高压SF_6断路器电弧动态数学模型及喷口结构优化设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本世纪初的几十年是我国电力事业迅猛发展的时期。由于发电、用电地域之差,决定了我国输变电行业将面临巨大的挑战和艰巨的任务。高压SF_6断路器既是电力系统中的重要电气装置,又是高压电器中典型的器件之一,其产品的研究涉及电、磁、热、机等多学科内容,以其为核心而进行相关理论的研究对提高开关行业的理论水平具有重要现实意义。
     本文在阅读了大量国内外参考文献资料的基础上,归纳总结了国内外高压SF_6断路器的众多专家学者的研究成果,从高压SF_6断路器的应用现状和当前研究的热点、难点问题出发,结合国内高压SF_6断路器的发展需求,进行了部分关键技术问题的研究。
     高压SF_6断路器三维电场仿真以及数值求解方法的研究。对于高压SF_6断路器以及其它的开关电器来说,绝缘性能分析是最基本也是最为重要的环节,而基于电场的数值计算是绝缘设计的重要途径。对于含有多重介质、复杂结构的高压SF_6断路器,通过构造合理的数学模型,研究高精度、高求解效率的电场数值求解方法是解决问题的关键。本文针对高压SF_6断路器的实际产品结构,采用传统模拟电荷法进行断路器3D电场数值分析。并在此基础上,针对传统模拟电荷法在具体应用过程中人为干预的问题,首次将遗传算法引入模拟电荷法的布点设计中,提出了智能优化模拟电荷法的新方法,并对具体实例进行电场数值求解,验证其可行性和有效性。同时,实现了有限元和模拟电荷法耦合求解无限远场域问题,提出了实现无界场域电场的高精度数值求解的一种新思路。
     动态电弧模型的建立以及开断过程电弧动态特性的研究。电弧动态模型的准确建立对于研究分析高压SF_6断路器的介质恢复特性和开断性能是必不可少的关键问题。在讨论高压SF_6断路器电弧模型发展历程的基础上,为克服传统电弧模型中电弧与气流相互作用体现不足以及电弧动态特性反映不足的问题,本文首次提出了等效单元体法的二维动态电弧模型及其与气流场耦合的物理数学模型。对电流零前、过零期间以及零后的电弧动态变化进行数值求解,实现了高压SF_6断路器开断过程电弧动态变化的仿真模拟。
     高精度有粘、可压缩、有源、跨音速气流场求解的研究。针对高压SF_6断路器气流场求解的复杂性和特殊性,在对常用气流场数值求解方法应用特点分析的基础上,本文采用改进的有限体积TVD格式进行断路器气流场数值求解,提高了解的收敛性、准确性和激波的捕捉能力。在断路器开断过程动态电弧特性仿真的基础上,深入解析了电弧与高速气流的相互作用机理,研究了电弧堵塞情况下喷口气流参数的变化,电弧与激波的
    
    沈阳工业大学博士学位论文
    摘要
    相互作用等。为进一步研究断路器如何合理利用电弧自身能量有效吹弧,提高断路器介
    质恢复特性等的研究提供了充分的理论基础。
     喷口结构电场/气流场逆问题求解研究。本文在对不同喷口结构断路器短路开断下
    介质恢复特性计算的基础上,首次进行了基于电场/气流场的高压S氏断路器喷口结构优
    化设计。以喷口型面为优化设计变量,以断路器介质恢复特性为优化设计目标,采用改
    进的Powell方法作为喷口优化设计方法。并将所求得的优化喷口型面结构在空载开断
    下进行了介质恢复特性的校核,证明了本文所提出的基于电场/气流场祸合场逆问题求
    解的正确性和有效性。
     本文在计算全程采用了计算机图形可视化支持,形成了集高压S凡断路器电弧动态
    模型、电场/气流场祸合求解的计算分析软件包。
The first decades of this century, there is an increasing development for the electrical power system. And the power system will face the great challenges. High voltage SF6 circuit breaker has been considered as the important electrical equipment. The investigation of its key technology covers several subjects, such as electromagnetic, heat and mechanical fields. Focus on it to have theoretical study will have realistic significance for increasing the design level of switch industry.
