燃煤锅炉受热面煤灰粘接特性测试方法的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
卫燃带是实现低质燃煤锅炉稳定高效燃烧最有效最简单的方法,国内外低质燃煤锅炉几乎都采用卫燃带稳燃,但卫燃带容易引起炉内结渣。针对低质燃煤锅炉卫燃带的防结渣设计难题,提出了研究卫燃带材料上沉积煤灰渣粘接特性的煅烧实验与振动测试方法,研究并设计了振动式灰渣粘接特性测量装置。该装置的特点是振源的振幅和频率可控,实验原理简单,结构简单紧凑,装置部件较少,自动化程度高,实际动手操作起来也较为简单。该装置可以克服目前测试耐火材料上粘接特性的方法(目测法,气流冲刷法,刮铲法等)的共同缺点:主要依靠测试人员的经验判断,对同种结渣试样检测的重复性较差,对不同温度下对灰渣的区分度较差等。
     定义了描述耐火材料上灰渣粘接特性的灰渣振落率指标。煤粉燃烧过程中的结渣主要与煤灰粒子及卫燃带的表面温度有关,当温度逐渐升高时,煤灰在卫燃带表面上的沉积将由疏松的积灰逐渐过渡到紧密的结渣。疏松的积灰很容易通过振动振落,振落率近100%,紧密结合的渣则很难通过振动振落,其振落率很小,接近于0%,而介于疏松积灰与紧密结渣两者之间的灰渣沉积,其灰渣振落率在100~0%。显然,如果能获得不同燃烧温度条件下煤灰在卫燃带材料上的沉积试样,通过振动测试这些试样的灰渣振落率,则可判断不同温度条件下煤灰在卫燃带材料上的粘接特性,并提出了用于指导卫燃带防结渣设计的结渣临界温度概念及其测试方法从而为卫燃带的优化设计提供依据。
     实验选取了6种不同煤质的典型燃煤电站燃料煤,将过100目筛的煤粉(最大粒度为150μm)高温灰化,进行元素分析和工业分析。取灰样0.2克疏松撒播在高铝质耐火材料板上,制成煤灰/耐火材料试样对,在高温电加热炉中恒温烧结20小时,实验结束后试样自然冷却到室温。对结渣试样进行振动测试分析,得到6种煤灰的灰渣振落率测试结果,进而分析得到结渣临界温度(带)。该结论适用于敷设此种卫燃带耐火材料的锅炉,当燃用此种或性质类似煤种时,若恰当控制炉膛温度,可有效避免结渣。
Almost all PC-fired boilers, burning low rank coals, have been adopting heat-insulating refractory liner on their furnace waterwalls to improve combustion. Although the refractory liner is very effective for stabilizing combustion of low rank coal, it is very easy to cause slagging on the liner. Present methods may be used to test adhesion performance of coal ash with refractory include: visual observation, airflow scouring, mechanical scraping etc. These methods are simple, but have a mutual shortcoming that the adhesion performance is estimated mainly by operators’experiences, in addition, the repeatability of tested results for identical coal ash/refractory sample under same conditions is not satisfactory. To overcome the disadvantages of the above-mentioned methods, a vibration based testing method is proposed and a vibration-based testing device was developed.
     The concept of drop-off ratio and critical temperature for slagging and its testing method are also proposed to prevent slagging for the refractory design. If drop-off ratio and critical slagging condition of coal ash slagging on refractory could be associated, it is possible to confirm critical slagging temperature for special coal on special refractory. The analysis above indicates that drop-off ratio may be used to list the adhesion performance between coal ash and refractory under different temperatures. When drop-off ratio is equal to 100%, the corresponding temperature will not bring slagging as there is only loose dust stratification; when drop-off ratio is equal to 0%, the corresponding temperature will bring serious slagging as tight adhesion produced. Obviously, the transformation of drop-off ratio from 100% to 0% corresponds to the transformation of slagging behavior from loose deposition to serious slagging and the change is process of a gradual change.
     Six typical coal samples used in power plant were selected and then tested by proximate and ultimate analysis. Ash of the pulverized coal with size of no more than 150μm (similar with the coal burned in power plant) was made by high temperature dry ashing. 0.2g ash of coal was spread on the surface of the refractory to form coal ash/refractory sample and then the sample was put into the muffle furnace to be sintered for 20h. After cooled down naturally, eyeballing, vibration tests analysis were used to determine the drop-off ratio and critical temperatures (or temperature zones). Above all, the result can be used when this kind of refractory was laid in furnaces, if these coals or coals with similar characteristics are used as fuels, slagging may be avoided effectively by controlling the temperatures on the refractory surface less than the critical temperatures.
