模块化多电平换流器在HVDC应用的若干关键问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电力电子技术的不断发展为建设智能、清洁、高效的现代电力系统提供了强大的支持,在高压直流输电(HVDC)和柔性交流输电(FACTS)领域均取得了广泛的应用。模块化多电平换流器(Modular Multilevel Converter, MMC)作为新一代高压大功率换流装置,当其在HVDC中应用时,具有输电容量大,有功无功可独立控制,交流输出无需复杂的滤波装置,可靠性高,可向无源或弱受端系统输电等诸多优点,被认为是柔性直流输电的代表性技术。本文在前人研究成果的基础上,重点研究MMC在HVDC中应用的关键问题。
     MMC电路中具有大量电力电子开关和直流电容器,其数学模型呈高阶、离散、非线性的特点,难以建立准确的数学模型进行理论分析。以其物理电路模型为基础,建立MMC的开关模型,通过简化程度不同的三次降阶化简和坐标变换,推导MMC的平均值模型,通过小信号线性化,推导出低阶、连续、线性的MMC的小信号模型。提出的建模方法明确了推导过程中的简化条件,以便于根据不同的分析要求选择对应的简化条件。提出的空间状态数学模型具有直流侧输出电压控制量,使MMC的数学建模更加完整,并为n可控的调制方法提供了理论基础。
     MMC在HVDC中应用时,换流器主要采用最近电平调制法(Nearest Voltage Level Modulation, NLM)进行阀组级控制。但何时及如何实施其中的选择性子模块投切策略,以及如何避免两次相邻投切操作产生冲突,需要详细研究。定义了NLM法进行子模块电压选择性投切的控制时机,给出了控制时机的产生算法和冲突避免规则。在定义基础上,根据不同类型的控制时机分别提出了相应的子模块选择方法,并对它们进行了对比,给出了控制时机的协调搭配方法。提出的正负极间子模块数n可控的NLM调制方法,可以充分利用MMC中的冗余子模块将其直流侧在一定条件下等效为可控电压源,为MMC直流电流控制提供了实现途径。对提出的NLM法进行了进一步改进,提出了n可以为偶数也可以为奇数的改进型NLM法和适用于带有全H桥子模块的MMC的NLM调制方法,对NLM的应用范围进行了拓展。
     n可控的NLM调制法可以将MMC的交流侧和直流侧均等效为一个受控电压源,利用这一特性可以进一步丰富MMC的控制手段,以实现更好的系统特性。提出了MMC直流电流直接控制及其参数设计方法,以及当内环采用直流电流控制时外环输出控制器的参数设计方法,并给出了当系统包含MMC直流侧直接电流控制时的控制策略和功率平衡限制条件。
     电力系统中存在功率单向输送的情况,此时可以采用送端使用二极管整流器,受端采用MMC逆变器的ULMMC-HVDC结构,降低系统复杂度和成本,提高系统可靠性。提出电容储能的ULMMC-HVDC利用MMC中存在的大量子模块,将其与EDLC相结合。弥补了EDLC自放电率较大、耐压较低的缺点,使子模块电压平衡控制容易实现,能量分布存储使可靠性提高且易于维护。提出了能量管理控制器及其参数设计方法,用于限制存储在换流器中的能量在设定的上下限之间。提出电池储能的ULMMC-HVDC,可以使装置整体实现较高的额定电压接入电力系统,且便于电池元件的维护、更换。相较于电容储能,进行长期储能时可以得到更高的存储容量和充放电效率。提出了子模块和子模块组电池荷电状态(State of Charge, SOC)平衡控制及其参数设计方法。
     大规模MMC电磁暂态仿真模型中存在大量子模块和电力电子元件造成模型阶数过高、仿真效率过低的问题,需要研究提高仿真效率的方法。在MMC仿真电路模型与MMC开关函数数学模型完全等效的前提下,通过改善子模块快速仿真模型和控制系统优化仿真算法等手段,极大地提高了仿真效率,从而使大规模MMC-HVDC的仿真研究变得可能。设计了MMC-HVDC控制系统的优化仿真算法和数据结构,通过两次排序解决子模块选择性投切问题和单个子模块开关频率过高的避免机制。
     实际MMC装置中存在大量子模块,硬件上需要大量高吞吐能力1O进行测量控制,使控制难度增加;MMC控制系统一般由多控制器协调控制,但这些控制器间需要交互大量实时和非实时信号,难以保证同时可靠传输。研制了由400V AC/±400V DC/3kVA/288-SM的小模型主电路和全比例控制系统组成的MMC验证样机。设计了MMC验证样机的硬件和控制软件结构。研究并设计了子模块测控信号复用电路,在不增加通讯负担的前提下,仅通过增加简单的数字电路,使IO数量与光纤通道数大为减少,降低了装置成本和实现难度。提出了控制系统的双总线结构,通过高速数字1O总线和CAN总线分别传输实时和非实时信号,解决了实控制器间数据交互问题。进行了MMC逆变并网实验,实验结果验证了MMC基本原理和控制策略,证明了MMC验证样机各项性能符合设计指标。
The application of power electronic technology constantly plays a significant role in modern power system to make it intelligent, clean, and efficient, including high voltage direct current transmission (HVDC) and flexible alternating current transmission system (FACTS). Modular multilevel converter (MMC) is considered as a next-generation technology of high voltage and high power conversion. MMC is considered as a representative application in flexible-HVDC technology, with the advantages like high capability, decoupled active and reactive power control, high level of power quality with no need of complicated ac filters, high reliability, and ability to weak ac networks or even dead networks. In this dissertation, several key issues in MMC for HVDC application are amply discussed following a literature review.
