第二类超导体力—磁耦合基本特性的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超导体的力-磁耦合基本特性以及断裂问题是超导理论和超导技术中关注的基础性课题,本学位论文针对非理想第二类超导体在电磁场作用下的力学行为以及断裂特性进行理论研究,同时分析了理想第二类超导体的力-磁耦合特性,讨论了力学变形对于超导特性的影响。
     首先,分析了高温超导体在磁化过程中由于电磁力的作用而引起的力学变形问题,在基于临界态模型建立的超导体应力应变分析模式的基础上,考虑了随励磁速率变化的磁通流动和蠕动这两个物理过程,模拟了超导体磁化过程中的力学问题。对于超导体磁致伸缩随时间对数衰减的实验现象,采用Anderson磁通蠕动模型将电流密度随时间的变化关系考虑到电磁体力的计算中,模拟结果与Ikuta等人的实验很好的吻合。其中,成功地模拟了磁致伸缩随时间的对数衰减以及在磁场上升阶段中出现的先增大后减小的非单调衰减现象,并可利用本模型预测最大值出现的时刻以及峰值。此外,对于交变场的励磁过程,本文首次同时考虑磁通流动和磁通蠕动效应,讨论了不同励磁速率下超导体的磁致伸缩和应力分布。
     其次,提出了一套研究高温超导体裂纹尖端临界电流奇异性以及俘获磁场减小这一问题的理论方法。首先针对比较常见的含中心椭圆孔洞的长圆柱形超导体,通过复变函数和保角变换的方法将问题简化为一个轴对称问题。分别基于临界态Bean模型和Kim模型讨论了临界电流集中性随椭圆孔洞形状因子的变化关系,并得到了线型裂纹尖端的临界电流奇异性。文中首次定义并给出了电流密度强度因子KJ,揭示出临界电流密度的-1次奇异性,且与超导圆柱的半径并无关系,其中Bean模型的结果仅由裂纹尺寸a以及临界电流密度Jc决定,因而具有一定普适性。同时,还获得了裂纹周围俘获磁场的分布,并发现由Bean模型和Kim模型得到的结果变化并不大,裂纹降低了超导体中心的俘获磁场,这与已有的实验相吻合。
     最后,研究了理想第二类超导体的力-磁耦合特性。基于修正的GL方程,分析了超导体波函数以及相干长度的应变效应,分别获得了一维问题的解析解和二维问题的数值解,其中数值解采用了傅里叶级数展开以及迭代算法。除此之外,还计算了理想第二类超导体在磁场中的表面变形。当磁通进入超导体并形成Abrikosov磁通晶格后,超导体受到由静电势引起的体力以及表面偶极子导致的面力作用,因而超导体的表面变形也具有一定的周期性,通过数值方法求解了GL方程并讨论了表面偶极子在总的表面变形中所占的比例。
The crack problem and the Magneto-Elastic coupling properties of the superconductors have become the fundamental subjects in both superconducting applications and theories. This thesis presents a theoretical investigation on the mechanical behaviors and fracture properties for the high temperature superconductors. Besides this, the Magneto-Elastic coupling properties of the ideal type-II superconductors are also investigated in this work.
     Firstly, the mechanical deformation of the high temperature superconductors induced by the electromagnetic forces in the magnetization process is analyzed. Based on the model proposed by Johansen, which is restricted to the critical state models, we consider the effect of the flux creep and flux flow on the stress and magnetostriction of the superconductors. The Anderson's flux creep model is used to model the logarithmic decrement of the magnetostriction, in which the decrease of the current density with the time is considered in the calculation of the electromagnetic body force. The obtained results are consistent with the experiments of Ikuta. It is noted that our model successfully simulate the non-monotonic decrease of the magnetostriction in the ascent branch of the applied field, the time where the maximum value occurs can also be predicted. When the magnetization field is time-dependent and sawtooth-like, the effect of flux flow should be also considered. Both the effects of flux creep and flux flow on the stress and magnetostriction are discussed in our model.
     Secondly, the singularity of current distribution around the crack in a long cylindrical superconductor and the decrement of the trapped field are investigated analytically. A general model that a long cylindrical superconductor containing an internal elliptical hole placed in a magnetic field is considered. After a simple conformal mapping is employed to the case that the superconductor is fully penetrated, the current streamlines, the current density and the trapped field around the crack in the superconductor without deformation are obtained. On the basis of the Bean model and the Kim model, the dependence of the current concentration with the shape factor of the elliptical hole is discussed. Also, the singularity of current distribution around the crack is obtained. The current density intensity factor KI is defined and found to be independent on the radius of the superconductor and only determined by the crack length α and the critical current density without the crack J1. Thus, the result can be suitable to the generalized case of a crack tip. We also obtain the trapped magnetic field of the superconductor with a crack, the obvious decrement agrees with the reported experimental results.