引文
[1]中国电力企业联合会. http://tj.cec.org.cn/test1.asp?id=269,2009-01-07
    [2]陆延昌.中国电机工程学会.火力发电技术面临的形式和挑战. http://www.cn info.com.cn/finalpage/2004-04-30/14017043.html,2004-04-30
    [3]耿聪.截至2007年底全国发电装机容量71329万千瓦. http//www.people.com. cn,2008-04-23
    [4]陈学俊,陈听宽.锅炉原理.西安:机械设计出版社,1991,1-20
    [5]中国煤炭市场网. http://www.cctd.com.cn/detail/07/12/18/00128802/content.htm l,2007-12-18
    [6]刘玉格,尉伟民.电煤煤质不容忽视.中国电力企业管理. 2005,(04):24-24
    [7]史更林. 100MW机组锅炉防结渣及高温腐蚀燃烧技术的研究:[华北电力大学硕士学位论文].北京:华北电力大学动力工程专业,2001年,1-5
    [8]孙公钢,燃用劣质煤的新型钝体稳燃器及锅炉低污染燃烧改造的数值模拟与试验研究:[浙江大学硕士学位论文] .浙江:浙江大学机械与能源工程学院,2006年,1-18
    [9]重久卓夫.石炭の改质技术.日本ヱネルギ-学会志, 2001, 80(04): 207-214
    [10]胡敏,饶苏波.切向燃烧煤粉锅炉炉膛结渣原因及预防措施.热力发电,2004(05):22-24
    [11]兰泽全,曹欣玉,赵显桥,等.煤粉炉沾污结渣防治措施探讨.锅炉技术,2003,34(03):61-65
    [12]邓瑞云.链条炉排锅炉如何燃用低质煤.热工技术,2002,(19):47-48
    [13]谢峻林,何峰,袁润章.分解炉内煤的燃尽特性研究.武汉理工大学学报,2001,23(07):11-14
    [14]许传凯.低挥发分煤的燃烧与“W”型火焰锅炉若干问题研究.中国电力,2004,37(07):37-40
    [15]刘振东,杨杰.劣质煤对电站锅炉安全、经济运行的影响.电站系统工程,2006,22(06):23-24
    [16]肖宝兰,夏雅明,张成山.燃煤锅炉灭火原因分析及相应对策.电站系统工程,2004,20(01):27-28
    [17]范从振.锅炉原理.北京:中国电力出版社,2004,8-19
    [18] Dunxi Yu, Minghou Xu, Hong Yao. A new method for identifying the modes of particulate matter from pulverized coal combustion, Powder Technology, 2008(183):105-114
    [19] Fabrizio Scala, Herek L. Clack. Mercury emissions from coal combustion: Modeling and comparison of Hg capture in a fabric filter versus an electrostatic precipitator.Journal of Hazardous Materials, 2008, 152(2): 616-623
    [20]陈智超,李争起,孙锐,等.适用于1025t/h燃煤锅炉的浓淡旋流煤粉燃烧技术的研究.中国电机工程学报,2004,24(04):189-194
    [21] Xiang Jun, Lin Min, Hu Song. Study on Combustion Performance with a Wide Range of Coal Qualities. Energy Conversion and Application. Wuhan: Huazhong Unversity of Science and Technology Press, 2001,765-768
    [22] A.E. German, T.Mahmud. Modelling of non-premixed swirl burner flows using a Reynolds-stress turbulence closure. Journal of the Institute of Fuel, 2005, (84): 583-594
    [23] T.H.Ko. A numerical study on the effects of side-inlet angle on the mixing phenomena in a three-dimensional side-dump combustor. International Communications in Heat and Mass Transfer, 2006, 33 (07) : 853-862
    [24]王巍,周怀春.电站锅炉燃烧监控系统研究.自动化与仪器仪表,2001,(02):11-14
    [25]龚光彩,周萍,黄声富,等.粉煤锅炉卫燃带对烟气温度场影响的数值模拟.动力工程,2001,21(05):1406-1410
    [26]陈冬林,郑楚光.基于可调卫燃带的准恒温燃烧及对燃烧及其对燃煤锅炉总体性能的影响.电站系统工程,2002,18(01):1-6
    [27] Chen D. L., Liu L., Zheng C. G...Quasi-constant temperature combustion for improving overall performance of a coal-fired boiler.Combustion and Flame, 2003, 134(1-2): 81-92