     In MMC circuit, there are a large number of semiconductor switches and dc capacitors. These components leads to a high-order, discrete and non-linear mathematical model which is hard to be deduced and analyzed. Based on the physical lumped parameter circuit model, a switching model is given and simplified to an average model through three steps of simplification and coordinate transformation. Finally, a low-order, continuous and linear model is given through small-signal linearization. The preconditions of the proposed simplification are defined to offer different degrees of simplification according different analysis requires. With dc voltage controlled variable, the proposed state-space model makes MMC mathematic model more complete in control theory, and provides a theoretic foundation for the n-controllable modulation for MMC.
     In MMC-HVDC application, nearest voltage level modulation (NLM) is widely reported and used for the valve group control. However, selective switching strategy based on submodule (SM) voltage and collision avoidance rules of two adjacent switching operations are still needed to be discussed in detail. In this dissertation, control points of the selective switching strategy are defined. An algorithm and collision avoidance rules for the control points are also given. The algorithm proposes different selecting methods corroding different type of control points, gives the rule of control points design. An n-controllable NLM (n is the number of SM per phase) is proposed to control the dc side of MMC as a controllable voltage source under certain conditions for dc current control, and to make a full use of redundancy SMs from the control point of view. Modified strategies of n-controllable NLM are proposed to expand the application of NLM for odd n or H-bridge SMs.
     With the n-controllable NLM, dc and ac sides of MMC are controlled as controllable voltage sources which provide a fundamental base for various system control strategies in a higher level. A direct dc current control strategy and its parameter design method are proposed for an inner-loop controller of MMC in this dissertation. As a coordinative outer-loop controller, an output control strategy, a system control strategy and their parameter design methods are proposed with power balance limitation.
     There are cases of unidirectional power transmission in power system especially for renewable energy source connection and offshore platform power supply. It is proposed to reduce system complexity and cost and to improve system reliability that a unidirectional low-cost MMC-HVDC (ULMMC-HVDC) system with a diode rectifier and a MMC inverter. Distinguished by energy storage elements, two types of energy storable ULMMC-HVDC is proposed and discussed. Parallel connected with electronic double layer capacitors (EDLCs) on dc side, the large number of SMs are fully used to achieve the advantages as good performance of SM voltage balancing control, distributed storage that is flexible and easy to maintain. The proposed system also offsets the self-discharge and the low voltage rating problems brought by EDLC. An energy management control strategy and its parameter design method are given to limit the energy stored in EDLC between upper and lower bound. Parallel connected with battery on dc side of SM, energy storable ULMMC-HVDC achieves higher voltage rating compared with conventional battery energy storage system, and makes damaged battery models easily to be maintained or replaced. Compared with supper capacitor energy storage system, it provides a storage scheme with higher capacity and efficiency for power system. A state of charge (SOC) control strategy and its parameter design method are also given for SMs and SM clusters.