     Finally, the Magneto-Elastic coupling properties of the ideal type-II superconductors are studied theoretically. Based on the revised GL equations, the strain effect on the superconducting properties such as wave functions and coherence length is analyzed. We obtain the analytical solution of the ID problem in which the applied magnetic field is assumed to be very small and the second GL equation can thus be omitted. However, for the2D problem in which the magnetic field cannot be ignored we can only solved by numerical methods. In light of the periodicity of the wave functions, we use the Fourier series expansion and iterative algorithm and obtain the wave functions of the superconductors with prestrains. In addition, we also analyze the surface deformation of the ideal type-II superconductors caused by the Abrikosov vortex lattice. It is known that superconductor undertakes a long-range body force caused by the gradient of the electrostatic potential and a surface force induced by the surface dipole. We use the same numerical methods which are used to solve the coupled nonlinear GL equations and obtain the surface deformation based on the theory of linear elasticity.
引文
[1]H. K. Onnes, On the sudden change in the rate at the resistance of mercury disappears. Commun. Phys. Lab. Univ. Leiden,1911,120b:122b.
    [2]W. Meissner, and R. Ochsenfeld, Ein neuer effekt bei eintritt der supraleitfahigkeit. Naturwissenschaften,1933,21:787-788.
    [3]Resistance in a superconductor:discovery http://www. supraconductivite. fr/en/index. php?p=supra-resistance-supra-more#
    [4]J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Theroy of superconductivity. Phys. Rev, 1957,108:1175-1204.
    [5]B. D. Josephson, Possible new effects in superconductive tunneling. Phys. Lett,1962:1: 251-253.
    [6]B. D. Josephson, Supercurrents through barriers. Adv. Phys,1965,14:419-451.
    [7]金建勋,郑陆海,高温超导材料与技术的发展及应用,电子科技大学学报,2006,35,612-627.
    [8]J. G. Bednorz, and K. A. Muller, Possible high-c T superconductivity in La-Ba-Cu-O system. Z Physik. B,1986,64:189-193.
    [9]赵忠贤,陈立泉,杨乾声等,Ba-Y-Cu氧化物液氮温区的超导电性,科学通报,1987,32:412-414.
    [10]C. W. Chu, P. H. Hor, R. L. Meng,1987, Superconductivity at 52.5 K in the La-Ba-Cu-O system, Science,235,567-569.
    [11]A. B. Sneary, C. M. Friend, P. Richens, H. Jones, and D. P. Hampshire. Development of High Temperature Superconducting Coils Using Bi-2223/Ag Tapes. IEEE Trans. Appl. Supercond,1999,9,936-939.
    [12]林良真,张金龙等.超导电性及其应用.北京:北京工业大学出版社,1998
    [13]罗会仟,寻找现实中的哈利路亚山——室温超导体,http://www, wendeng. gov.cn/ kepu/contents/3588/9313.html
    [14]J. Sarrao, Basic research needs for superconductor, http://www, sc. doe, gow/bes/ reports/files/SC.rpt.pdf.
    [15]W. H. Keesom. Conger. Solvay.,1924,288.
    [16]W. H. Keesom and J. A. Kok. Measurements of the specific heat of thallium at liquid helium temperatures. Physica,1934,1,175-181; Communications from the physical laboratory of the University of Leiden,1934, Communication No.221e.
    [17]P. Ehrenfest. Phasenumwandlungen im ueblichen und erweiterten sinn, classifiziert nach dem entsprechenden singularitaeten des thermodynamischen potentials. Verhandlingen der Koninklijke Akademie van Wetenschappen.1933,36,153-157.
    [18]A. J. Rutgers. Note on supraconductivity 1. Physica,1934,2,1055-1058.
    [19]C. J. Gorte. Theory of supraconductibity. Nature,1933,132,931-933.
    [20]C. J. Gorte and H. Casimir. On supraconductivity I. Physica,1934,1,306-320.
    [21]C. J. Goiter, and H. B. G. Casimir, Zur thermodynamik des supraleitenden Zustandes. Phys.Z,1934,35:963.