    Based on large number of the domestic and overseas references, this thesis concludes the research contributions of many experts and scholars, the current hot problems, combining the developing demand for high voltage SF6 circuit breaker, some key technical problems have been studied.
    3D electric field simulation of high voltage SF6 circuit breaker and numerical computation method. Firstly, the numerical computation techniques have been discussed in this thesis. Insulation performance analysis is the basic and key process for high voltage SF6 circuit breaker and other GIS, so numerical computation of electrics field plays very important role. For high voltage SF6 circuit breaker with multi-dielectric media and complex structure, it's the key for solving the problem by establishing suitable mathematical model, applying the numerical computation methods with high precision and efficiency, In this thesis, based on the analysis of characteristics of common numerical computation methods and aiming at the real structure of the SF6 circuit breaker products, conventional charge simulation method has been applied to analyze the 3D electric field. Taking the nozzle, parallel capacitor and shading cover into consideration in the calculation. Based on it, for solving disadvantage of contrived interfe
    re of the conventional charge simulation method, it's the first time to propose the optimization charge simulation method in this thesis, and numerical computation for the demonstrated example have been achieved to verify the feasibility and validity. Furthermore, a novel combined finite element method and charge simulation method has been proposed in this thesis for realizing the electric field computation of open boundary problem.
    
    
    
    
    Modeling of dynamic electric arc and analyzing on the electric arc dynamic characteristics during the interrupting process. It's key problem for establishing the precise electric arc dynamic model and studying the dielectric recovery characteristics and interrupting performance. This thesis proposed the 2D dynamic arc model by using the equivalent element method and physical and mathematical model coupling with gas flow field. Numerical computation of the dynamic variation of the arc have been completed in the process of before current zero, after current zero and approaching zero to simulate the arc dynamic variation during the interruption process for the high voltage SF6 circuit breaker.
    Investigation on the gas flow field with viscous, active, stride-sonic, compressible for high voltage SFs circuit breaker. An improved finite volume technique and total variation diminish scheme has been presented for solving the numerical problem with complex flow gas and space time processing synchronously, based on analysis of some numerical method for increasing the convergence, precise and strong capture capacity of shock wave. And based on the simulation of dynamic arc characteristics during the interrupting process, the interactive mechanism of the arc and high velocity gas flow has been deeply analyzed, the variation of the gas flow parameters under the condition of arc clogging and interaction of arc and shock wave have been studied. A theoretical basis has been provided for improving the dielectric recovery