     Electromagnetic transient simulation model for large-scale MMC has the problems of high-order and low-efficiency, because there is a large number of SM with semiconductor switches and dc capacitors in the circuit. As a completely equivalent model of the switching model of MMC, a proposed simulation model greatly improves the efficiency and provides a feasible way for the simulation through building fast-simulation SM model and optimized control algorithm. The algorithm includes double-sorting operations for selective switching and collision avoidance rules for over frequency of SM switching.
     One of the main problems in practical MMC is a large number of SMs requests high-throughput digital IOs for control and measurement. The control system of MMC is generally a multi-controller system. However, another problem is to realize an interface for high-speed real-time communication and large amount of non-real time data between the controllers. A MMC prototype, including a400V AC/±400V DC/3kVA/288-SM main circuit and a full-scale control system, is developed and tested. The hardware design and the software structure are given in this dissertation. A control and measurement signals multiplexer for SM is proposed to greatly reduce the cost and difficulty, by reducing the number of fiber channels, using only logical circuits without bringing in any communication burden. A double-bus structure is proposed to transmit real-time and non-real time data separately. The structure solves the problem of data interaction between the controllers. The experimental results verify the fundamental principle of MMC and the proposed control strategies. All performance indexes of the prototype are adherent to the designed specification upon examination.
引文
[1]Arrillaga J. High voltage direct current transmission[M]. Institution of Engineering and Technology,1998.
    [2]陈珩.电力系统稳态分析(第二版)[M].中国电力出版社,2005.
    [3]叶东.电机学[M].天津科学技术出版社,1994.
    [4]戴熙杰.直流输电基础[M].水利电力出版社,1990.
    [5]浙江大学发电教研组直流输电科研组.直流输电[M].水利电力出版社,1985.
    [6]ABB.50 years of hvdc:1954-2004[EB/OL]. http://www.abb.com/industries/zh/ 9AAC30300393.aspx.
    [7]张文亮,于永清,李光范,等.特高压直流技术研究[J].中国电机工程学报,2007,(22):1-7.
    [8]Sood V K. Hvdc and facts controllers:applications of static converters in power systems[M]. Springer,2004.
    [9]汤广福.基于电压源换流器的高压直流输电技术[M].中国电力出版社,2010.
    [10]浙江省电力工业局.舟山直流输电工业性试验工程[R].1990.
    [11]Lesnicar A, Marquardt R. An innovative modular multilevel converter topology suitable for a wide power range [C]:Power Tech Conference Proceedings,2003 IEEE Bologna,2003.
    [12]Marquardt R. Stromrichterschaltungen mit verteilten ergiesspeichern:German, DE10103031A1[P].2011.
    [13]Marquardt R, Lesnicar A, Hildinger J U R. Modulares stromrichterkonzept fur netzkupplungsanwendung bei hohen spannungen[J]. ETG-Fachtagung, Bad Nauheim, Germany,2002.
    [14]Friedrich K. Modern hvdc plus application of vsc in modular multilevel converter topology[C]:Industrial Electronics (ISIE),2010 IEEE International Symposium on, 2010.
    [15]Huang H. Multilevel voltage-sourced converters for hvdc and facts applications[C]: CIGRE, Bergen,2009.
    [16]丁冠军,汤广福,丁明,等.新型多电平电压源换流器模块的拓扑机制与调制策略[J].中国电机工程学报,2009,(36):1-8.
    [17]Meynard T A, Foch H. Multi-level conversion:high voltage choppers and voltage-source inverters[C]:Power Electronics Specialists Conference,1992. PESC'92 Record.,23rd Annual IEEE,1992.
    [18]Nabae A, Takahashi I, Akagi H. A new neutral-point-clamped pwm inverter[J]. Industry Applications, IEEE Transactions on,1981,IA-17(5):518-523.
    [19]Jih-Sheng L, Fang Z P. Multilevel converters-a new breed of power converters[J]. Industry Applications, IEEE Transactions on,1996,32(3):509-517.
    [20]Hagiwara M, Akagi H. Pwm control and experiment of modular multilevel converters[C]:Power Electronics Specialists Conference,2008. PESC 2008. IEEE, 2008.
    [21]Hagiwara M, Akagi H. Control and experiment of pulsewidth-modulated modular multilevel converters [J]. Power Electronics, IEEE Transactions on, 2009,24(7):1737-1746.
    [22]韦延方,卫志农,孙国强,等.适用于电压源换流器型高压直流输电的模块化多电平换流器最新研究进展[J].高电压技术,2012,(5):1243-1252.