    [22]F. London and H. London, The electromagnetic equations of the superconductor. Proc. Roy. Soc. (London),1935, A149:71-88.
    [23]D. Shoenberg. Properties of superconducting colloids and emulsions. Proc. Roy. Soc, 1940,175,49-70.
    [24]H. Frohlich. Theory of the superconducting state. I. The ground state at the absolute zero of temperature. Physical Review,1950,79,845-856.
    [25]A. B. Pippard. Field variation of the superconducting penetration depth. Proc. Roy. Soc, 1950,203,210-223.
    [26]V. L. Ginzburg and L. D. Landau, On the theory of superconductivity. Zh. Exsperim. iThor.Fiz,1950,20:1064-1082.
    [27]A. A. Abrikosov, and Zh. Eksperim, i Teor. Fiz,1957,32:1442-1452.
    [28]L. P. Gorkov. The critical superconducting field in superconductivity theory. Exp. Theor. Phys.,1960,10,593-599.
    [29]L. N. Cooper. Bound electron pairs in a degenerate Fermi gas. Phys. Rev.,1956,104, 1189-1190.
    [30]J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Theroy of superconductivity. Phys. Rev, 1957,108:1175-1204.
    [31]C. P. Bean, Magnetization of hard superconductors. Phys. Rev. Lett,1962,8:250-253.
    [32]C. P. Bean, Magnetization of high-field superconductors. Rev. Mod. Phys,1964,36: 31-39.
    [33]C. P. Bean, Surface barrier in type-II superconductors. Phys. Rev. Lett,1964,12:14-16.
    [34]Y. B. Kim, C. F. Hempstead, and A. R. strand, Critical persistent currents in hard superconductors. Phys. Rev Lett,1962,9:306-309
    [35]Y. B. Kim, C. F. Hempstead, and A. R. Strnad, Magnetization and Critical Supercurrents. Phys. Rev,1963,129:528-535.
    [36]Y. B. Kim, C. F. Hempstead, and A. R. Strnad. Flux creep in hard superconductors. Phys. Rev,1963,131:2486-2496.
    [37]P. W. Anderson and Y. B. Kim, Hard superconductivity:theory of the motion of Abrikosov flux lines. Rev. Mod. Phy.,1964,46,39-43.
    [38]M. R. Beasley, R. Labusch, and W. W. Webb, Flux creep in type-II Superconductors, Phys. Rev,1969,181:682-700.
    [39]M. Tinkhanm. Introduction to superconductivicy. McGraw-Hill. New York.1975.
    [40]R. Griessen, J. G. Lensink, T. A. M. Schroder, and B. Dam, Flux creep and critical currents in epitaxial high Tc films. Cryogenics,1990,30,563-568.
    [41]C. J. van der Beek, G. J. Nieuwenhuys, P. H. Kes, H. G. Schnack, and R. Griessen. Nonlinear current deiffusion in type-II superconductors. Physica C,1992,197,320-336.
    [42]C. W. Hagen and R. Griessen, Distribution of activation energies for thermally activated flux motion in high-Tc superconductors:an inversion Scheme. Phys. Rev. Lett.,1989,62, 2857-2860.
    [43]M. P. A. Fisher, D. S. Fisher, and D. A. Huse, Type-II superconductors in amagnetic field: fluctuations, pinning and transport. Physica B,1991,169,85-90.
    [44]M. V. Feigel'man, V. B. Geshkenbein, A. I. Larkin, and V. M. Vinokur, Theory of collective flux creep, Phys. Rev. Lett.,1989,63,2303-2306.
    [45]M. V. Feigel'man, V. B. Geshkenbein, and V. M. Vinokur, Flux creep and current relaxation in high-Tc superconductors, Phys. Rev.B,1991,43,6263-6265.
    [46]E. Zeldov, M. M. Amer, G. Koren, A. Gupata, R. J. Garmbino, and M. W. McElfresh, Optical and electrical enhancement of flux creep in YBa2Cu307_s epitaxial films. Phys. Rev. Lett.,1989,62,3093-3096.
    [47]D. Yin, W. Schauer, V. Windte, H. Kupfer, S. Zhang, and J. Chen, A new understanding of the resistive state and the V-I characteristic of high-Tc superconductors. Z. Phys. B,1994, 94,249.
    [48]R. Ma, Mathematical model of flux relaxation phenomenon. J. Appl. Phys,2010,108: 053907.