    characteristics of high voltage circuit breaker.
    Optimization of the nozzle based on the computation of inverse problem of electric
    field/gas flow field. Based on the calculation of dielectric recovery characteristics of different kinds of nozzle, the optimization scheme of nozzle has been proposed i
引文
[1] 李建基,高中压开关设备实用技术:机械工业出版社,2001
    [2] 郭剑波等,2020年以前我国电网出现更高一级交流电压等级的系统技术问题研究,电网技术,1998,22(7):62-64
    [3] 刁凤鸣,特高压输电的发展综述,西安高压电器研究所,特高压开关设备的研制与开发专集,1997:1-7
    [4] 谷定燮,日本特高压系统过电压和绝缘配合,中国电力,1998,31(11):67-69
    [5] 陆宠惠等,日本1000kY特高压输电技术,高电压技术,1998,24(2):47-49
    [6] 徐国政,张节容,钱家骊,黄瑜珑,高压断路器原理和应用:清华大学出版社,2000
    [7] 朱德恒,严璋,高电压绝缘:清华大学出版社,1992
    [8] Cao Yundong, Liu Xiaoming,Wang Erzhi, Electric Field Optimization Design of the Vacuum Interrupter based on Tabu Search Algorithm, IEEE Transactions on Dielectrics and Electrical Insulation, April 2002, 9(2): 169-172
    [9] 佟立柱,刘晓明,曹云东,王尔智,SF_6断路器中气体放电过程的计算机模拟,高电压技术,2000,26(2):20-21
    [10] 樊明武,颜威利,唐任远,电磁场数值计算的发展,应用与前景,1987(2):1-5
    [11] 雷照银,关于电磁场数值分析的若干认识,电工技术学报,1997,12(6):32-34
    [12] 盛剑霓,工程电磁场数值分析,西安交通大学出版社,1991
    [13] 周克定等,工程电磁场数值计算理论方法及应用:高等教育出版社,1994
    [14] 张天爵,樊明武等,三维网格的自动剖分与图形显示,电工技术学报,1992(1):59-63
    [15] 杨喜乐,盛剑霓,计算三维场的环状高精度插值单元,电工技术学报,1989(3),8-12
    [16] 朱建国,唐宝乾,三维场域的有限元自动剖分,电工技术学报,1987(4):51-56
    [17] 刘旭光,吕邦泰,一种三维网格自动生成的方法,华北电力学院学报,1989(2):28-32
    [18] 曹云东,王尔智,刘晓明,SF_6断路器断口附近三维电场数值模拟,电机工程学报,2001,21(1):92-96
    [19] Cao Yundong, Liu Xiaoming, Wang Erzhi, Hybrid finite element-charge simulation method for SF_6 tank type circuit breaker with double break, IEEE Transactions on Magnetics, Septemer 2001, 37 (5), 3178-3180
    [20] 曹云东,刘志远,王尔智等,SF_6断路器断口附近三维电场的边界元分析,高电压技术,1999,25(1):4-32
    
    
    [21] J.A.G.Garcia, H.Singer, The Consideration of Singularities in the Numerical Calculation of Electrostatic Field by Means of the Surface Charge Method, Electrical Engineering, 1997(80):215-219
    [22] A.M.Cassia, Theorie Novelle des Arc De rupture et de laRigidite des Circuit, CIGRE, 1939:102
    [23] O.Mayr, Theorie des Statischen und des Dynamischen Lichtbogens, Arehivf, Elektrotechnik, 1943(12):588
    [24] Leslie S. Frost, Richard W. Liebermann, Composition and Transport Properties of SF6 and Their Use in a Simplified Enthalpy Flow Arc Model, Proceedings of the IEEE, 1971,59(4):474-485
    [25] M D Cowley, Integral Method of Arc Analysis, J. Appl. Phys., 1974, 7:2218-2222
    [26] B W Swanson, R M.Roidt, Some Numerical Solutions of the Boundary Layer Equations for a SF6 Arc, Pro. oflEEE, 1971,59:493