    [23]Jacobson B, Karlsson P, Asplund G, et al. Vsc-hvdc transmission with cascaded two-level converters[C]:CIGRE, Paris,2010.
    [24]Merlin M M C, Green T C, Mitcheson P D, et al. A new hybrid multi-level voltage-source converter with dc fault blocking capability[C]:AC and DC Power Transmission,2010. ACDC.9th IET International Conference on,2010.
    [25]胡鹏飞,江道灼,郭捷,等.基于晶闸管换向的混合型多电平换流器[J].电力系统自动化,2012,(21):102-107.
    [26]胡鹏飞,江道灼,周月宾,等.桥臂切换多电平换流器:中国,CN102545664A[P].2012.
    [27]胡鹏飞,江道灼,周月宾,等.一种桥臂切换多电平换流器:中国CN202455253U[P].2012.
    [28]Baruschka L, Mertens A. A new 3-phase direct modular multilevel converter[C]:Power Electronics and Applications (EPE 2011), Proceedings of the 2011-14th European Conference on,2011.
    [29]谢妍,陈柏超,陈耀军,等.新型模块化多电平换流器串联电抗器的功能与取值分析[J].电力自动化设备,2012,(9):55-59.
    [30]Qingrui T, Zheng X, Hongyang H, et al. Parameter design principle of the arm inductor in modular multilevel converter based hvdc[C]:Power System Technology (POWERCON),2010 International Conference on,2010.
    [31]Barnklau H, Gensior A, Bernet S. Submodule capacitor dimensioning for modular multilevel converters[C]:Energy Conversion Congress and Exposition (ECCE),2012 IEEE,2012.
    [32]丁冠军,丁明,汤广福,等.新型多电平vsc子模块电容参数与均压策略[J].中国电机工程学报,2009,(30):1-6.
    [33]王姗姗,周孝信,汤广福,等.模块化多电平hvdc输电系统子模块电容值的选取和计算[J].电网技术,2011,(1):26-32.
    [34]Minyuan G, Zheng X, Huijie L. Analysis of dc voltage ripples in modular multilevel converters[C]:Power System Technology (POWERCON),2010 International Conference on,2010.
    [35]曹春刚,赵成勇,陈晓芳. Mmc-hvdc系统数学模型及其控制策略[J].电力系统及其自动化学报,2012,(4):13-18.
    [36]Rohner S, Bernet S, Hiller M, et al. Modelling, simulation and analysis of a modular multilevel converter for medium voltage applications [C]:Industrial Technology (ICIT), 2010 IEEE International Conference on,2010.
    [37]管敏渊,徐政.模块化多电平换流器型直流输电的建模与控制[J].电力系统自动化,2010,(19):64-68.
    [38]Solas E, Abad G, Barrena J A, et al. Modelling, simulation and control of modular multilevel converter[C]:Power Electronics and Motion Control Conference (EPE/PEMC),2010 14th International,2010.
    [39]Solas E, Abad G, Barrena J A, et al. Modulation of modular multilevel converter for hvdc application[C]:Power Electronics and Motion Control Conference (EPE/PEMC), 2010 14th International,2010.
    [40]王姗姗,周孝信,汤广福,等.模块化多电平电压源换流器的数学模型[J].中国电机工程学报,2011,(24):1-8.
    [41]Wang F. Modeling and control of ac three-phase pwm converters[R].The University of Tennessee, Knoxville,2012.
    [42]刘栋,汤广福,郑健超,等.模块化多电平换流器小信号模型及开环响应时间常数分析[J].中国电机工程学报,2012,(24):1-8.
    [43]Deore S R, Darji P B, Kulkarni A M. Dynamic phasor modeling of modular multi-level converters[C]:Industrial and Information Systems (ICIIS),2012 7th IEEE International Conference on,2012.
    [44]Konstantinou G S, Agelidis V G. Performance evaluation of half-bridge cascaded multilevel converters operated with multicarrier sinusoidal pwm techniques [C]: Industrial Electronics and Applications,2009. ICIEA 2009.4th IEEE Conference on, 2009.
    [45]Zhang Y, Adam G P, Lim T C, et al. Analysis of modular multilevel converter capacitor voltage balancing based on phase voltage redundant states [J]. Power Electronics, IET,2012,5(6):726-738.
    [47]Glinka M. Prototype of multiphase modular-multilevel-converter with 2 mw power rating and 17-level-output-voltage[C]:Power Electronics Specialists Conference,2004. PESC 04.2004 IEEE 35th Annual,2004.
