超冷铯分子的高灵敏光谱研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在过去的十几年时间里,超冷分子光谱的研究内容从单纯的分子能级、势能曲线和分子常数测量,逐步扩展到高分辨分子光谱测量、基本物理常数测量、超冷碰撞及多体问题、高精度频标、量子计算等众多前沿问题,引起了人们的极大兴趣。由于超冷分子所具有的极低温度特性,几乎完全克服了多普勒效应的影响,实现了分子的高分辨光谱测量。在超冷分子光谱研究中,荧光光谱技术是一种理想的测量手段。然而,其缺点是探测灵敏度低,无法满足高精度测量的需要。本文针对荧光光谱灵敏度低的问题,分析了制约高灵敏探测的因素,提出了通过三维速度选择调制光谱技术和光子计数光谱技术应用于超冷分子光缔合荧光光谱测量的实验方案,获得了高灵敏的超冷铯分子光谱。
     本文的主要创新性工作概括如下:
     1.利用三维速度选择调制光谱技术,实现了超冷铯分子激发态振动光谱的高灵敏测量,将现有的俘获损耗光谱可探测范围扩大了20cm~(-1),得到了更低振动能级的光谱数据:通过理论拟合,获得了激发态铯分子的长程系数C_3和势能曲线。
     2.通过优化参数进一步提高三维速度选择调制光谱技术的探测灵敏度,获得了高灵敏、高分辨的超冷铯分子长程激发态O_g~-态的振转光谱,观测到跃迁几率极低的低振动量子数(v=1)的转动光谱。
     3.利用光子计数技术获得了高灵敏的超冷激发态铯分子近阈值振动光谱,为研究近阈值区域的势能曲线提供了重要的光谱数据。
     4.系统地研究了超冷铯分子激发态振转光谱对光缔合激光强度的依赖关系,观察到饱和效应,并通过理论拟合获得了光缔合饱和强度;同时,发现了不同振转能级对应的饱和强度也不相同,并从理论上对其进行了定性地解释。
     5.利用超低频率的波长调制光谱技术,发展了一种新颖的绝对频率锁定技术,实现了将激光器频率长期稳定地锁定在原子-分子跃迁频率上,为超冷分子实验提供了重要的稳频技术支持。
During the past decade, the study of ultracold molecular spectroscopy has gradually extended to the high-resolution measurement of the molecular spectroscopy, the measurement of the basic physical constants, ultracold collisions, multi-body problem, high-precision frequency standard, quantum computing and many other cutting-edge issues from the simple study of ultracold molecular level, potential energy curves and molecular constants, and has aroused the great interest. With a very low temperature of ultracold molecules, Doppler-effect has been almost overcomed. It is possible to directly achieve a high-resolution molecular spectroscopy. In the study of ultra-cold molecular spectroscopy, fluorescence spectroscopy technique is a reasonable method. However, its detection sensitivity is too low to unable to meet the needs of high-precision measurements. In the thesis, the new detection techniques, three-dimensional velocity-selected modulation spectroscopy and photon counting spectroscopy, have been first offered by analyzing the main reasons of the low sensitivity. And the high sensitive ultracold cesium molecular spectroscopy has been obtained.
     The main innovation of the work summarized as follows:
     1. By using the three-dimensional velocity-selected modulation spectroscopy technique, the ultra-cold excited state Cs_2 vibrational spectroscopy with a high sensitivity has been obtained. The detection range of the present trap-loss spectroscopy has been extended to detect with 20cm~(-1), and the spectroscopy data of lower lying vibrational levels have been obtained. The excited state cesium molecular coefficients C_3 and long-range potential energy curves are calculated by fitting with a theoretical formula.
     2. By optimizing the parameters of experiment, more high sensitivity has been achieved. As a result, the high-resolution and high-sensitive Cs_2 rovibrational spectroscopy has been obtained. And the rotational spectrum of the low-vibration quantum number (v = 1) has been observed with a very low transition probability.
     3. By using the photon counting technique, a near-threshold photoassociation spectroscopy has been obtained with a high sensitivity, which provides the important spectroscopy data for studying the energy curves in the near-threshold region.
