ZT-FDTD法分析航天器再入等离子鞘套对通信信号的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高压会在表面形成包覆着飞行器的等离子体鞘套。等离子体鞘套会对通过其中的无线信号产生吸收和反射等作用过程,严重影响航天器与外界通信。
     根据等离子体鞘套结构及其电磁特性,本文选用Z变换时域有限差分方法(ZT-FDTD)进行信道建模,来研究通信信号通过等离子体鞘套时的吸收、反射和透射等情况。首先,以麦克斯韦基本方程组为基础,结合等离子体鞘套模型边界条件,得到了适合于在等离子体鞘套中传播的公式,并且使所得公式具有普适性。
     其次,给出了ZT-FDTD算法的详细推导过程,建立了算法模型并在VC中编程实现。计算了等离子体层的反射和透射系数,并将计算结果与解析方法计算结果利用MATLAB作图进行对比分析。在此基础上,又进一步将ZT-FDTD方法推广到三维空间中,并在三维空间中分析了电磁信号透过等离子体层的传播。
     随后,根据对常用航天器等离子鞘套的分析,修正了等离子体鞘套电子双指数分布模型,利用ZT-FDTD方法根据修正后的双指数分布模型进行信道建模,编程实现并分析了不同载波频率的信号通过等离子体鞘套的情况。
     最后,编程实现了含有噪声和等离子体鞘套的通信系统,并仿真计算了再入等离子体鞘套对通信信号的吸收、反射和透射以及对通信系统误码率的影响。研究工作主要有三方面:
     1、将ZT-FDTD法从一维空间推广到三维空间中,编程实现了在上下行链路两种情况下计算区域内入射波的加入;
     2、利用ZT-FDTD法进行通信信道模型建模,并用来分析等离子鞘套对通信信号的影响;
     3、修正了等离子体鞘套双指数分布模型,将其引入到计算空间中并利用一维辅助数组实现了等离子体鞘套在总场区域和散射场区域间的分割。
When space vehicles (such as satellite, missile, space shuttle and the reentry module of the spacecraft. etc) reentry atmosphere at hypersonic speed, a plasma sheath enveloping the spacecraft begins to come into being. The sheath is composed of plasma, and the plasma is a medium which will exert influence on communication of vehicles, such as absorption and reflection etc.
     According to the structure of the plasma sheath and the electromagnetic characteristics, Finite Difference Time Domain using Z-Transform method (ZT-FDTD) will be adopted to study the absorption, reflection and transmission of communication signals.
     At first, the formula derivation combined with the boundary condition of the plasma sheath model, based on the Maxwell equations, is executed to obtain the equations which are suitable for propagating in plasma sheath, and the equations have the property of universality.
     Secondly, the ZT-FDTD algorithm and the programming in VC are described in detail to calculate the coefficient of reflection and transmission, a comparative analysis between the calculation results and the results of analytical method is given in MATLAB. On this basis, ZT-FDTD is extended to the three-dimensional space to analyze the propagation of electromagnetic wave through the plasma slab.
     And then, the double exponential model of plasma sheath’electron is improved, which is based on the analysis of the common space vehicles, and that the signals with different frequency propagate through plasma sheath modeled by ZT-FDTD method are programmed.
     Finally, the communication system with the noise and the plasma sheath is realized to calculate the absorption, reflection and transmission of the signals through plasma sheath and the influence of the plasma sheath on the bit error rate of the communication system.
     The research work mainly embodies in the three aspects as follows:
     1. ZT-FDTD is extended to the three-dimensional space to realize simulating the uplink and downlink of the communication system with the incident wave added in the calculation region.
     2. The communication channel is modeled using the ZT-FDTD method to analyze the influence of the plasma sheath on the communication signals.
     3. Improve the electron double exponential model of the plasma sheath, add the model to the calculation region and realize the segmentation between the Total Field and the Scattered Field by using one-dimensional auxiliary array.
引文
[1] J.P. Rybak, R.J. Chruchill. Progress in reentry communications. IEEE Transactions on Aerospace and Electronic systems, 1971, 7(5):879-893.
    [2] K. Minkwan, M. Keider, D.B. Iain. Electrostatic manipulation of a hypersonic plasma layer: images of the two-dimensional sheath. IEEE Transactions on Plasma Science, 2008, 36(4):1198-1199.
    [3] G.. Stewart. Laboratory simulation of reentry plasma sheaths. IEEE Transactions on Antennas and Propagation, 1967, 11, 15(6):831-832.
    [4] F.G. Blottner. Viscous shock layer at the stagnation point with nonequilibrium air chemistry. AIAA Joural, 1969,7(12):2281-2287.
    [5]菅井秀朗.等离子体电子工程学(张海波译).北京:科学出版社, 2002:45-48.