    [48]Rohner S, Bernet S, Hiller M, et al. Modulation, losses, and semiconductor requirements of modular multilevel converters [J]. Industrial Electronics, IEEE Transactions on,2010,57(8):2633-2642.
    [49]李强,贺之渊,汤广福,等.新型模块化多电平换流器空间矢量脉宽调制方法[J].电力系统自动化,2010,(22):75-79.
    [50]Rohner S, Bernet S, Hiller M, et al. Analysis and simulation of a 6 kv,6 mva modular multilevel converter[C]:Industrial Electronics,2009. IECON'09.35th Annual Conference of IEEE,2009.
    [51]Rohner S, Bernet S, Hiller M, et al. Pulse width modulation scheme for the modular multilevel converter[C]:Power Electronics and Applications,2009. EPE'09.13th European Conference on,2009.
    [52]王楚,宋平岗,李云丰.模块化多电平变流器的最近电平逼近调制策略[J].大功率变流技术,2012,(4):20-22.
    [53]管敏渊,徐政,潘伟勇,等.最近电平逼近调制的基波谐波特性解析计算[J].高电压技术,2010,(5):1327-1332.
    [54]郭捷,江道灼,周月宾,等.交直流侧电流分别可控的模块化多电平换流器控制方法[J].电力系统自动化,2011,(7):42-47.
    [55]Gemmell B, Dorn J, Retzmann D, et al. Prospects of multilevel vsc technologies for power transmission[C]:Transmission and Distribution Conference and Exposition, 2008. IEEE/PES,2008.
    [56]Antonopoulos A, Angquist L, Nee H P. On dynamics and voltage control of the modular multilevel converter[C]:Power Electronics and Applications,2009. EPE'09. 13th European Conference on,2009.
    [57]A X, Ngquist L, Antonopoulos A, et al. Inner control of modular multilevel converters-an approach using open-loop estimation of stored energy [C]:Power Electronics Conference (IPEC),2010 International,2010.
    [58]Angquist L, Antonopoulos A, Siemaszko D, et al. Open-loop control of modular multilevel converters using estimation of stored energy [J]. Industry Applications, IEEE Transactions on,2011,47(6):2516-2524.
    [59]Siemaszko D, Antonopoulos A, Ilves K, et al. Evaluation of control and modulation methods for modular multilevel converters [C]:Power Electronics Conference (IPEC), 2010 International,2010.
    [60]Gum T S, Hee-Jin L, Tae S N, et al. Design and control of a modular multilevel hvdc converter with redundant power modules for noninterruptible energy transfer[J]. Power Delivery, IEEE Transactions on,2012,27(3):1611-1619.
    [61]李云丰,宋平岗,王楚,等.模块化多电平换流器电容电压排序优化算法研究[J].电气技术,2012,(12):8-12.
    [62]周月宾,江道灼,郭捷,等.模块化多电平换流器型直流输电系统的启停控制[J]. 电网技术,2012,(3):204-209.
    [63]孔明,邱宇峰,贺之渊,等.模块化多电平式柔性直流输电换流器的预充电控制策略[J].电网技术,2011,(11):67-73.
    [64]周月宾,江道灼,郭捷,等.模块化多电平换流器子模块电容电压波动与内部环流分析[J].中国电机工程学报,2012,(24):8-14.
    [65]屠卿瑞,徐政,郑翔,等.模块化多电平换流器型直流输电内部环流机理分析[J].高电压技术,2010,(2):547-552.
    [66]屠卿瑞,徐政,管敏渊,等.模块化多电平换流器环流抑制控制器设计[J].电力系统自动化,2010,(18):57-61.
    [67]刘隽,贺之渊,何维国,等.基于模块化多电平变流器的柔性直流输电技术[J].电力与能源,2011,(1):33-38.
    [68]Munch P, Liu S, Dommaschk M. Modeling and current control of modular multilevel converters considering actuator and sensor delays[C]:Industrial Electronics,2009. IECON'09.35th Annual Conference of IEEE,2009.
    [69]Munch P, Liu S, Ebner G. Multivariable current control of modular multilevel converters with disturbance rejection and harmonics compensation[C]:Control Applications (CCA),2010 IEEE International Conference on,2010.