     4. It is operated to systematically study the dependence of the ultra-cold Cs_2 excited state rovibrational spectroscopy on the intensity of a photoassociation laser. Saturation effect was observed in our experiment. And the saturation intensities were obtained by the theoretical fitting. The difference among the saturation intensities for different rotational progressions has been found.
     5. It has been demonstrated a robust method of directly stabilizing diode laser frequency to the cesium atom-molecular hyperfine transitions. The trap loss fluorescence spectroscopy was applied to yield the error signal based on modulating molecules with ultralow modulation frequency.
引文
[1]. T. Hansch, A. Schawlow. Cooling of gases by laser radiation. Opt. Commun., 1975, Vol. 13, 68-69
    [2]. V. I. Balykin, V. S. Letokhov, V. I. Mishin. Cooling of sodium atoms by resonant laser emission. Sov. Phys. JETP, 1980, Vol. 51, 692-696
    [3]. S. Chu, L. Hollberg, J. E. Bjokholm, A. Cable, A. Ashkin. Three-dimensional viscous confinement and cooling of atoms by resonance radiation pressure. Phys. Rev. Lett., 1985, Vol. 55, 48-51
    [4]. A. Aspect, E. Arimondo, R. Kaiser, V. Vansteenkiste, C. Cohen-Tannoudji. Laser Cooling below the One-Photon Recoil Energy by Velocity-Selective Coherent Population Trapping. Phys. Rev. Lett., 1988, Vol. 61, 826-829
    [5]. M. Kasevich, D. S. Weiss, E. Riis, K. Moler, S. Kasapi, S. Chu. Atomic velocity selection using stimulated Raman transition. Phys. Rev. Lett., 1991, Vol. 66, 2297-2300
    [6]. M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, E. A. Cornell. Observation of Bose-Einstein Condensation in a Dilute Atomic Vapor. Science, 1995, Vol 269, 198-201
    [7]. C. C. Bradley, C. A. Sackett, J. J. Tollett, R. G. Hulet. Evidence of Bose-Einstein Condensation in an Atomic Gas with Attractive Interactions. Phys. Rev. Lett., 1995, Vol.75, 1687-1690
    [8]. K. B. Davis, M.O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee, D. M. Kurn, W. Ketterle. Bose-Einstein Condensation in a Gas of Sodium Atoms. Phys. Rev. Lett., 1995, Vol. 75, 3969-3973
    [9]. C. A. Regal, M. Greiner, D. S. Jin. Observation of Resonance Condensation of Fermionic Atom Pairs. Phys. Rev. Lett.,2004, Vol. 92, 040403[4]
    [10]. M. W. Zwierlein, C. A. Stan, C. H. Schunck, S. M. F. Raupach, A. J. Kerman, W. Ketterle. Condensation of Pairs of Fermionic Atoms near a Feshbach Resonance. Phys. Rev. Lett., 2004, Vol. 92, 120403[4]
    [11]. Olivier Dulieu, Maurice Raoult, Eberhard Tiemann. Cold Molecules: a chemistry kitchen for physicists? J. Phys. B: At. Mol. Opt. Phys., 2006, Vol 39,126-129
    [12]. John M. Doyle, Bretisiav Friedrich. Chemical physics: Molecules are cool. Nature., 1999, Vol. 401, 749-750
    [13]. K. M. Jones, E. Tiesinga, P. D. Lett, P. S. Julienne. Ultracold photoassiciation spectroscopy: long-range molecules and atomic scattering. Reviews of modern physics., 2006, Vol. 78, 483-535