    [28]石正云.锅炉受热面积灰、结渣的特性及其影响浅析.山西建筑,2002,18(04):96-96
    [29] M.C. Mayoral, M.T. Izquierdo, J.M. Andres, et al. Mechanism of interaction of pyrite with hematite as simulation of slagging and fireside tube wastage in coal combustion. Thermochimica Acta, 2002, (390):103-111
    [30] J.R. Fan, X.D.Zha, P.Sun, et al. Simulation of ash deposit in a pulverized coal-fired boiler. Fuel, 2001, (80):645-654
    [31]王建华,王大军,张建平,等.发电厂炉膛结渣原因及处理.四川电力技术,2004(02):34-38
    [32]李文彦,宋之平,孙保民,等.煤粉炉结渣的机理及诊断技术的发展.现代电力,2002,19(05):20-24
    [33] H.B. Vuthaluru. Ash formation and deposition from a Victorian brown coal—modeling and prevention, Fuel Processing Technology, 1998, (53):215-233
    [34]罗晓,郑永利.锅炉受热面结渣的危害与预防.石油化工腐蚀与防护,2004,21(03):60-62
    [35] Su. S, Pohl. J. H, Holcombe. D. Slagging propensities of blended coals. Fuel, 2001(80):1351-1360
    [36]岑可法.锅炉燃烧试验研究方法及测量技术.北京:水利电力出版社,1987,102-130
    [37]兰泽全,曹欣玉,周俊虎,等.可法锅炉受热热面沾污结渣的危害及其防治措施.电站系统工程,2003,19(01):31-33
    [38] Nigel V. Russell. Ash deposition of a Spanish anthracite: effects of include and excluded mineral matter. Fuel, 2002 (81):657-663
    [39]何望飞.减轻锅炉结渣运行方案的分析与研究.热力发电,2003,(11):32-34
    [40] Wells. Jon. Interactions between coal-ash and burner quarls PartⅡ: Resistance of different refractory materials to slag attack in a combustion test facility. Fuel, 2003, (82):1867-1873
    [41]李凤瑞,池作和,周昊.切向燃烧锅炉炉膛结渣的影响因素及预防措施.热力发电,2001,(01):2-4
    [42] Wall. T.F. Mineral matter in coal and thermal performance of large boilers. Prog. Energy combust. Sci, 2002(5):1-29
    [43]李永华,高志成,陶哲,等.锅炉结构对结渣的影响.锅炉技术,2003,34(03):31-33
    [44]陈敏,于景坤,王楠.耐火材料与燃料燃烧,沈阳,东北大学出版社,2006:1-149
    [45]王维邦.耐火材料工艺学.北京:冶金工业出版社,2003,178-183
    [46]罗星源,孙加林,徐国英.中国耐火原料的新近发展.耐火材料, 2003, 37(05): 294-297
    [47]芩可法,周昊,池作和,等.大型电站锅炉安全及优化运行技术.北京:中国电力出版社,2003,240-243
    [48]国外耐火材料编辑部.工业窑炉用耐火材料.北京:冶金工业出版社, 1997,34-38
    [49]陈冬林,李前锋,王彪.陶瓷板卫燃带及其在电站煤粉炉上的应用.锅炉技术,2007,38(01):13-16
    [50]秦风久.高炉用SiC砖显微结构及其抗侵蚀特征.东北大学学报,1994, 15(05):457-461
    [51]许伟荣.超轻质高温耐火材料在窑炉内衬上的应用.能源技术,2000, 21(2): 103-104
    [52]杨俊和,郭万华.用于含碳耐火材料的粘接剂的研制.华东冶金学院学报,1994, 11(3): 24-29
    [53]王杰曾,金宗哲.耐火材料抗热震疲劳行为评价的研究.硅酸盐学报,2000, 28(1): 91-93
    [54]鲁许鳌,古俊杰,彭学志.锅炉受热面积灰结渣判别方法的应用分析.电力情报,2002,(03):16-20
    [55]楼亿红.动力用煤结渣倾向的判断.热力发电,2004,(05):68-70
    [56]龚丽华,张国金,王锐.锅炉燃烧神华煤结渣的煤质因素分析.华北电力技术,2004(11):30-32
    [57]杨圣春.电站燃煤锅炉结渣预测的研究.热力发电, 2003,(01):31-33
    [58]陈立军,文孝强,王恭,等.燃煤锅炉结渣特性预测方法综述.热力发电,2006,(06):1-5
    [59]杨卫娟.电站锅炉变负荷引起的水冷壁渣层热应力和吹灰在线模糊优化运行的基础理论研究.:[浙江大学博士论文].浙江:浙江大学,2003,6-37