    [6]杨永常、宗鹏、魏志勇.空间环境对无线电波传播的影响综述.航天器环境工程2009, 26(1):26-32.
    [7] T.C. Lin, L.K. Sproul. Reentry plasma on electromagnetic wave propagation. 26th AIAA plasma dynamics and lasers conference, 1995, San Diego, CA.
    [8] D.E. Mather, J.M. Pasqual, J.P. Sillence. Radio frequency(RF) blackout during hypersonic reentry. 13th AIAA International Space Planes and Hypersonics systems and Technologies, 2005.
    [9] B.A. Carreras, V.E. Lynch, D.E. Newman et al. Blackout mitigation assessment in power transmission systems. Proceedings of the 36th Annual Hwwali International Conference on System Science, 2003:10-10.
    [10] J.S. Evans. P.W. Huber. Calculated radio attenuation due to plasma sheath on hypersonic Blunt-Nosed cone. NASA Technical Note, 1963, TN D-2043.
    [11] I. Pollin. Control of Electron Density Distribution on Hypersonic Vehicle. HDL-TR-1592, April, 1972.
    [12] Miner E W et al. Hypersonic Ionizing Air Viscous Shock-Layer Flows over Non-analytic Blunt Bodies. NASA CR-2550, 1975.
    [13] A. Villeneuve, Admittance of waveguide radiating into plasma environment. IEEE Transactions on Antennas and Propagation, 1965,13(1):115-121.
    [14] Andreas F.Molisch.无线通信(田斌译).北京:电子工业出版社, 2008.
    [15]吴承康、卞荫贵等.再入通讯可行途径研究.空气动力学获奖成果汇编, 1991.
    [16] A.O. Korotkevich, A.C. Newell, V.E. Zakharov. Communication through plasma sheaths. Journal of Applied Physics, 2007, 102(8):305-314.
    [17] S.V. Nazarenko, A.C. Newell, V.E. Zakharov. Communication through plasma sheaths via raman(three-wave) scattering process. American institute of physics, 1994, 1(9):2827-2834.
    [18] T.C.Lin, L.K.Sproul. Reentry plasma effects on electromagnetic wave propagation. 26th AIAA Plasmadynamics and Lasers Conference, 1942.
    [19]孙鉴、黄进武.空天飞机的测控通信技术.电视技术, 2007, 47(1):48~52.
    [20] P. Garg, A.K. Dodiyal. Reducing RF blackout during re-entry of the reusable launch vehicle. IEEE Aerospace conference 2009:1-15.
    [21] C. Thoma, DV. Rose, C.L. Miller, et al. Electromagnetic wave propagation through an overdense magnetized collisional plasma layer. Journal of Applied Physics, 2009, 106(4):3301-3308.
    [22]刘学锋.关于再入遥测中记忆重发方式的讨论.电子技术参考, 1991, 2:1-9.
    [23] L. Shaobin, L. Qi. Segmental analyse and numerical verification on radar scattering characteristics of reentry capsule. 3rd IEEE International Symposium on Microwave, antenna, propagation and EMC technologies for wireless communication, 2009:947-949.
    [24] J.V. Candy. A parametric approach to radar processing of reentry vehicle signatures. IEEE Antennas and Propagation Society International Symposium, 1999, 3(3)1628-1640.
    [25] G. Ruiting, L. Zheng, Z Shouhong. Analysis of Doppler Features of Spiral Maneuver of Reentry Missile with Time-Frequency Transform. International Conference on Radar, 2006:1-4.
    [26] E. Knott. Simulation of reentry vehicle motion during laboratory measurements of radar cross section. IEEE Transactions on Antennas and Propagation, 1969, 17(2):242-244.
    [27] G. Rubin, T. Carney, J. Floyd. H.J. Henderson, et al. Airborne radar measurements of the reentry of the Ariane 5 EPC. IEEE International Radar Conference, 2005:469-473.
    [28] C. Harrison, E. Aronson. On the bistatic scattering cross section of a reentry capsule with ionized wake. IEEE Transaction on Antennas and Propagation, 1969, 17(3):374-376.
    [29]朱方返回舱再入段雷达散射特性研究[C], [硕士学位论文].兰州:兰州大学, 2007.
    [30]谢中强,欧阳水吾,汪翼云.化学非平衡高超声速电离流动数值研究.空气动力学学报, 1995, 13(2)192-198.
    [31]沈建伟,翟章华.高超音速化学非平衡层流粘性激波层钝头细长体绕流数值计算.宇航学报, 3, 1988.
    [32]张鲁民、潘梅林、唐伟等.载人飞船返回舱空气动力学.北京:国防工业出版社. 2002:1-21.
    [33] M. Laroussi. J.R. Roth. Numerical calculation of the reflection, absorption, and transmission of
    microwaves by a non-uniform plasma slab. IEEE Transaction on Plasma Science, 1993, 21(3):366-372.