    [14] J. L. Hall, T. Baer, L. Holberg, H. G. Robinson. 《Laser spectroscopy V》 , ed. By A.R. W. Mckellar, T. Oka, B. P. Stoicheff, (Springer-Verlag, New York, 1981)
    [15]. J. T. Bahns, Adv. Atomic Mol. Opt. Phys., 2000, Vol. 42, 197
    [16]. 印建平. 分子光学及其应用前景. 物理, 2003, Vol.32, 449
    [17]. J. M. Doyle, B. Friedrich, J. Kim, D. Patterson. Buffer-gas loading of atoms and molecules into a magnetic trap. Phys. Rev. A, 1995, Vol.52, R2515-R2518
    [18]. J. D. Weinstein, R. deCarvalho, T. Guillet, B. Friedrich, J. M. Doyle. Magnetic trapping of calcium monohydride molecules at millikelvin temperatures. Nature, 1998, Vol.395, 148-150
    [19]. D. Egorov, T. Lahaye, W. Schollkopf, B. Friedrich, J. M. Doyle. Buffer-gas cooling of atomic and molecular beams. Phys. Rev. A., 2002, Vol. 66, 043401 [8]
    [20]. H. L. Bethlem, G. Berden, F. M. H. Crompvoets, R. T. Jongma, A. J. A. van Roij, G. Meijer. Nature, 2000, Vol. 406, 491
    [21]. Barbara Goss Levi. Hot Prospects for Ultracold Molecules - Researchers have taken giant strides down several paths toward trapping molecules at sub-millikelvi. Physics Today, 2000, Vol. 9,46-51
    
    [22]. G. Meijer. Cold Molecules. Physik Journal, 2002, Vol. 5, 41
    [23]. C. Chin, V. Vuletic, AJ. Kerman, S. Chu. Sensitive Detection of Cold Cesium Molecules Formed on Feshbach Resonances. Phys. Rev. Lett., 2003, Vol. 90, 033201 [4]
    [24]. S. Jochim, M. Bartenstein, A. Altmeyer, G. Hendl, S. Riedl, C. Chin, J. Hecker Denschlag, R. Grimm. Bose-Einstein Condensation of Molecules. Science, 2003, Vol. 302,2101
    [25]. S. Jochim, M. Bartenstein, A. Altmeyer, G. Hendl, C. Chin, J. Hecker Denschlag, R. Grimm. Pure Gas of Optically Trapped Molecules Created from Fermionic Atoms. Phys. Rev. Lett., 2003, Vol. 91, 240402[4]
    [26]. M. W. Zwierlein, C. A. Stan, C. H. Schunck, S. M. F. Raupach, S. Gupta, Z. Hadzibabic, W. Ketterle, Observation of Bose-Einstein Condensation of Molecules. Phys. Rev. Lett., 2003, Vol. 91, 250401 [4]
    [27]. H. R. Thorsheim, J. Weiner, P. S. Julienne, Laser-induced photoassociation of ultracold sodium atoms. Phys. Rev. Lett., 1987, Vol. 58,2420-2423
    [28]. H. Wang, P. J. Gould, W. C. Stwalley. Photoassociative spectroscopy of ultracold 39K atoms in a high-density vapor-cell magneto-optical trap. Phys. Rev. A, 1996, Vol.53, R1216-R1219
    [29]. A. Fioretti, D. Comparat, C. Drag, C. Amiot, O. Dulieu, F. Masnou-Seeuws, P. Pillet. Photoassociative Spectroscopy of the Cs_2 0_g~-the Long-range State. Eur. Phys. J. D, 1999, Vol. 5, 389-403
    [30]. G. Zinner, T. Binneweiss, F. Reihle, E.Tiemann, Photoassociation of Cold Ca Atoms. Phys. Rev. Lett.,2000, Vol. 85, 2292-2295
    [31]. N. Herschbach, P. J. J. Tol, W. Vassen, W. Hogerworst, G. Woestenenk, J. W. Thomsen, P. van der Straten, A. Niehaus. Photoassociation Spectroscopy of Cold He(2 3S) Atoms. Phys. Rev. Lett., 2000, Vol. 84, 1874-1877
    [32]. A. P. Mosk, M. W. Reynolds, T. W. Hijmans, J. T. M. Waleaven. Photoassociation of Spin-Polarized Hydrogen. Phys. Rev. Lett.,1999, Vol. 82, 307-310