    [27] B W Swanson, R M.Roidt, Boundary Layer Analysis ofa SF6 Circuit Breaker Arc, IEEE Trans. On PAS, 1972, 91:1086
    [28] B W Swanson, Nozzle Arc Interruption in Supersonic Flow, IEEE Trans. Power Apparatus and Systems, 1977, 96:1697-1702
    [29] W Hermann, Kogelschatz V, Experimental and Theoretical Study of Stationary High Current in a Supersonic Nozzle Flow, J. Appl. Phys, 1974, 7:1703
    [30] W Hermann, Ragaller, Theoretical Description of the Current Interruption in gas Blast Breaker, IEEE Trans, on PAS, 1977,96(5): 1546-1555
    [31] J.J.Lowke, H.C.Ludwig, A Simple Model for High Current Arc Stabilized by Forced Convection, J.Appl.Phys., 1975,46:3325-3329
    [32] M.T.C. Fang, D.Brannen, A Current Zero Arc Model Based on Forced Convection, IEEE Trans. Plasma Sci., 1979,PS-7(4):217-229
    [33] K. Ragaller, W. Egli, and K.P.Brand, Dielectric Recovery of an Axially Blown SF6 Arc after Current Zero: Part Ⅱ: Theoretical investigations, IEEE Trans. Plasma Sci., 1982,PS-10(3): 154-161
    [34] E. Schade, K. Ragaller, Dielectric Recovery of an Axially Blown SF6 Arc after Current Zero: Part 1: Experimental Investigation, IEEE Trans. on Plasma Science, 1982,10(3): 141-147
    [35] E. Schade, K. Ragaller, Dielectric Recovery of an Axially Blown SF6 Arc after Current Zero: Part 2: Theoretical Investigation, IEEE Trans. on Plasma Science, 1982,10(3): 148-154
    [36] J. J. Lowke, Two-dimensional Calculation of Properties of Arcs in High Speed Flow, Int. Conf. on Gas Discharge and Their Application, London 1982:20
    [37] H.Kuwahara, T.Tanabe, K.Ibuki et al, New Approach to Analysis of Arc
    
    Interruption Capability by Simulation Employed in the Development of SF_6 GCB Series with High Capacity Interrupter, IEEE Trans. on Power Apparatus and Systems, 1983, 102(7): 2262-2268
    [38] H Ikeda, T Ueda et al, Development of Large-Capacity SF6 Gas Interruption Chamber and its Application to GIS, IEEE Trans. on Power Apparatus,1984,103(10):2038-3043
    [39] R R Mitchell, D T Tuma, Transient Two-dimensional Calculations of Properties of Forced Convection Stabilized Electric Arcs, IEEE Trans. on Plasma Science, 1985,13 (4):207-220
    [40] R R Mitchell, Theoretical Analysis of Dielectric Recovery in SF_6 Gas-Blast Arcs, IEEE Trans. on Plasma Science, 1986,14(4): 384-389
    [41] J F Zhang, M.T.C.Fang, Theoretical Investigation of a 2kA DC N2 Arc in a Supersonic Nozzle J. Appl. Phys. 1987,21(3): 368-373
    [42] Yanabu, H.Mizoguchi, h, Ikeda et al, Development of Novel Hybrid Puffer Interrupting Chamber for SF_6 Gas Circuit Breaker Utilizing Self-Pressure-Rise Phenomena by Arc, IEEE Transactions on Power Delivery, Vol. 4, No. 1, January, 1989
    [43] S. Taylor, M.T.C.Fang, G.R.Jones, D.W. Shimmin, Current Zero Flow Conditions in a Circuit Breaker Nozzle, IEE Proceedings-A, Sep., 1991,138(5):259-264