    [49]R. Ma, Vortex penetration and flux relaxation with arbitrary initial conditions in non-ideal and ideal superconductors. J. Appl. Phys,2011,109:103910.
    [50]R. Ma, Infinite series model of flux relaxation and vortex penetration constructed at critical points and their unification. J. Appl. Phys,2011,110:063911.
    [51]J, Bardeen and M. J. Stephen, Theory of the motion of vortices in superconductors, Phys. Rev.,1965,140: A1197-A1207.
    [52]Y. Yoshida, M. Uesaka, and K. Miya, Evaluation of dynamic magnetic force of high Tc superconductors with flux flow and creep, Int. J. Appl. Electromagn, Mater,1994,5, 83-89.
    [53]Y. Yoshida, M. Uesaka, and K. Miya, Magetic field and force analysis of dynamic magnetic force of Tc superconductors with flux flow and creep, IEEE Trans. Magn., 1991,30,3503-3506.
    [54]Z. Liu and G. J. Bowden, Viscous flux flow in the Bean model of type II superconductors, Supercond. Sci. Technol.,1991,4,122-127.
    [55]Y. H. Zhou and X. B. Yang, Numerical simulation of thermomagnetic instability in high-Tc superconductors:Dependence on sweep rate and ambient temperature, Phys. Rev. B,2006,74,054507.
    [56]杨小斌,2004,高温超导交流损耗与磁热稳定性分析,兰州大学博士学位论文,兰州.
    [57]H. Ikuta, N. Hirota, Y. Nakayama, K. Kishio, and K. Kitazawa, Giant magnetostriction in Bi2Sr2CaCu20g single crystal in the superconducting state and its mechanism. Phys. Rev. Lett,1993,70:2166-2169.
    [58]H. Ikuta, K. Kishio, and K. Kitazawa, Critical state models for flux-pinning-induced magnetostriction in type-II superconductors, J. Appl. Phys,1994,76:4776-4786.
    [59]L. K. Heill, H. Ikuta, N. Hirota, K. Kishio, and K. Kitazawa, Magnetostriction relaxation in high-Tc superconductors, Physica C,1994,235-240,2925-2926.
    [60]H. Ikuta, N. Hirota, K. Kishio, and K. Kitazawa, Magnetostriction in high-Tc cuprate single crystals, Physica C,1994,235-240,237-240.
    [61]N. Nabialek, H. Szymczak, V. A. Sirenko, and A. I. D'yashenko, Influence of the real shape of a sample on the pinning induced magnetostriction, J. Appl. Phys,1998,84: 3770-3775.
    [62]K. Filber, A. Geerkens, S. Ewert, and K. Winzer, Magnetostriction due to flux pinning in polycrystalline YNi2B2C, Physica C,1998,299,1-8.
    [63]Y. R. Ren, R. Weinstein, and J. Liu, Damage caused by magnetic pressure at high trapped field. Physica C,1995,251:15-26.
    [64]T. H. Johansen, Flux-pinning-induced stress and strain in superconductors:Long rectangular slab. Phys. Rev. B,1999,59:11187-11190.
    [65]T. H. Johansen, Flux-pinning-induced stress and strain in superconductors:Case of a long circular cylinder. Phys. Rev. B,1999,60:9690-9703.
    [66]T. H. Johansen, Pinning-induced stress during activation of bulk HTSs as trapped-field magnets. Supercond. Sci. Technol,2000,13:830-835.
    [67]Z. Koziol, and R. Dunlap, Magnetostriction of a superconductor:Results from the critical-state model. J. Appl. Phys,1996,79:4662-4664.
    [68]P. Diko, M. Ausloos, and R. Cloots, Cracking in DyBa2Cu3O7-y superconducting materials synthesized in situ in a magnetic field. Physica. C,1994,359:235-240.
    [69]P. Diko, Cracking in melt-processed RE-Ba-Cu-O superconductor. Supercond Sci. Technol,1998,11:68-72.
    [70]Y. H. Zhou, and H. D. Yong, Crack problem for a long rectangular slab of superconductor under an electromagnetic force. Phys. Rev. B,2007,76:094523.
    [71]H. D. Yong, Y. H. Zhou, and J, Zeng, Crack problem in a long cylindrical superconductor. J. Appl. Phys,2008,104:113902
    [72]H. D. Yong, and Y. H. Zhou, Elliptical hole in a bulk superconductor under electromagnetic forces. Supercond. Sci. Tech,2009,22:025018.