    [33]. U.Schloder, T.Deuschle, C.Siller, C.Zimmermann. Autler-Townes splitting in two-color photoassociation of ~6Li. Phys. Rev. A, 2003, Vol. 68, 051403[4]
    [34]. T. Zelevinsky, M. M. Boyd,l A.N.D. Ludlow, T. Ito, J. Ye, R. Ciury P. Naidon, and P. S. Julienne . Narrow Line Photoassociation in an Optical Lattice. Phys. Rev. Lett., 2006, Vol. 96,203201
    [35]. Pascal Naidon, Francoise Masnou-Seeuws. Photoassociation and optical Feshbach resonances in an atomic Bose-Einstein condensate: Treatment of correlation effects. Phys. Rev. A , 2006, Vol .73, 043611 [17 pages]
    [36]. M. Junker, D. Dries, C. Welford, J. Hitchcock, Y. P. Chen, R. G. Hulet. Photoassociation of a Bose-Einstein Condensate near a Feshbach Resonance. Phys. Rev. Lett., 2008, Vol. 101,.060406
    
    [37]. C. McKenzie, J. Hecker Denschlag, H. Haffner, A. Browaeys, Luis E. E. de Araujo, F. K. Fatemi , K. M. Jones, J. E. Simsarian, D. Cho, A. Simoni E. Tiesinga, P. S. Julienne, K. Helmerson, P. D. Lett, S. L. Rolston, W. D. Phillips. Photoassociation of Sodium in a Bose-Einstein Condensate. Phys. Rev. Lett., 2002, Vol. 88, 120403
    [38]. D. DeMille. Quantum Computation with Trapped Polar Molecules. Phys. Rev. Lett., 2002, Vol. 88,067901
    [39]. W. C. Stwalley, H. Wang. Photoassociation of ultracold atoms: a new spectroscopic technique. J. Mol. Spectrosc.,1999, Vol. 195, 194-228
    [40]. Jie Ma, Lirong Wang, Yanting Zhao, Liantuan Xiao, Suotang Jia. Absolute frequency stabilization of a diode laser to cesium atom-molecular hyperfine transitions via modulating molecules. Applied Physics Letters, 2007, Vol. 91, 161101
    [41]. Lirong Wang, Jie Ma, Jianming Zhao, Liantuan Xiao, Suotang Jia. High sensitive photoassociation spectroscopy based on modulated ultra-cold Cs atoms. Applied Physics B, 2007, Vol. 98, 53
    [42]. Lirong Wang, Jie Ma, Jianming Zhao, Liantuan Xiao, Suotang Jia. Ultra-high resolution trap-loss spectroscopy of ultracold ~(133)Cs atom long-rage states in a magnetooptical trap. Laser Physics, 2007, Vol. 17, 1171
    [43]. A. Fioretti, D. Comparat, A. Crubellier, O. Dulieu, F. Masnou-Seeuws, P. Pillet. Formation of Cold Cs2 Molecules through Photoassociation. Phys. Rev. Lett., 1998,Vol. 80,4402-4405
    [44]. D. Comparat, C. Drag, A. Fioretti, O. Dulieu, P. Pillet. Photoassociative Spectroscopy and Formation of Cold Molecules in Cold Cesium Vapor: Trap-Loss Spectrum versus Ion Spectrum. J. Mol. Spectrosc., 1999, Vol. 195,229-235
    [45]. A. Fioretti, D. Comparat, C.Drag, C. Amiot,O. Dulieu, F. Masnou-Seeuws, P. Pillet. Photoassociative spectroscopy of the Cs_2 0g~- state. Eur. Phys. J. D, 1999, Vol. 5, 389-403
    [46]. M. Pichler, H. Chen, W. C. Stwalley. Photoassociation spectroscopy of ultracold Cs below the 6P_(3/2) limit. J. Chem. Phys., 2004, Vol. 121, 6779-6784
    [47]. M. Pichler, H. Chen, W. C. Stwalley. Photoassociation spectroscopy of ultracold Cs below the 6P_(1/2) limit. J. Chem. Phys., 2004, Vol.121,1796-1801