    [70]Munch P, Gorges D, Izak M, et al. Integrated current control, energy control and energy balancing of modular multilevel converters[C]:IECON 2010-36th Annual Conference on IEEE Industrial Electronics Society,2010.
    [71]王姗姗,周孝信,汤广福,等.交流电网强度对模块化多电平换流器hvdc运行特性的影响[J].电网技术,2011,(2):17-24.
    [72]Adam G P, Anaya-Lara O, Burt G. Multi-terminal dc transmission system based on modular multilevel converter[C]:Universities Power Engineering Conference (UPEC), 2009 Proceedings of the 44th International,2009.
    [73]周月宾,江道灼,郭捷,等.交流系统不对称时模块化多电平换流器的控制[J].电网技术.
    [74]Gnanarathna U N, Gole A M, Jayasinghe R P. Efficient modeling of modular multilevel hvdc converters (mmc) on electromagnetic transient simulation programs [J]. Power Delivery, IEEE Transactions on,2011,26(1):316-324.
    [75]Jianzhong X, Chengyong Z, Wenjing L, et al. Accelerated model of modular multilevel converters in pscad/emtdc[J]. Power Delivery, IEEE Transactions on, 2013,28(1):129-136.
    [76]Harnefors L, Antonopoulos A, Norrga S, et al. Dynamic analysis of modular multilevel converters[J]. Industrial Electronics, IEEE Transactions on,2012,PP(99):1.
    [77]Peftitsis D, Tolstoy G, Antonopoulos A, et al. High-power modular multilevel converters with sic jfets[J]. Power Electronics, IEEE Transactions on, 2012,27(1):28-36.
    [78]罗湘,汤广福,查鲲鹏,等.Vsc-hvdc换流阀过电流关断试验方法[J].中国电机工程学报,2011,(6):1-6.
    [79]罗湘,汤广福,查鲲鹏,等.电压源换流器高压直流输电换流阀的试验方法[J].电网技术,2010,(5):25-29.
    [80]罗湘,郑健超,汤广福,等.可关断器件阀运行试验的等效性及稳态试验方法[J].中国电机工程学报,2011,(3):1-7.
    [81]罗湘,汤广福,查鲲鹏,等.合成试验方法在vsc-hvdc换流阀短路电流试验中的应用[J].电网技术,2010,(7):9-13.
    [82]SIEMENS. Hvdc plus (vsc technology) references[EB/OL]. http://www.energy. siemens.com/us/en/power-transmission/hvdc/hvdc-plus/references.htm.
    [83]中电普瑞公司.重点工程[EB/OL]. http://www.epri.sgcc.com.cn/prgc/zdgc/.
    [84]张文亮,汤广福,查鲲鹏,等.先进电力电子技术在智能电网中的应用[J].中国电机工程学报,2010,(4):1-7.
    [85]Franklin G F, Powell J D, Emami-Naeini A. Feedback control of dynamic systems (fifth edition)[M]. Pearson Education,2007.
    [86]Sch O Nung A, Stemmler H. Geregelter drehstrom-umkehrantrieb mit gesteuertem umrichter nach dem unterschwingungsverfahren[J]. BBC-Nachrichten, 1964,46(12):699.
    [87]Liang Y. Multilevel voltage source inverters with phase shift spwm and their applications in statcom and power line conditioner[D]. Drexel University,1999.
    [88]Liang Y, Nwankpa C O. A new type of statcom based on cascading voltage-source inverters with phase-shifted unipolar spwm[J]. Industry Applications, IEEE Transactions on,1999,35(5):1118-1123.
    [89]Hui P, Hagiwara M, Akagi H. Modeling and analysis of switching-ripple voltage on the dc link between a diode rectifier and a modular multilevel cascade inverter (mmci)[J]. Power Electronics, IEEE Transactions on,2013,28(1):75-84.
    [90]Yoshii T, Inoue S, Akagi H. Control and performance of a medium-voltage transformerless cascade pwm statcom with star-configuration[C]:Industry Applications Conference,2006.41st IAS Annual Meeting. Conference Record of the 2006 IEEE, 2006.
    [91]Akagi H, Inoue S, Yoshii T. Control and performance of a transformerless cascade pwm statcom with star configuration[J]. Industry Applications, IEEE Transactions on, 2007,43(4):1041-1049.
    [92]Maharjan L, Inoue S, Akagi H. A transformerless energy storage system based on a cascade multilevel pwm converter with star configuration[J]. Industry Applications, IEEE Transactions on,2008,44(5):1621-1630.