    [73]H. D. Yong, and Y. H. Zhou, Kim model of stress induced by flux pinning in type-II superconductors. J. Appl. Phys,2008,103:113903.
    [74]H. D. Yong, and Y. H. Zhou, Effect of nonsuperconducting particles on the effective magnetostriction of bulk superconductors. J. Appl. Phys,2008,104:043907
    [75]J. Zeng, Y. H. Zhou, and H. D. Yong, Kim model for stress distribution in a hollow cylindrical superconductor. Physica C,2009,469:822-826.
    [76]H. D. Yong, and Y. H. Zhou, Interface crack between superconducting film and substrate, J. Appl. Phys,2011,110:063924.
    [77]H. D. Yong, and Y. H. Zhou, Stress distribution in a flat superconducting strip with transport current, J. Appl. Phys,2011,109:073902.
    [78]Z. W. Gao, and Y. H. Zhou, Fracture behaviors induced by thermal stress in an anisotropic half plane superconductor. Phys. Lett. A,2008,372:5261-5264.
    [79]Z. W. Gao, and Y. H. Zhou, Crack growth for a long rectangular slab of superconducting trapped-field magnets. Supercond. Sci. Technol,2008,21:095010.
    [80]Z. W. Gao, and Y. H. Zhou, Fracture behavior for long center slant cracked rectangular slab of superconductor under electromagnetic force. Mod. Phys. Lett. B,2009,6: 825-834.
    [81]S. Kracunovska, Batch-processed melt-textured YBCO with improved quality for motor and bearing applications, Supercond. Sci. Technol,2004,17:1185-1188.
    [82]M. Eisterer, S. Haindl, T. Wojcik, and H. W. Weber,'Magnetoscan':a modified Hall probe scanning technique for the detection of inhomogeities in bulk high temperature superconductors, Supercond Sci. Technol,2003,16:1282-1285.
    [83]T. Schuster, M. V. Indenbom, M. R. Koblischka, H. Kuhn, and H. Kronmuller, Observation of current-discontinuity lines in type-II superconductors, Phys. Rev. B,1994, 49:3443-3452.
    [84]S. G. Kim and P. M. Duxbury, Cracks and critical current, J. Appl. Phys.1991,70: 3164-3170.
    [85]A. Gurevich and J.McDonald, Nonlinear current flow around defects in superconductors, Phys. Rev. Lett,1998,81:2546-2549.
    [86]M. Friesen and A. Gurevich, Nonlinear current flow in superconductors with restricted geometries, Phys. Rev. B,2001,63:064521.
    [87]A. Gurevich and M. Friesen, Nonlinear transport current flow in superconductors with planar obstacles, Phys. Rev. B,2000,62:4004-4025.
    [88]J. Zeng, Y. H. Zhou, and H. D. Yong, Fracture Behaviors Induced by Electromagnetic Force in a Long Cylindrical Superconductor, J. Appl. Phys.2010,108:033901.
    [89]J. Zeng, H. D. Yong, and Y. H. Zhou, Edge-crack problem in a long cylindrical superconductor, J. Appl. Phys.2011,109:093920.
    [90]T. Okuderam, A. Murakami, K. Katagiri, K. Kasaba, Y. Shoji, K. Noto, N. Sakai, and M. Murakami, Fracture toughness evaluation of YBCO bulk superconductor, Physica. C, 2003,392-396:628-633.
    [91]M. Tomita, M. Murakami, and K. Katagiri, Reliability of mechanical properties for bulk superconductors with resin impregnation. Physica C,2002,378-381:783-787.
    [92]T. Miyamoto, K. Nagashima, N. Sakai, and M. Murakami, Direct measurements of mechanical properties for large-grain bulk superconductors, Physica C,2000,340: 41-50.
    [93]M. Sugano, K. Osamura, W. Prusseit, R. Semerad, K. Itoh, and T. Kivoshi, Tensile fracture behavior of RE-123 coated conductors induced by discontinuous yielding in Hastelloy C-276 Substrate, Supercond. Sci. Technol,2005,18:S344-S350.
    [94]K. Osamura, M. Sugano, and K. Matsumoto, Mechanical property and its influence on the critical current of Ag/Bi2223 tapes, Supercond Sci. Technol,2003,16:971-975.