    [48]. R. Wester, S. D. Krafe, M. Mudrich, M. U. Staudt, J. Lange, N. Vanhaecke, O. Dulieu, M. Weidemuller. Photoassociation inside an optical dipole trap: absolute rate coefficients and Franck-Condon factors. Appl. Phys. B, 2004, Vol. 79, 993-999
    [49]. R. Grimm. Low-temperature physics: A quantum revolution. Nature,2005, Vol. 435, 1035
    [50]. WANG J X, WANG H, KLEIBER P D,et al. State-Selected Photodissociation of the B_1 Pu State of K_2 by All-Optical Triple Resonance Spectroscopy. J Phys Chem.,1991, Vol.95, 8040
    [51]. H. Wang, P. L. Gould, W. C. Stwalley. Fine-Structure Predissociation of Ultracold Photoassociated 39K2 Molecules Observed by Fragmentation Spectroscopy. Phys. Rev. Lett., 1998, Vol.80,476
    [1].Kevin M.Jones,Eite Tiesinga,Paul D.Lett,Paul S.Julienne.Ultracold photoassociation spectroscopy:Long-range molecules and atomic scattering.Rev.Mod.Phys.,2006,Vol.78,483-535
    [2].P.Pillet,A.Crubellier,A.Blleton,O.Dulieu,P.Nosbaum,I.Mourachko,F.Masnou-Seeuws.Photoassociation in a gas of cold alkali atoms:I.Perturbative quantum approach.J.Phys.B,1997,Vol.30,2801-2820
    [3].John L.Bohn,P.S.Julienne.Semianalytic theory of laser-assisted resonant cold collisions.Phys.Rev.A,1999,Vol.60,414-425
    [4].John L.Bohn,P.S.Julienne.Semianalytic treatment of two-color photoassociation spectroscopy and control of cold atoms.Phys.Rev.A,1996,Vol.54,R4637
    [5].Kraft S D,Mudrich M,Staudt M U,Lange J,Dulieu O,Wester R,Weidemuller M,Saturation of Cs2 photoassociation in an optical dipole trap.Phys.Rev.A,2005,Vol.71,013417
    [6].F.H.Mies.A multichannel quantum defect analysis of diatomic predissociation and inelastic atomic scattering.J.Chem.Phys.,1984,Vol.80,2514
    [7].M.J.Seaton.Quantum defect theory.Rep.Prog.Phys.,1983,Vol.46,167
    [8].F.H.Mies.A scattering theory of diatomic molecules.Mol.Phys.,1980,Vol.41,953-972
    [9].B.Gao.Quantum-defect theory of atomic collisions and molecular vibration spectra.Phys.Rev.A,1998 Vol.58,4222
    [1].Nicolas Vanhaecke,Daniel Comparat,Anne Crubellier,Pierre Pillet.Photoassociation spectroscopy of ultra-cold long-range molecules.Comptes Rendus Physique,2004,Vol.5,161-169
    [2].W.C.Stwalley,Y.Uang,G.Pichler.Pure long-range molecules.Phys.Rev.Lett.,1978,Vol.195,194-228
    [3].Lirong Wang,Jie Ma,Jianming Zhao,Liantuan Xiao,Suotang Jia.High sensitive photoassociation spectroscopy based on modulated ultra-cold Cs atoms.Applied Physics B,2007,Vol.98,53
    [4].K.M.Jones,E.Tiesinga,P.D.Lett,P.S.Julienne.Ultracold photoassiciation spectroscopy:long-range molecules and atomic scattering.Reviews of modern physics,2006,Vol.78,483-535
    [5].A.Fioretti,D.Comparat,A.Crubellier,O.Dulieu,F.Masnou-Seeuws,P.Pillet.Formation of Cold Cs2 Molecules through Photoassociation.Phys.Rev.Lett.,1998,Vol.80,4402-4405
    [6].D.Comparat,C.Drag,A.Fioretti,O.Dulieu,P.Pillet.Photoassociative Spectroscopy and Formation of Cold Molecules in Cold Cesium Vapor:Trap-Loss Spectrum versus Ion Spectrum.J.Mol.Spectrosc.,1999,Vol.195,229-235.