    [44] J.Y.Trepanier, M.Reggio, and R.Camarero. LTE Computation of Axisymmetric Arc-Flow Interaction in Circuit Breakers, IEEE Transactions on Plasma Science, 1991,19(4): 580-589
    [45] X.D.Zhang, J.Y.Trepanier, and R.Camarero. A Physical Model for the Numerical Simulation of Arc-Blown Circuit Breakers, In The Asp. Electromech. Energy Converters and Drives, 1993: 299-304
    [46] Y.Park and M.T.C.Fang, Mathematical Modeling of SF6 Puffer Circuit BreakersⅠ: High Current Region, IEEE Transactions on Plasma Science, April, 1991,24(2)
    [47] M.T.C.Fang, Q. Zhuang, Current-zero Behaviour of an SF_6 Gas-Blast Arc. Part Ⅰ: Laminar Flow, J. Phys. D: Appl. Phys. 25,1992: 1197-1204
    [48] M.T.C.Fang, Q. Zhuang, X.J. Guo, Current-Zero Behaviour of an SF_6 Gas-Blast Arc. Part Ⅱ: Turbulent Flow, J. Phys. D: Appl. Phys. 27,1994: 74-83
    [49] K.Y.Park, X. J. Guo, et al, Mathematical Modeling of SF_6 Puffer Circuit BreakersⅠ: Current Zero Region, IEEE Transactions on Plasma Science, October, 1997,25(2):967-973
    [50] J.D.Yan, M.T.C.Fang, W.Hall, The Development of PC Based CAD Tools for Auto-Expansion Circuit Breaker Design, IEEE Transactions on Power Delivery, January,1999, 14(2):176-181
    
    
    [51]王其平,胡万平,刘亚芳,SF_6与其混合气体中电弧动态特性和应用:西安交通大学出版社,1996.11
    [52]张交锁,王其平,SF_6气流中电弧特性的理论计算与分析,高压电器,1992,28(4):15-21
    [53]徐建源,王其平,喷口电弧二维动态数学模型及其应用,电工技术学报,1993,(2):50-55
    [54]刘亚芳,王其平,电弧二维数学模型及其在SF_6/N2混合气体开断特性分析中的应用,西安交通大学,1993,27(3):33-38
    [55]佟立柱,王其平,王尔智,SF_6断路器无载开断过程中气流特性的计算机模拟,电工技术学报,1996,11(3):16-20
    [56]佟立柱,王其平,王尔智,SF_6断路器介质强度恢复过程的数值分析,西安交通大学学报,1997,31(2):1-5
    [57]李一滨,杨涌,李小滨,王其平,SF_6气流中电弧热边界区的数值分析,电工电能新技术,1997(6):6-9
    [58]李一滨,王其平,杨涌,喷口电弧二维磁流体动力学(MHD)数学模型,西安交通大学学报,1998,32(6):1-4
    [59]杨涌,王其平,SF_6断路器喷口电弧熄灭过程的数字模拟,中国电机工程学报,2000,20(5):9-13
    [60]张俊民,杨涌,王其平,高压SF_6自能膨胀式断路器及其数值分析技术,2000,33(4):38-41
    [61]徐黎明,陈晓宁,马志瀛,六氟化硫断路器无载介质恢复特性的计算,中国电机工程学报,1998,18(5):315-318
    [62]Zhang X, Ma Z Y, Wang G. Mathematics Simulation of Breaking Characteristics of an SF_6 Puffer Interrupter with a Hydraulic Operating Mechanism, Proc. of 2th Int. Conf. on ECAAA. Xi'an,1993:79-82
    [63]徐黎明,压气式SF_6高压断路器开断性能仿真分析和智能操作,1998,博士论文
    [64]王尔智,林莘,徐建源,压气式断路器开断过程中灭弧室内气动特性及分闸速度特性的研究,沈阳工业大学学报,1994,16(3):1-6
    [65]王尔智,林莘,压气式气吹灭弧室的气动计算,电工技术学报,1994(1):40-43
    [66]王尔智,赵中原,曹云东,SF_6灭弧室内小容性电流开断的数值模拟,电工技术学报,2001,16(1):35-38
    [67]王尔智,赵中原,曹云东,SF_6断路器灭弧室内粘性流场求解的一种新方法,中国电机工程学报,2000,20(9):9-12
    [68]Cao Yundong, Liu Xiaoming, Wang Erzhi, The Investigation on Double-Acting Mechanism in High Voltage Circuit Breaker, The First International Conference on Mechanical Engineering,2000,11
    
    
    [69] Liu Xiaoming,Cao Yundong, Wang Erzhi, The Investigations on the Mechanical Characteristic of Operating Mechanism and Interrupting Property of Circuit ,The First International Conference on Mechanical Engineering, 2000.11
    [70] Cao Yundong,Liu Xiaoming,Wang Erzhi, Combined application of finite element method-charge simulation method for analyzing the electric field of SF_6 circuit breaker,4th International Conference on Electromagnetic Field Problems and Applications—ICEF'2000