    [95]K. Katagiri, A. Murakami, T. Sato, T. Okudera, N. Sakai, M. Muralidhar, and M. Murakami, Stress-strain characteristics and fracture surface morphology of (Sm,Gd)-Ba-Cu-0 bulk superconductor. Physica C,2002,378-381:722-726.
    [96]A. Murakami, K. Katagiri, K. Kasaba, Y. Shoji, K. Noto, H. Teshima, M. Sawamura, and M. Murakami, Mechanical properties of Gd123 bulk superconductors at room temperature. Cryogenics,2003,43:345-350.
    [97]X. Y. Zhang, Y. H, Zhou, and J. Zhou, Modeling of symmetrical levitation force under different field cooling processes. Physica C,2008,468:401-404.
    [98]X. Y. Zhang, Y. H. Zhou, and J. Zhou, Suppression of magnetic force relaxation in a magnet-high Tc superconductor system. IEEE Trans. Appl. Supercond,2008,18: 1687-1691.
    [99]X. Y. Zhang, Y. H. Zhou, and J. Zhou, Reconsideration of the levitation drift subject to a vibration of a permanent magnet. Mod. Phys. Lett. B,2008,22:2659-2666.
    [100]Y. H. Zhou, X. Y. Zhang, and J. Zhou, Relaxation transition due to different cooling processes in a superconducting levitation system. J. Appl. Phys,2008,103:123901.
    [101]郑晓静,苟晓凡,周义和.超导电磁悬浮力的数值模拟.固体力学学报,2003,24:16-23
    [102]X. J. Zheng, X. F. Gou and Y. H. Zhou, Influence of flux creep on dynamic behavior of magnetic levitation systems with a high-Tc superconductor. IEEE Trans.Appl. Supercond,2005,15:3856-3863.
    [103]X. F. Gou, X. J. Zheng and Y. H. Zhou, Drift of levitated/suspended body in high-Tc superconducting levitation systems under vibration-Part I:A criterion based on magnetic-gap relaxation for gap varying with time. IEEE Trans. Appl. Supercond,,2007, 17:3795-3802.
    [104]X. F. Gou, X. J. Zheng and Y. H. Zhou, Drift of levitated/suspended body in high-Tc superconducting levitation systems under vibration-Part II:Drift velocity for gap varying with time. IEEE Trans. Appl. Supercond,2007,17:3803-3808.
    [105]Y. Yang and X. J. Zheng, Method for solution of the interaction between superconductor and permanent magnet. J. Appl. Phys,2007,101:113922.
    [106]杨勇,高温超导体而内移动时的静力特性研究.兰州大学博士学位论文2007.
    [107]Y. F. Zhao and Y. H. Zhou, Infulence of non-uniform distributions on flux jumps in high-temperature superconductors, Eur. Phys. J. B,2008,61:391-396.
    [108]Y. F. Zhao and Y. H. Zhou, Kim Model of Transport ac Losswith Position Dependent Critical Current Densityin a Superconducting Cylinder, J. Low. Temp. Phys.,2011,164: 287.
    [109]Y. F. Zhao and Y. H. Zhou, AC susceptibility for superconducting slab with regions of different critical-current densities, Cryogenics,2011,51:417-419.
    [110]F. Bopp, ttber die Beziehungen der Londonschen Gleichungen zur Beschleunigungstheorie der Supraleitung, Z Phys.,1937,107:623.
    [111]F. London, Superfluids, Vol.1. Wiley, New York,1950.
    [112]V. S. Sorokin, JETP,1949,19:553.
    [113]A. G. van Vijfeijken, and F. S. Staas, On the forces within a single vortexline in a type II superconductor, Phys. Lett.,1964,12:175.
    [114]G. J. Adkins, and J. R. Waldram, Bernoulli potentials in superconductors, Phys.Rev. Lett., 1968,21:76.
    [115]P. Lipavsky, J. Kolacek, K. Morawetz, and E. H. Brandt, Electrostatic potential in a superconductor, Phys. Rev. B,2002,65:144511.
    [116]J. Kolacek, P. Lipavsky, and E. H. Brandt, Charge profile in vortices, Phys.Rev. Lett, 2001,86:312-315.
    [117]P. Lipavsky, K. Morawetz, J. Kolacek, E. H, Brandt, and M. Schreiber, Contribution of the surface dipole to deformation of superconductors, Phys. Rev. B,2008,77:014506.