    [93]王兆安,杨君,刘进军,等.谐波抑制和无功功率补偿(第2版)[M].机械工业出版社,2009.
    [94]李庆峰,范峥,吴穹,等.全国输电线路覆冰情况调研及事故分析[J].电网技术,2008,(9):33-36.
    [95]申屠刚,程极盛,江道灼,等.500kv直流融冰兼动态无功补偿系统研发与工程试点[J].电力系统自动化,2009,(23):75-80.
    [96]张庆武,吕鹏飞,王德林.特高压直流输电线路融冰方案[J].电力系统自动化,2009,(7):38-42.
    [97]范瑞祥,孙旻,贺之渊,等.江西电网移动式直流融冰装置设计及其系统试验[J].电力系统自动化,2009,(15):67-71.
    [98]郭捷,江道灼,李海翔.可控整流器型直流融冰兼svc装置在svc模式下控制域解析[J].电力系统保护与控制,2010,(14):93-97.
    [99]郭捷,江道灼,李海翔,等.可控整流器型静止无功补偿装置的可行性研究[J].电网技术,2010,(7):81-86.
    [100]郭捷,江道灼,杨贵玉.一种自适应接地的避雷线融冰电路:中国,CN101908750A[P].2010.
    [101]李俊峰.中国风电发展报告2012[R].中国环境科学出版社,2012.
    [102]SIEMENS.提高能源效率[EB/OL]. [2013]. http://w1.siemens.com.cn/energy-efficiency/? stc= cnccc020899# Energy_supply.
    [103]吴义纯,丁明,李生虎.风电场对发输电系统可靠性影响的评估[J].电工技术学报,2004,(11):72-76.
    [104]Jamieson P. Innovation in wind turbine design[M]. Wiley,2011.
    [105]Groeman J F, Enslin J, Jansen C. Connecting 6 gw wind power to the transmission network in the netherlands:with dc or ac?[J]. Water and Energy Abstracts,2005,15(4).
    [106]朱颖,李建林,赵斌.双馈型风力发电系统低电压穿越策略仿真[J].电力自动化设备,2010,(6):20-24.
    [107]王志新,李响,刘文晋.海上风电柔性直流输电变流器研究[J].电网与清洁能源,2008,(8):33-37.
    [108]李响,王志新,刘文晋.海上风电柔性直流输电变流器的研究与开发[J].电力自动化设备,2009,(2):10-14.
    [109]李爽,王志新,王国强,等.三电平海上风电柔性直流输电变流器的pid神经网络滑模控制[J].中国电机工程学报,2012,(4):20-29.
    [110]林卫星,文劲宇,程时杰,等.一种将风电场和常规电厂捆绑并网的三端直流输电系统[J].中国电机工程学报,2012,(28):16-26.
    [111]徐科,胡敏强,杜炎森,等.直流母线电压控制实现并网与最大风能跟踪[J].电力系统自动化,2007,(11):53-58.
    [112]郭小江,马世英,申洪,等.大规模风电直流外送方案与系统稳定控制策略[J].电力系统自动化,2012,(15):107-115.
    [113]陈霞,林卫星,孙海顺,等.基于多端直流输电的风电并网技术[J].电工技术学报,2011,(7):60-67.
    [114]Lu W, Ooi B. Optimal acquisition and aggregation of offshore wind power by multiterminal voltage-source hvdc[J]. Power Delivery, IEEE Transactions on, 2003,18(1):201-206.
    [115]Bresesti P, Kling W L, Hendriks R L, et al. Hvdc connection of offshore wind farms to the transmission system[J]. Energy Conversion, IEEE Transactions on, 2007,22(1):37-43.
    [116]戴广平.电动机变频器与电力拖动[M].中国石化出版社,1999.
    [117]朱永强,张旭.风电场电气系统[M].北京:机械工业出版社,2010.
    [118]梁一桥,韩其国,周月宾.单向功率传输的直流输电系统:中国CN102222929A[P].2011.
    [119]郭捷,梁一桥,江道灼.一种单向功率传送的低成本直流输电系统:中国,CN101976956A[P].2011.
    [120]侯世英,房勇,曾建兴,等.应用超级电容提高风电系统低电压穿越能力[J].电机与控制学报,2010,(5):26-31.