    [71] 曹云东,高压SF_6断路器介质恢复特性的计算与分析,沈阳工业大学博士学位论文,2001,3
    [72] M.Okamoto, M.Ishikawa, K, Suzuki et al, Computer Simulation of Phenomena Associated with Hot Gas in Puffer-Type Gas Circuit Breaker, IEEE Transaction on Power Delivery, April, 1991,6(2)
    [73] J.Y. Trepanier, M. Reggio, Y.Lauze et al, Analysis of the Dielectric Strength of an SF_6 Circuit Breaker, IEEE Transactions on Power Delivery, April, 1991,6(2)
    [74] J.Y.Trepanier, X.D.Zhang, H.Pellegrin, R.Camarero, Application of Computation Fluid Dynamics Tools to Circuit-Breaker Flow Analysis, IEEE Transactions on Power Delivery, April, 1995,10(2)
    [75] J.C.Verite, T.boucher, A.Comte, C.Delalondre,O.Simonin et al, Arc Modeling in Circuit Breaker: Coupling between Electromagnetics and Fluid Mechanics, IEEE Transactions on Magnetics, 1995,31 (3),May
    [76] Grega Bizjak et al, Circuit Breaker Model for Digital Simulation Based on Mayr's and Cassie's Differential Arc Equations, IEEE Transaction on Power Delivery, 1995,10(3),July
    [77] Z Djuric,W Balachandran and C W Wilson, Electrical Field and Space Charge Modeling in a Viscous Fluid Flow in a Nozzle, J. Phys.D: Appl. Phys.31(1998), 2132-2144
    [78] R E Bulundell, M T Fang, R M Terrill, Similarity and Scaling Laws for Transient Low Current Arcs in a Strongly Accelerating Gas Flow, J. Phys. D: Appl. Phys. 1995,28:2029-2036
    [79] R E Bulundell, M T Fang, The Similarity and Scaling of radiating Arcs Burning in a Turbulent Axially Accelerating Gas Flow, J. Phys. D: Appl. Phys. 1997,30: 628-635
    [80] R E Bulundell, M T Fang, A Simplified Turbulent Arc Model for the Current-Zero Period of a SF_6 Gas-Blast Circuit Breaker, J. Phys. D: Appl. Phys. 1998,31: 561-568
    [81] J.C.Verite and T.Boucher et al, Coupling between Physical Arc Modeling and Circuit Modeling in a Circuit-Breaker, IEEE Transactions on Magnetics,
    
    1999,35(3),May
    [82]李仰平,张建宏,彭宗仁,刘泽响,李子叶,高压断路器喷口材料的试验研究,高压电器,2002,38(4):19-21
    [83]邬方涛,耐高压断路器用喷口材料的初步研究,有机氟工业,2000(2):1-5
    [84]邱毓昌,施围,张文元,高电压工程,西安:西安交通大学出版社,1992
    [85]陈慈萱,马志瀛,高压电器:水利电力出版社,1987
    [86]姚新,陈国良等,进化算法研究进展,计算机学报,1995,No.9:694-706
    [87]袁志勇,王泽忠,邵汉光,电磁场逆问题的分析与计算,中国电机工程学报,1994(1):1-6
    [88]吴清,沈雪勤,颜威利,小波神经网络在电磁场优化问题中的应用,中国电机工程学报,1996(2):83-86
    [89]文福拴,韩祯祥,基于遗传算法和模拟退火算法的电力系统的故障诊断,中国电机工程学报,1994(3):29-35
    [90]Tang Renyuan,Yang Shiyou et al, Combined Strategy of Improved Simulated Annealing and Genetic Algorithm for Inverse Problem, IEEE Trans.Magn. 1996,32(3):1326-1329
    [91]汪友华,颜威利,自适应模拟退火法在电磁场逆问题中的应用,中国电机工程学报,1995,15(4):234-252
    [92]傅德薰,流体力学数值模拟:国防工业出版社,1993
    [93]朱自强等,应用计算流体力学:北京航空航天大学出版社,1998
    [94]王承尧,王正华,杨晓辉,计算流体力学及其并行算法:国防科技大学出版社,2000
    [95]苏铭德,黄素逸,计算流体力学基础:清华大学出版社,1997
    [96]徐华舫,空气动力学基础:北京航空学院出版社,1987
    [97]欧阳杰,叶昌业,封建湖等,进气道物面贴体坐标生成的几何自适应控制方法,航空计算技术,1998,28(2):45-49
