddy current applications[J]. J Appl Phys, 1988, 63: 3007-3009.
    [145] D. H. Kim, S. Y. Hahn, I. H. Park, G. Cha. Computation of three dimensional electromagnetic field including moving media by indirect boundary integral equation method[J]. IEEE Transactions on Magnetics, 1999, 35: 1932–1938.
    [146] K. Muramatsu, T. Nakata, N. Takahashi, K. Fujiwara. Comparison of coordinate systems for eddy current analysis in moving conductors[J]. IEEE Transactions on Magnetics 1992, 28: 1186-1189.
    [147] P. Zhou, Z. Badics, D. Lin, Z. J. Cendes. Nonlinear T-? Formulation Including Motion for Multiply Connected 3-D Problems[J]. IEEE Transactions on Magnetics,2008, 44: 718-721.
    [148] Takashi Watanabe, Takashi Todaka, Masato Enokizono. Eddy current analysis using overlap grid coordinate system[J]. International Journal of Applied Electromagnetics and Mechanics, 2004, 19: 315–320.
    [149] Edward X Xu, John Simkin, Simon C Taylor. Streamline upwinding in a 3-D edge element method modeling eddy currents in moving conductors[J]. IEEE Transactions on Magnetics, 2006, 42: 667-670.
    [150] X. H. Zhang, J. Ouyang. Element free Galerkin method for steady convection dominated convection diffusion problem[J]. Chinese Quarterly of Mechanics, 2006, 27: 220-226.
    [151] Thomas-Peter Fries, Hermann G. Matthies. A review of Petrov-Galerkin stabilization approaches and an extension to meshfree methods[J]. Scient. Comput, Mar. 2004.
    [152] Gunther F, W. K. Liu, D Diachin. Multi-scale meshfree parallel computations for vicious, compressible flows[J]. Comput Methods Appl Mech Engrg, 2000, 190: 279-303.
    [153] Nathan Ida. Team problem 9 velocity effects and low level fields in axisymmetric geometries[A]. Proceedings of the Vancouver TEAM WORKSHOP, University of British

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700