磁悬浮列车悬浮控制系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以市科委“沈阳市科学宫的磁悬浮展品车研制”项目为背景,对磁悬浮系统进行了详细的分析并建立了较为准确的数学模型,在平衡点处进行了合理的线性化,得到了磁悬浮系统的状态方程和传递函数。在此基础上,对磁悬浮控制器的设计方法、性能指标等问题进行了研究,详尽阐述了各种控制方案,包括PID控制、线性增益状态反馈控制、双闭环控制、PI状态反馈控制及模糊-PID控制。比较了各种控制方案的优缺点。
     设计并实现了模拟PID控制器对单个电磁铁的悬浮控制,系统响应快、抗扰性强,稳定性好,位移误差变化范围为±0.05mm,没有明显的振动,测试的位移曲线和电流曲线平滑,超调小,具有理想的控制效果。
     由于EMS型磁悬浮列车的非线性和大迟后环节的特点,使得系统本身没有稳态工作点,系统平衡只能是一个动态平衡,其工作状态为高频振动,由此导致磁悬浮列车悬浮系统的四个电磁悬浮单元之间的机械耦合是不可避免的。针对四点悬浮时的高频机械耦合现象,设计了交错耦合调节器,对磁悬浮列车运行过程中的高频干扰信号进行了处理,有效地消除了干扰信号。从沈阳科学宫磁悬浮展品车的调试结果,可以看出,该控制器能实现磁悬浮列车的四点悬浮,得到了较好的稳定性、较强的鲁棒性,位移误差变化范围为±0.15mm,并有效地提高了系统的刚度,具有良好的控制效果。
This thesis is based on the MAGLEV train model developed for Shenyang Science and Technology Museum. The magnetic suspension device is manufactured and analyzed, and the accurate mathematic model of suspension system is set up. By linearizing the mathematic model at the equilibrium point, the state and transfer functions of the system are obtained. On the basis of the mathematic model, the controllability and observability are analyzed. Furthermore, several kinds of controllers such as linear state feedback controller, PED controller, fuzzy-PID controller, PI states feedback controller are designed for the system. The simulation and experiment for these controllers are conducted, and the features and performances of each controller are analyzed.
    An analog PID controller is designed to fulfill the control of the suspension system. The controller has perfect performances in the homopolar magnetic suspension system. The error of displacement is within ?0.05mm, and the curves of the coil current are smooth.
    The EMS (electromagnet suspension system) of the maglev vehicle has nonlinear and hysteresis characters. The equilibrium point of maglev system is unstable. The four-point attraction magnetic suspension system has the coupling phenomena between single-suspension magnets, which destroy the equilibrium of maglev systems, The error of displacement is from +0.25mm to -0.25mm, so in order to acquire the expected features, a cross coupling adjustor is designed, which eliminates the coupling interfere signals. The error of displacement is reduced to ?.15mm.The satisfied performances of the developed controller are obtained in experiment.
引文
[1] 郭庆鼎,王成元等编著.直线电机伺服系统的精密控制技术.机械工业出版社,2000.
    [2] 郭庆鼎,蓝益鹏.双位置驱动直线伺服电机三重动态同步控制.电工技术学报,2003(2).
    [3] 孙宣标,郭庆鼎.基于交叉耦合应力补偿的双直线电机精密同步控制应用研究.电气传动,2003(3).
    [4] 叶云岳编著.直线电机原理及应用.机械工业出版社,2000.
    [5] 邵丙衡.轨道系统高速列车与磁悬浮列车的主要技术比较.机车电传动,1997(2).
    [6] 刘华清编译.德国磁悬浮列车.成都电子科技出版社,1995.
    [7] 严陆光.高速磁悬浮列车技术及在我国客运交通中的战略地位.电工电能新技术,1999(4):17-22.
    [8] 严陆光.关于我国高速磁悬浮列车发展战略的思考.科技导报,2002(11).
    [9] 连级三.电力牵引控制系统.北京:中国铁道出版社,1994.
    [10] 赵可斌.电力电子变流技术.上海:上海交通大学出版社.1993.
    [11] 铁科院机辆所.载入磁浮试验车的研制可行性论证.北京:国家科委.1991.7.
    [12] 龙志强,佘龙华,常文森.磁悬浮隔振系统的行为与分析.国防科技大学学报,1993,16(3):110~115.
    [13] 李红,左鹏,刘伟志等.6t单转向架磁悬浮试验车的研究.铁道学报,1999(6):10-14.
    [14] 李云钢,常文森.磁浮列车的模糊反馈控制.模糊系统与数学.1998,12(1).
    [15] 李士勇编著.模糊控制·神经控制和智能控制论.哈尔滨工业大学出版社,1998.