    [98]郑秋亚,用于复杂流场数值模拟的重叠/嵌套网格方法,航空计算技术,1998,28(2):56-58
    [99]S.V. Tsynkov, An Application of Nonlocal External Conditions to Viscous Flow Computations, Journal of Computational Physics, 1995,116:212-225
    [100]C.W.Hirt, A. A. Amsden, An Arbitrary Lagrangian-Eulerian Computing Method for All Flow Speeds, Journal of Computational Physics 1974,14:227-253
    [101]Ami Harten, High Resolution Schemes for Hyperbolic Conservation Laws, Joumal of Computational Physics, 1983,49:357-393
    [102]H. C. Yee, R F. Warming, Implicit Total Variation Diminishing Schemes for Steady-State Calculations, Joumal of Computational Physics, 1985,57:327-360
    [103]董葳,范绪箕,高速粘性绕流的有限体积TVD格式,空气动力学学报,1999,
    
    17(3):299-304
    [104]倪汉根,王嘉松,金生,线性双曲型方程新的TVD格式,计算物理,1999,6(1):25-30
    [105]陆夕云,庄礼贤,童秉纲,对称TVD差分格式的构造及其应用,计算物理,1994,11(1):45-50
    [106]M.T.C Fang, EJ.Shaylor, Arc-shock Interaction, in Proc. XVI Int Conf. Phenonmena Isoised Gases, 1983:522-523
    [107]M.T.Fang, S. Kwan, W.Hall, Arc-Shock Interaction Inside a Supersonic Nozzle, IEEE Trans. Plasma Sci., 1996,24(1):85-86
    [108]K.Y.Park, M.T.C.Fang, Mathematical Modeling of SF6 Puffer Circuit Breakers, Ⅰ: High Current Region, IEEE Trans. Plasma Sci., 1996,24(2):490-502
    [109]K.Y.Park, X.J.Guo, R.E. Bulundell, M.T.C.Fang, Y.J. Shin, Mathematical Modeling of SF6 Puffer Circuit Breakers, Ⅱ: Current Zero Region, IEEE Trans. Plasma Sci., 1996,25(5):967-973
    [110]R.E. Bulundell, M.T.C.Fang, A. Vourdas, Stability ofa DC SF6 Arc in an Axially Accelerating Flow, IEEE Trans. Plasma Sci., 1996,25(5):852-858
    [111]Y J Shin, K Y Park, K C Chang et al. Development of 800 kV Model Interrupter for UHV Transmission System, Proc. of 11th Int. Conf. on Gas Discharge and Their Application, Tokyo, 1995:424-427
    [112]K. E Brand, W. Egli, L. Niemeyer, et al, Dielectric Recovery of an Axially Blown SF6-Arc after Current Zero. Part Ⅲ-Comparison of Experiment and Theory," IEEE Trans. Plasma Sci., 1982,PS-10(3): 162-172
    [113]T. Yoshizumi, K. Ibuki, et al, Hot Gas Flow Analysis in SF6 Gas Circuit Breaker During the Short Circuit Interruption, IEEE Transactions on Power Delivery, 1089,4(3), July
    [114]J. J Lowke, H. A Lee, Numerical Study of a Two-Dimensional Circuit Breaker Arc During Current Interruption, In: Int. Conf. on Gas Discharges and Their Applications, 1985:54-56
    [115]R. W. Liebermann, J. J. Lowke, Radiation Emission Coefficients for Sulfur Hexafluodde Arc Plasmas, Quant. Spectors. Radiat. Transfer. 1976,16:253-264
    [116]R.R. Mitchell, Theoretical Analysis of Dielectric Recovery in SF6 Gas-Blast Arcs, IEEE Transactions on Plasma Science, 1986,Ps-14(4), August
    [117]刘光宗,流体力学原理与计算基础:西安交通大学出版社,1987
    [118]A. Corana, M. Marchesi, C. Martini, Minimizing Multimodal Functions of Continuous Variables with the "Simulated Annealing" Algorithm, ACM Transactions on Mathematical Software, 13(3), September, 1987
    
    