    [121]赵艳雷,李海东,张磊,等.基于快速储能的风电潮流优化控制系统[J].中国电机工程学报,2012,(13):21-28.
    [122]Abbey C, Joos G E Z. Supercapacitor energy storage for wind energy applications[J]. Industry Applications, IEEE Transactions on,2007,43(3):769-776.
    [123]Li W, Jo O S G E Z, B E Langer J. Real-time simulation of a wind turbine generator coupled with a battery supercapacitor energy storage system[J]. Industrial Electronics, IEEE Transactions on,2010,57(4):1137-1145.
    [124]Loh P C, Li D, Chai Y K, et al. Hybrid ac-dc microgrids with energy storages and progressive energy flow tuning,2012.
    [125]Saejia M, Ngamroo I. Alleviation of power fluctuation in interconnected power systems with wind farm by smes with optimal coil size[J]. Applied Superconductivity, IEEE Transactions on,2012,22(3):5701504.
    [126]Sheikh M R I, Muyeen S M, Takahashi R, et al. Minimization of fluctuations of output power and terminal voltage of wind generator by using statcom/smes[C]:PowerTech, 2009 IEEE Bucharest,2009.
    [127]Wei X, Weijia Y, Yu Y, et al. Minimize frequency fluctuations of isolated power system with wind farm by using superconducting magnetic energy storage[C]:Power Electronics and Drive Systems,2009. PEDS 2009. International Conference on,2009.
    [128]Yoshimoto K, Nanahara T, Koshimizu G. New control method for regulating state-of-charge of a battery in hybrid wind power/battery energy storage system,2006.
    [129]Yao D L, Choi S S, Tseng K J, et al. A statistical approach to the design of a dispatchable wind power-battery energy storage system[J]. Energy Conversion, IEEE Transactions on,2009,24(4):916-925.
    [130]Prasad A R, Natarajan E. Optimization of integrated photovoltaic--wind power generation systems with battery storage[J]. Energy,2006,31(12):1943-1954.
    [131]ZHANG B, ZENG J, MAO C, et al. Improvement of power quality and stability of wind farms connected to power grid by battery energy storage system[J]. Power System Technology,2006,15:13.
    [132]Hardan F, Bleijs J, Jones R, et al. Application of a power-controlled flywheel drive for wind power conditioning in a wind/diesel power system,1999.
    [133]Cardenas R, Pena R, Asher G, et al. Control strategies for enhanced power smoothing in wind energy systems using a flywheel driven by a vector-controlled induction machine[J]. Industrial Electronics, IEEE Transactions on,2001,48(3):625-635.
    [134]Cardenas R, Pena R E N, Asher G, et al. Power smoothing in wind generation systems using a sensorless vector controlled induction machine driving a flywheel[J]. Energy Conversion, IEEE Transactions on,2004,19(1):206-216.
    [135]赵洋,梁海泉,张逸成.电化学超级电容器建模研究现状与展望[J].电工技术学报,2012,(3):188-195.
    [136]MAXWELL. Overview of ultracapacitor technology[EB/OL]. [2013]. http://www. maxwell.com/ultracapacitors/.
    [137]Vincent C. Lithium batteries[J]. IEE review,1999,45(2):65-68.
    [138]Maharjan L, Inoue S, Akagi H, et al. A transformerless battery energy storage system based on a multilevel cascade pwm converter[C]:Power Electronics Specialists Conference,2008. PESC 2008. IEEE,2008.
    [139]Yang Z, Shen C, Zhang L, et al. Integration of a statcom and battery energy storage[J]. Power Systems, IEEE Transactions on,2001,16(2):254-260.
    [140]Miller N W, Zrebiec R S, Hunt G, et al. Design and commissioning of a 5 mva,2.5 mwh battery energy storage system,1996.
    [141]胡鹏飞,江道灼,郭捷,等.一种h桥和半h桥通用电路模块:中国CN102545566A[P].2012.
    [142]胡鹏飞,江道灼,郭捷,等.H桥和半h桥通用电路模块:中国,CN202586731U[P].2012.
    [143]郭捷,江道灼,周月宾,等.换流器级联模块的测控信号光纤隔离复用电路:中国,CN102522878A[P].2012.
    [144]郭捷,江道灼,周月宾,等.一种换流器级联模块的测控信号光纤隔离复用电路:中国,CN202586718U[P].2012.
    [145]杨乐平.Labview高级程序设计[M].清华大学出版社有限公司,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700