    [16] 陶永华等.新型PID控制及其应用.北京:机械工业出版社,1998.
    [17] 诸静.模糊控制原理与应用.北京:机械工业出版社.
    [18] 刘德生.Fuzzy-PID控制算法在磁悬浮系统中的应用.计算机测量与控制,2001,10(1).
    [19] 曾佑文等.磁浮列车车辆.轨道耦合振动及悬挂参数研究.西南交通大学学报,1999.34(2)
    
    
    [20] 张强.磁悬浮控制系统的研究.河北工业大学硕士论文.2002.
    [21] 李练兵.磁悬浮控制系统的研究.天津大学硕士学位论文.1999:1~54.
    [22] 李练兵,许镇林,杨鹏.磁悬浮系统PI状态反馈控制器设计.河北工业大学学报.1999.28(2):40~43.
    [23] Cai Y, Chen S S, Rote D M. Vehecle/guidway interaction in maglev system. ANL-92/19, 1992, 19(2): 6~23.
    [24] Cai, B. -Konik, D.: Intelligent Vehicle Active Suspension Control Using Fuzzy Logic, IFAC World Congress, Sydney, 1993, 2(12): 231~236.
    [25] Jiang Hao, Lian Jisan. The Dynamic Model and Control of Single-Magnet Suspension System, Journal of Southwest Jiaotong University, 1992, (1): 59~67.
    [26] Yaji. New Fuzzy Reasoning-based High-performance Speed/Position Serve Control Schemes Incorporating Ultrasonic Motor. IEEE Trans. on Industry, 1992,35(5): 3044~3052.
    [27] D.Ebihara, H.Kawaguchi, Y.Mumguchi. Transportation Technique for Magnetically Levitated Thin Iron Plates. IEEE Trans. on Magn. 1993, 29(6): 2974~2976.
    [28] Miller L. TRANSRAPID 06 Ⅱ performance and characteristics. Inter. Conference on Maglev 1987.155~160.
    [29] Jin Y C, Zhu J. Implementing Self-Organizing Fueyy Controller with Hybrid Pi-Sigrna Neural Networks and its Application. 3rd Inter. Workshop on Advanced Motion Control. Unive. of California at Berkeley. 1994, 36(8):893~902.
    [30] Yoshihiro Kyotani. Recent progress by JNR on maglev[J].IEEE Trans. on Magn.1998, 24(2): 804-807.
    [31] Shibata M, Makin, Saioh T. On -board power supply system of a magnetically levitated Vehicle. IEEE Trans. on Magn. 1992, 28(1): 474-477.
    [32] Sinha P K. Electromagnetic suspension: dynamics and control. London: Peter Peregrinus Ltd. 1997: 42~46.
    [33] Mimpei Morishita, Teruo Azukizawa, Shuji Kanda, Nobum Tamura, Toyohiko Yokoyama. A new maglev system for magnetically levitated cartier system. IEEE Transactions on vehicular technology, 2001, 38(10): 49~55.
    
    
    [34] Teruo Tsuji, Kazuo Takahashi. etc. Nonlinear magnetic levitation control by four-point attraction, Electrical Engineeriug in Japan, 1992, 112(2): 42~48.
    [35] Oguchi K, Okada K. Contactless starting and positioning of a steel ball in single-axis magnetic suspension device by variable structure control. Controller Design, 1992, 20(6): 32~40.
    [36] Peng Yang. etc. Electromagnetic field calculation for a magnetic suspension system in high-speed rotation. CEFC'98 Tucson, Arizona, 1998, 31(6): 20~26.
    [37] Johe Y, Hung. Magnetic bearing control using fuzzy logic. IEEE Transactions on industry applications, 1995, 31 (6): 80~87.
    [38] Franco Maddaleno. A modified class g amplifier for active magnetic bearings. IEEE Transactions on industry applications, 1997, 10(5): 534~538.
    [39] Perry Tsao, Seth R. Sanders, Gabriel Risk. A self-sensing homopolar magnetic bearing: Analysis and Experimental Results. IEEE Trans. on Mag., 1999, 110(10): 2560~2565.
    [40] 江浩,连级三.单磁铁悬浮系统的动态模型与控制.西南交通大学学报,1992.1.
    [41] 刘豹编著.现代控制理论.北京:机械工业出版社,1989,4.
    [42] 薛定宇编著.反馈控制系统设计与分析—MATLAB语言应用.北京:清华大学出版社,2000.4.
    [43] 夏德钤.自动控制原理.北京:机械工业出版社,1989.2.
    [44] 蔡剑锋,于传军.涡流传感器在位移测量中的应用.信息技术,2000.5.
    [45] 康华光,陈大钦.电子技术基础.北京:高等教育出版社,1999.6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700