    [60]杨卫娟,周俊虎,曹欣玉,等.火电厂锅炉优化运行软件系统概述.电站系统工程,2001,17(02):67-71
    [61]盛昌栋,黄永生.国外煤粉炉结渣诊断与监控技术的进展.锅炉技术,1997,(08):28-31
    [62]周俊虎,靳彦涛,杨卫娟,等.电站锅炉吹灰优化的研究应用现状.热力发电,2003,(04):24-27
    [63] Chambers.A.K.,Wynnyckyj,J.R., Rhodes, E.. A furnace wall ash monitoring system for coal fired boiler, ASME, J. Eng.Power,1981, 103:532-538
    [64]陈力哲,吴少华,孙绍增,等.煤燃烧结渣特性判定法及测量设备的研究.哈尔滨大学学报,2001,33(02):197-199
    [65]高志成.电站锅炉结研究与预防:[华北电力大学硕士论文].北京:华北电力大学,2001,7-38
    [66] Alamar K. Duarte, Paulo R.G.. Brandao Ceramic encapsulation of refractory and mineral residues based on potassium and magnesium phosphate.Minerals Engineering, 2008, 21(4) : 302-309
    [67]国外耐火材料编辑部,Al2O3-SiO2-SiC-C的显微结构与抗渣性.国外耐火材料,1998,(11):50-57
    [68]盛开勋,陈俊宏. K2O和TiO2杂质对Al2O3-SiC-C砖抗渣性的影响.鞍山钢铁学院学报,1999,22(01):21-23
    [69]曾旭华,吴海燕.电站锅炉燃用无烟煤及劣质煤燃烧稳定的试验研究.科技咨询导报,2007,(13):28-29
    [70]陈彦菲.典型卫燃带材料上煤灰结渣影响因素及机理的煅烧实验研究:[长沙理工大学硕士学位论文] .湖南:长沙理工大学能源与动力工程学院,2008,17-74
    [71]孙学信.燃煤锅炉燃烧试验技术与方法.北京:中国电力出版社,2005,24-40
    [72] Uchda K.Influence of grain size on erosion resistance of zirconia graphite materia1. TAIKABUTSU, 2001, 53(5): 274-279
    [73] Geoff Evans. Glass making refractories-looking to the future [J]. Glass technology, 2005, 41(4): 109-111
    [74] Rezaei. H. R, Gupta. R. P, G. Bryan. W. t. Thermal conductivity of coal ash and slags and models used. Fuel, 2000(79):1697-1710
    [75] Yan Fei CHEN, Dong Lin CHEN, Xiao Zhong YAN, etal. Study of Mechanism of Coal Ash Slagging on Refractory Influenced By Atmospheres in Furnace. In: Proceedings of the 6th International Symposium on Coal Combustion, 2006:983-987
    [76] Y. F. Chen, D. L. Chen, C. Ye, etal. Experimental Investigation on the Resistance of Silicon Carbide-based Refractory to coal-ash Slagging. In: 6th Asia-Pacific Conference on Combustion, Nagoya Congress Center, Nagoya, Japan, 2007:325-328
    [77]潘牧,南策文.碳化硅基材料的高温氧化和腐蚀.腐蚀科学与防护技术,2000,12(2):109-120
    [78] Jon Wells et al. Interactions between coal-ash and burner quarls. Part I: Characteristics of burner refractories and deposits taken from utility boilers, Fuel, 2003, (82):1859-1865
    [79]申文平,薛继勇,李晓光.电除尘器在燃煤锅炉中的应用.河南化工,2008,25(02):43-44
    [80]孙欣林,高进.大型高效电除尘器振打清灰部分的研究.水泥,2008,(07):47-50
    [81]闻邦椿,刘凤翘.振动机械的理论及应用.北京:机械工业出版社,1982,409-412
    [82]李文汇,黄亚宇.电磁振动机械设备的发展与展望.机电产品开发与创新,2008,25(05):41-42
    [83]王永疆.信号发生器的原理与使用.家电检修技术,2006,(02):42-43
    [84]裴鹏.高精度正弦信号发生器的研制:[南昌大学硕士学位论文].南昌:南昌大学信息工程学院,2008,1-5
    [85]刘庆雄,等.低频信号发生器.北京:水利电力出版社,1987,1-24
    [86]许爱兰.功率放大器分析.煤炭技术,2003,22(07):21-22

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700