    [118]P. Lipavsky, K. Morawetz, J. Kolacek, J. J. Mares, E. H. Brandt, and M. Schreiber, Bernoulli potential in type-I and weak type-II superconductors I. Surface charge, Phys. Rev. B,2004,69:024524.
    [119]P. Lipavsky, K. Morawetz, J. Kolacek, J. J. Mares, E. H. Brandt, and M. Schreiber, Bernoulli potential in type-I and weak type-II superconductors II. Surface dipole, Phys. Rev. B,2004,70:104518.
    [120]P. Lipavsky, K. Morawetz, J. Kolacek, J. J. Mares, E. H. Brandt, and M. Schreiber, Bernoulli potential in type-I and weak type-II superconductors. III. Electrostatic potential above the vortex lattice, Phys. Rev. B,2005,71:024526.
    [121]P. Lipavsky, J. Kolacek, K. Morawetz, E. H. Brandt, and T. J. Yang, Bernoulli potential in superconductors, Lecture Notes in Physics-No.733, Springer, Berlin,2007.
    [122]P. Lipavsky, K. Morawetz, J. Kolacek, and E. H. Brandt, Vortex-induced deformation of the superconductor crystal lattice, Phys. Rev. B,2007,76:052502.
    [123]P. Lipavsky, K. Morawetz, J. Kolacek, and E. H. Brandt, Nonlinear theory of deformable superconductors:Ginzburg-Landau description, Phys. Rev. B,2008,78:174516.
    [124]P. Lipavsky, K. Morawetz, J. Kolacek, and E. H. Brandt, Surface deformation caused by the Abrikosov vortex lattice, Phys. Rev. B,2008,77:184509.
    [125]H. Yong, F. Liu, and Y. Zhou, Analytical solutions of the Ginzburg-Landau equations for deformable superconductors in a weak magnetic field, Appl. Phy. Lett,2010,97:162505.
    [126]H. Yong, F. Xue, and Y. Zhou, Effect of strain on depairing current density in deformable superconducting thin films, J. Appl. Phys,2011,110:033905.
    [127]H. Yong, F. Xue, and Y. Zhou, Effect of prestrain on coherence length and order parameter, J. Appl. Phys,2010,108:103917.
    [128]H. Yong, F. Xue, and Y. Zhou, Dependence of order parameter and coherence length on pre-stress, Physics Express,2011,1:133-138.
    [129]T. H. Johansen, Flux-pinning-induced stress and magnetostriction in bulk superconductors, Supercond. Sci. Technol,2000,13:R121-R137.
    [130]L. E. Toth and I. P. Pratt, Stress field pinning by localized composition fluctuations in hard semiconductors, Appl. Phy. Lett,1964,4:75.
    [131]T. Matsushita, Flux pinning in superconductors, "New York, Springer,2007.
    [132]张裕恒编著,1997,超导物理,中国科技大学出版社,合肥
    [133]章立源,张金龙,崔广霁.超导物理学.北京:电子工业出版社,1995
    [134]F. Inanir, S. Celebi, M. Altunbas, M. Okutan, and M. Erdogan, Critical State magnetostriction of type II superconductors under viscous flux-flow, Physica C,2007, 459:11.
    [135]Y. Yang, L. Y. Xiao, X. Y. Li. and G. M. Zhang, Stress in bulk type-II superconductor under viscous flux motion for a complete field cycle after zero-field cooling, IEEE Trans. Appl. Supercond,2010,20,1051-1510.
    [136]Y. Yang, L. Y. Xiao, and X. H. Li, Impact of viscous flux flow on the stress in long rectangular slab superconductors, J. Appl. Phys,2010,107:023910.
    [137]Y. Yang, G. M. Zhang, L. Wang, Z. Q. Hua, and T. Li, Impact of viscous flux flow on the stress in long cylindrical superconductors, Supercond. Set. Technol,2011,24:095003.
    [138]E. Altshuler and T. H. Johansen, Colloquium:Experiments in vortex avalanches, Rev. Mod. Phys.,2004,76:471-487.
    [139]V. M. Vinokur, M. V. Feigel'man, and V. B. Geshkenbein, Exact solution for flux creep with logarithmic U(j) dependence:self-organized critical state in high-Tc superconductors, Phys.Rev. Lett.,1991,67:915-918.
    [140]Y. Yeshurun, A. P. Malozemoff, and A. Shaulov, Magnetic relaxation in high-temperature superconductors, Rev. Mod. Phys.,1996,68:911-949.