    [7].A.Fioretti,D.Comparat,C.Drag,C.Amiot,O.Dulieu,F.Masnou-Seeuws,P.Pillet.Photoassociative spectroscopy of the Cs2 0g- state.Eur.Phys.J.D,1999,Vol.5,389-403
    [8].M.Pichler,H.Chen,W.C.Stwalley.Photoassociation spectroscopy of ultracold Cs below the 6P3/2 limit.J.Chem.Phys.,2004,Vol.121,6779-6784
    [9].赵建明,“铯原子蒸气及其冷原子阳平中的电磁感应透明的理论和实验研究”,山西大学博士毕业论文,2003
    [10].T.M.Brzozowski,M.Maczynska,M.Zawada,J.Zachorowski,W.Gawlik.Time-of-flight Measurement of the Temperature of Cold Atoms for Short Trap-probe Beam Distances.J.Opt.B,2002,Vol.4,62-66
    [11].耿涛,闫树斌,王彦华,杨海菁,张天才,王军民.用短程飞行时间吸收谱对磁 光阱冷原子温度的测量.物理学报,2005,Vol.54,5104-5107
    [12].王彦华,铯原子相干光谱及其铯原子在磁光阱和三维近共振光学晶格中的装载和俘获.山西大学博士论文,2007
    [13].王军民,铯原子汽室磁光阱装置的建立及激光冷却和俘获铯原子的实验研究.山西大学博士论文,1999
    [14].K.Lindquist,M.Stephens,C.Wieman.Experimental and theoretical study of the vapor-cell Zeeman optical trap.Phys.Rev.A.1992,Vol.46,4082-4090
    [15].E.Raab,M.Prentiss,A.Cable,Steven Chu,D.E.Pritchard.Trapping of Neutral Sodium Atoms with Radiation Pressure.Phys.Rev.Lett.,1987,Vol.59,2631-2634
    [16].C.Monroe,W.Swann,H.Robinson,C.Wieman.Very cold trapped atoms in a vapor cell.Phys.Rev.Lett.,1990,Vol.65,1571-1574
    [17].H.R.Thorsheim,J.Weiner,P.S.Julienne.Laser-induced photoassociation of ultracold sodium atoms.Phys.Rev.Lett.1987,Vol.58,2420-2423
    [18].高晋占,微弱信号检测2004
    [19].T.Huang,S.Dong,X.Guo,L.Xiao,S.Jia.Signal-to-noise ratio improvement of photon counting using wavelength modulation spectroscopy.Appl.Phys.Lett.,2006,Vol.89,061102
    [20].S.Schilt,L.Thevenaz,P.Robert.Wavelength Modulation Spectroscopy:Combined Frequency and Intensity Laser Modulation.Appl.Opt.,2003,Vol.42,6728
    [21].Ying-Cheng Chen,Wen-Bin Lin,Hsuin-chia Hsue,Long-Hsu,Ite A.Yu.Effect of the Trapping Laser Linewidth on the Atom Number in a Magneto-Optical Trap.Chinese J.Phys.,2000,Vol.38,920
    [22].See:http://sales.hamamatsu.com/assets/applications/ETD/Photon_Counting.pdf
    [1].K.M.Jones,E.Tiesinga,P.D.Lett,P.S.Julienne.Ultracold photoassiciation spectroscopy:long-range molecules and atomic scattering.Reviews of modern physics,2006,Vol.78,483-535
    [2].M.Pichler,H.Chen,W.C.Stwalley.Photoassociation spectroscopy of ultracold Cs below the 6P3/2 limit.J.Chem.Phy.,2004,Vol.121,6779-6784
    [3].D.Comparat,C.Drag,A.Fioretti,O.Dulieu,P.Pillet.Photoassociative Spectroscopy and Formation of Cold Molecules in Cold Cesium Vapor:Trap-Loss Spectrum versus Ion Spectrum.J.Mol.Spectrosc.,1999,Vol.195,229-235
    [4]. A. Fioretti, D. Comparat, C.Drag, O. Dulieu, F. Masnou-Seeuws, P. Pillet. Photoassociative spectroscopy of the Cs2 0-g long-range state. Eur. Phys. J. D,1999, Vol. 5, 389-403
    [5].. W. C. Stwalley. H. Wang. Photoassociation of ultracold atoms: a new spectroscopic technique. J. Mol. Spectrosc.,.1999, Vol. 195, 194-228
    [6]. Lirong Wang, Jie Ma, Jianming Zhao, Liantuan Xiao, Suotang Jia. High sensitive photoassociation spectroscopy based on modulated ultra-cold Cs atoms. Applied Physics B ,2007, Vol. 98, 53
    [7]. Cyril Drag, Bruno Laburthe Tolra, Olivier Dulieu, Daniel Comparat, Mihaela Vatasescu, Salah Boussen, Samuel Guibal, Anne Crubellier, Pierre Pillet. Experimental versus theoretical rates for photoassociation and forformation of ultracold molecules. IEEE J. Quan. Elec. 2000, Vol. 36, 1378-1388
    [8]. R. J. LeRoy, R. B. Bernstein. Dissociation Energy and Long-Range Potential of Diatomic Molecules from Vibrational Spacings of Higher Levels. J. Chem. Phys., 1970,Vol. 52, 3869-3879
    [9]. M. Marinescu, A. Dalgarno, Dispersion forces and long-range electronic transition dipole moments of alkali-metal dimer excited states. Phys. Rev. A, 1995, Vol. 52, 311-328
    [10]. D. Comparat. Improved LeRoy-Bernstein near-dissociation expansion formula and prospect for photoassociation spectroscopy. J. Chem. Phys., 2004, Vol. 120 1318
    [11]. B. H. Bransden, C. J. Joachain, Physics of Atoms and Molecules (Longman Group, 1983).