    [119]G. Fuat Uler, Osama A.Mohammed, et al, Design Optimization of Electrical Machines Using Genetic Algorithms, IEEE Trans. on Mag. July, 1994, 6
    [120]Liu Xiaoming, Cao Yundong, Wang Erzhi, Optimization design of the contact and shield in vacuum interrupter based on the genetic algorithm, IEEE 19th Intemational Symposium on Discharges and Electrical Insulation in Vacuum,2000.9
    [121]Glover F, Tabu Search-Part 1,ORSA J. Comput,1989,1(3):190-206
    [122]Glover F, Tabu Search-Part 2,ORSA J. Comput,1990,2(1):4-32
    [123]Hu Nanfang, TABU Search Method with Random Moves for Globally Optimal Design, J. Num. Math. Eng., 1992, 35:262-280
    [124]王秀和,唐任远,TABU算法在永磁启动机电磁场逆问题中的应用,电机与控制学报,1998(4):225-228
    [125]曹云东,王尔智,刘晓明,Tabu算法在电器优化设计中的应用,电工技术学报,2000,15(4):32-35
    [126]Cao Yundong, Liu Xiaoming,Wang Erzhi, Electric field optimization design of the vacuum interrupter based on the Tabu search algorithm, IEEE Transactions on Dielectrics and Electrical Insulation, April 2002,9(2): 169-172
    [127]Shigeru Obayashi, Genetic Optimization of Target Pressure Distributions for Inverse Design Methods, AIAA-95-1649
    [128]K. Yamamoto, O, Inoue, Application of Genetic Algorithm to Aerodynamic Shape Optimization, AIAA-95-1650
    [129]D.J. Doorly, J. Peiro, Supervised Parallel Genetic Algorithms in Aerodynamic Optimization, AIAA-97-1852
    [130]D. Quagliarella, A. Dellacloppa, Genetic Algorithms Applied to the Aerodynamic Design of Transonic Airfoils, J. of Aircraft, 1995,32:889-891
    [131]樊会元,王尚锦,席光,透平机械叶片的遗传优化设计,航空学报,1999,20(1):47-51
    [132]袁亚湘,孙文瑜,最优化理论与方法:科学出版社,1997
    [133]Zubair Islam,朱一锟,朱自强,薛晓春,跨音速翼型气动优化设计方法,航空学报,1999,19(1):83-86
    [134]M. E. Eleshaky, O. Baysal, Airfoil Shape Optimization using Sensitivity Analysis on Viscous Flow Equations, J. Of Fluid Engineering, 1993,115(1)
    [135]J. Reuther, A. Jameson, Aerodynamic Shape Optimization of Wing-body Configuration using Control Theory, AIAA-95-0123
    [136]A. Jameson, Optimization Aerodynamic Design using CFD and Control Theory, AIAA-95-1729
    
    
    [137] A. Jameson, N.A. Pierce, L. Martinelli, Optimization Aerodynamic Design using the Navier-Stokes Equations, AIAA-97-0101
    [138] P.D. Frank, G. R. Shubin, A Comparison of Optimization based Approaches for a Model Computational Aerodynamic Design Problem, Journal of Computational Physics, 1992(98)
    [139] 朱自强,Islam Z,朱一锟,流场/电磁场的数值优化计算,计算物理,1998,15(6):648-654
    [140] M B Anderson, G A. Gebert, Using Pateto Genetic Algorithms for Preliminary Subsonic Wing Design, AIAA Paper96-4023,1996:363-371
    [141] 隋洪涛,陈红全,唐智礼,基因算法在喷管反设计中的应用,南京航空航天大学学报,1999,31(2):127-132
    [142] Zhu ZQ, Li HM, Li J, et al. Genetic Algorithms in Bi-Disciplinary (Aerodynamic/Electromagnetism) Optimization[J].Science in China(Series E), 2001, 40 (6): 572-580
    [143] 吁日新,朱自强,双目标双学科数值优化计算,航空学报,2002,23(4):330-333

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700