    [141]C. M. Aegerter, Evidence for self-organized criticality in the Bean state in superconductors, Phys. Rev. E,1998,58:1438-1441.
    [142]D. V. Shantsev, Y. M. Galperin, and T. H. Johansen, Scaling and exact solutions for the flux creep problem in a slab superconductors, Phys. Rev. B,2002,65:184512.
    [143]E. H. Brandt, Universality of flux creep in superconductors with arbitrary shape and current-voltage law, Phys.Rev. Lett,1996,76:4030-4033.
    [144]G. P. Mikitik, and E. H. Brandt, Vortex shaking in rectangular superconducting platelets, Phys. Rev. B,2004,69:134521.
    [145]R. G. Mints, Flux creep and flux jumping, Phys. Rev. B,1996,53:12311-12317.
    [146]S. Celebi, F. Inanir, and M. A. R. LeBlanc, Contribution of the Meissner current to the magnetostriction in a high Tc superconductor, Supercond. Sci. Technol,2005,18: 14-17.
    [147]R. G. Mints and I. Papiashvili, Flux creep in type-II superconductors:The self-organized criticality approach, Phys. Rev. B,2005,71:174509.
    [148]A. Petkovic and T. Nattermann, Order and creep in flux lattices and charge density wave pinned by planar defects, Phys.Rev. Lett.,2008,101:267005.
    [149]D. J. Jang, H. S. Lee, H. G. Lee, M. H. Gao, and S. K. I. Lee, Collapse of the peak effect due to ac-induced flux creep in an isotropic vortex system of MgCNi3 single crystals, Phys.Rev. Lett,2009,103:047003.
    [150]J-Y. Lee, H-J. Lee, M-H. Jung, S-1. Lee, E-M. Choi, and W. N. Kang, Magnetic instability of MgB2thin film triggered by the various sweeping rates of an applied magnetic field, J. Appl. Phys,2010,107:013902.
    [151]P. H. Melville, Effect of viscous forces in type II superconductors under A.C. conditions, Phys. Rev. A,1972,39:373-374.
    [152]徐芝仑.弹性力学.北京:高等教育出版社,1998
    [153]梁昆淼.数学物理方法.北京:高等教育出版社,2010
    [154]S. Li, W. Gao, H. Cooper, H. K. Liu, and S. X. Dou, The effect of mechanical deformation on the phase transformation of BSSCO superconductors, Physica C, 2001,356:197-204.
    [155]Y. Nakashima, H. Yui, and T. Sasagawa. Gigantic uniaxial pressure effect in single crystals of iron-based superconductors, Physica C,2010,470:1063-1065.
    [156]B. Haken, A. Beuink, and H. H. J. Kate, Small and repetitive axial strain reducing the critical current in BSCCO/Ag superconductors IEEE Trans. Appl. Supercond.1997,7: 2034.
    [157]S. J. Zhang, X. C. Wang, R. Sammynaiken, J. S. Tse, L. X. Yang, Z. Li, Q. Q. Liu, S. Desgreniers, Y. Yao, H. Z. Liu, and C. Q. Jin, Effect of pressure on the iron arsenide superconductor LixFeAs (x=0.8,1.0,1.1), Phys. Rev. B,2009,80:014506.
    [158]H. Okada, H. Takahashi, S. Matsuishi, M. Hirano, H. Hosono, K. Matsubayashi, Y. Uwatoko, and H. Takahashi, Pressure dependence of the superconductor transition temperature of Ca(Fe-xCox)AsF compounds: A comparison with the effect of pressure on LaFeAsO1-xFx, Phys. Rev. B,2010,81:054507.
    [159]V. G. Kogan, L. N. Bulaevskii, P. Miranovic, and L. Dobrosavljevic-Grujic, Vortex-induced strain and flux lattices in anisotropic superconductors, Phys. Rev. B,1995, 51:15344.
    [160]A. Cano, A. P. Levanyuk, and S. A. Minyukov, Elasticity-driven interaction between vortices in type-II superconductors, Phys. Rev. B,2003,68:144515.
    [161]P. Miranovic, L. Dobrosavljevic-Grujic, and V. G. Kogan, Ginzburg-Landau theory of vortex lattice structure in deformable anisotropic superconductors, Phys. Rev. B,1995,52: 12852.
    [162]A. Cano, A. P. Levanyuk, and S. A. Minyukov, Elasticity-driven interaction between vortices in high-K superconductors:leading role of a non-core contribution, Physica C, 2004,404:226-229.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700