    [12]. J. M. Hutson. Centrifugal distortion constants for diatomic molecules: an improved computational method. J. Phys. B: At. Mol. Phys.,1981, Vol. 14, 851
    [13]. R. Wester, S. D. Krafe, M. Mudrich, M. U. Staudt, J. Lange, N. Vanhaecke, O. Dulieu, M. Weidemuller. Photoassociation inside an optical dipole trap: absolute rate coefficients and Franck-Condon factors. Appl. Phys. B, 2004, Vol. 79, 993-999
    [1].C.C.Tsai,R.S.Freeland,J.M.Vogels,H.M.J.M.Boesten,B.J.Verhaar,D.J.Heinzenl.Two-Color Photoassociation Spectroscopy of Ground State Rb2.Phys.Rev.Lett,1997,Vol.79,1245
    [2].U.Schl(o|¨)der,C.Silber,T.Deuschle,C.Zimmermann.Saturation in heteronuclear photoassociation of 6Li 7Li.Phys.Rev.A,2002,Vol.66,061403
    [3].S.D.Kraft,M.Mudrich,M.U.Staudt,J.Lange,O.Dulieu,R.Wester,M.Weidemuller.Saturation of Cs2 photoassociation in an optical dipole trap.Phys.Rev.A,2005,Vol.71,013417
    [4]..C.McKenzie,J.H.Denschlag,H.H(a|¨)ffner,A.Browaeys,Luis E.E.de Araujo,F.K.Fatemi,K.M.Jones,J.E.Simsarian,D.Choa,A.Simonib,E.Tiesinga,P.S.Julienne,K.Helmerson,P.D.Lett,S.L.Rolston,W.D.Phillips.Photoassociation of Sodium in a Bose-Einstein Condensate.Phys.Rev.Lett.,2002,Vol.88,120403
    [5].I.D.Prodan,M.Pichler,M.Junker,R.G.Hulet,J.L.Bohn.Intensity Dependence of Photoassociation in a Quantum Degenerate Atomic Gas. Phys. Rev. Lett.,2003, Vol. 91,080402
    [6]. John L. Bohn, P. S. Julienne. Semianalytic theory of laser-assisted resonant cold collisions. Phys.Rev. A, 1999, Vol. 60, 414-425
    [7]. John L. Bohn, P. S. Julienne. Semianalytic treatment of two-color photoassociation spectroscopy and control of cold atoms. Phys. Rev. A, 1996, Vol. 54, R4637
    [1].D.Comparat,C.Drag,A.Fioretti,O.Dulieu,P.Pillet.Photoassociative Spectroscopy and Formation of Cold Molecules in Cold Cesium Vapor:Trap-Loss Spectrum versus Ion Spectrum.J.Mol.Spectrosc.,1999,Vol.195,229-235.
    [2].M.W.Mancini,G.D.Telles,A.R.L.Caires,V.S.Bagnato,L.G.Marcassa.Observation of ultracold ground-state heteronuclear molecules.Phys Rev Lett.,2004,Vol.92,133203
    [3].S.Azizi,M.Aymar,O.Dulieu.Prospects for the formation of ultracold ground state polar molecules from mixed alkali atom pairs.The European Physical Journal D,2004,Vol.31,195-203
    [4].Matthieu Viteau,Amodsen Chotia,Maria Allegrini,Nadia Bouloufa,Olivier Dulieu,Daniel Comparat,Pierre Pillet.Optical pumping and vibrational cooling of molecules.Science,2008,Vol.321,5886
    [5].Matthieu Viteau,Amodsen Chotia,Maria Allegrini,Nadia Bouloufa,Olivier Dulieu,Daniel Comparat,Pierre Pillet.Efficient formation of deeply bound ultracold molecules probed by broadband detection.Phys.Rev.A,2009,Vol.79,021402(R)
    [6].W.C.Stwalley,H.Wang.Photoassociation of ultracold atoms:a new spectroscopic technique.J.Mol.Spectrosc.1999,Vol.195,194-228
    [7].A.Fioretti,C.Drag,D.Comparat,B.Laburthe Tolra,O.Dulieu,A.Crubellier,C.Amiot,F.Masnou-Seeuws,P.Pillet.Formation of cold Cs_2 molecules through photoassociation.THE PHYSICS OF ELECTRONIC AND ATOMIC COLLISIONS:ⅩⅪ International Conference.AIP Conference Proceedings,2000,Vol.500,198-206
    [8].Stephan Kraft.Formation,trapping and interaction of ultracold molecules.PhD,thesis of Freiburg University,2006
    [9].John L.Bohn,P.S.Julienne.Semianalytic theory of laser-assisted resonant cold collisions.Phys.Rev.A,1999,Vol.60,414-425
    [10].John L.Bohn,P.S.Julienne.Semianalytic treatment of two-color photoassociation spectroscopy and control of cold atoms.Phys.Rev.A,1996 Vol.54,R4637
    [11].U.Schloder,T.Deuschle,C.Silber,C.Zimmermann.Autler-Townes splitting in two-color photoassociation of ~6Li.Phys.Rev.A,2003,Vol.68,051403(4)
    [12].C.E.Wieman,L.Hollberg.Using diode laser for atomic physics.Rev.Sci.Instrum.,1991,Vol.62,1-20
    [13].K.B.MacAdam,A.Steimbach,C.Wieman.A narrow-band tunable diode laser system with grating feedback and a saturated absorption spectrometer for Cs and Rb.Am.J.Phys.,1992,Vol.60,1098-1111
    [14].B.G.Whitford,J.E.Bernard,A.A.Madej,K.J.Siemsen,in:J.C.Bergquist_Ed..,in:Proc.5th Symposium on Frequency Standards and Metrology,1995,p.471.
    [15].J.E.Bernard,B.G.Whitford,A.A.Madej,L.Marmet,K.J.Siemsen,NRC Internal Report NRCC 41373,1997.
    [16].K.M.Evenson,J.S.Wells,F.R.Petersen,B.L.Danielson,G.W.Day.Accurate frequencies of molecular transitions used in laser stabilization:the 3.39-μm transition in CH_4 and the 9.33- and 10.18-μm transitions in CO_2.Appl.Phys.Lett.,1973,Vol.22,192
    [17].T.Huang,S.Dong,X.Guo,L.Xiao,S.Jia.Signal-to-noise ratio improvement of photon counting using wavelength modulation spectroscopy.Appl.Phys.Lett.,2006,Vol.89,061102
    [18].S.Schilt,L.Thevenaz,P.Robert.Wavelength Modulation Spectroscopy:Combined Frequency and Intensity Laser Modulation.Appl.Opt.,2003,Vol.42,6728
    [19].R.Arndt.Analytical Line Shapes for Lorentzian Signals Broadened by Modulation.J.Appl.Phys.,1965,Vol.36,2522
    [20].J.M.Supplee,E.A.Whittaker,W.Lenth.Theoretical description of frequency modulation and wavelength modulation spectroscopy.Appl.Opt.,1994,Vol.33, 6294
    [21]. D. W. Allan. Statistics of Atomic Frequency Standards. Proc. IEEE 1966,Vol. 52, 211

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700