    [34] H. Jiebin. W. Gang. S. Lilai. SMM analysis of reflection, absorption, and transmission from non-uniform magnetized plasma slab. IEEE Transactions on Plasma Science, 1999, 27(4).
    [35] A. Helaly, E.A. Soliman, A. Megahed. Electromagnetic waves scattering by non-nuiform plasma cylinder. Proc. Inst. Elect. Eng. 1997, 144(2):61-66.
    [36] B. Andrei. Transmission of Microwaves through magnetoactive plasma. IEEE Transfaction on plasma science. 2001, 29(3).
    [37]中国人民解放军总装备部军事训练教材编辑工作委员会.天地通信技术.北京:国防工业出版社, 2002:61-82.
    [38] C.R. Mullin, F.H. Mitchell. Comments on“Communication-system blackout during reentry of large vehicles”. Proceedings of the IEEE, 1968,56(2):203-204.
    [39]焦培南,张忠治.雷达环境与电波传播特性.北京:电子工业出版社, 2007:281-286.
    [40]庄钊文,袁乃昌,刘少斌.等离子体隐身技术.北京:科学出版社, 2005:22-52.
    [41] B. Chaudhury, S. Chaturvedi. Three-Dimensional computation of reduction in radar cross section using plasma shielding. IEEE Transactions on Plasma Science, 2005, 33(6):2027-2034.
    [42]黄捷.电波大气折射误差修正.北京:国防工业出版社, 1999:66-88.
    [43]郑宏兴,葛德彪.广义传播矩阵法分析分层各向异性材料对电磁波的反射与透射.物理学报, 2000, 49(9):1702-1705.
    [44] S. Adams, R. Boppana. Finite difference time domain (FDTD) simulations using graphics processors. Dod high performance computing modernization program users group conference, 2007:334-338.
    [45] S. Oqurtsov, S.V. Georgakopoulos. FDTD schemes with minimal numerical dispersion. IEEE Transaction on Advanced Packaging, 2009, 32(1):199-204.
    [46] H. Nakano, T. Kawano, Y. Kozono, et al. A fast MOM calculation technique using sinusoidal basis and testing functions for a wire on a dielectric substrate and ites application to meander loop and grid array antennas. IEEE Transactions on Antennas and Propagation, 2005, 53(10):3300-3307.
    [47] P.W. Cramer, W.A. Imbriale. Speed up of near-field physical optics scattering calculations by use of the sampling theorem. IEEE Transactions on Magnetics, 1994, 30(15):3156-3159.
    [48] L. Joohwa, Dikshitulu K.K. Dikshitulu. Three-Dimensional FDTD simulation of electromagnetic wave transformation in a dynamic inhomogeneous magnetized plasma. IEEETransactions on antennas and propagation , 1999, 47(7):1146-1151.
    [49] A. Taflove, S.C. Hagness. "Computational Electrodynamics: The Finite-Difference Time-Domain Method". LONDON:ARTECH HOUSE, 2005:40-400.
    [50] S. Adams, R. Boppana. Finite Difference Time Domain (FDTD) Simulations Using Graphics Processors. Dod High performance computing modernization program user group conference, 2007:334-338.
    [51] S. Ogurtsov, P. Guangwen. An Updated Review of General Dispersion Relation for Conditionally and Unconditionally Stable FDTD Algorithms. IEEE Transactions on Antennas and Propagation, 2008, 56(3):2572-2583.
    [52] J.M. Johnson, Y. R. Samii. Multiple region FDTD (MR/FDTD) and its application to microwave analysis and modeling. Microwave Symposium Digest, 1996, 3(3):1475-1478.
    [53] J. Shibyama, R. Ando, A. Nomura, J Yamauchi, et al. Simple Trapezoidal Recursive Convolution Technique for the Frequency-Dependent FDTD Analysis of a Drude–Lorentz Model. IEEE Photonics Technology Letters, 2009, 21(2):100-102.
    [54] L. Shaobin, M. Jinjun, Y. Naichang. Piecewise linear current density recursive convolution FDTD implementation for anisotropic magnetized plasmas. IEEE Microwave and Wireless Components Letters, 14(5):222-224.
    [55] J.W. Schuster, R.J. Luebbers, T.G. Livenois. Application of the recursive convolution technique to modeling lumped circuit elements in FDTD simulations. 1998, 4(4):1792-1795.
    [56] Y. Takayama, W. Kiaus. Reinterpretation of the auxiliary differential equation method for FDTD. IEEE Microwave and Wireless Components Letters, 2002, 12(3):102-104.
    [57] A. Grande, A.C.L. Cabeceira, J Represa, K. Karkkainen, et al. Two-dimensional extension of a novel FDTD technique for modeling dispersive lossy bi-isotropic media using the auxiliary differential equation method. IEEE Microwave and Wireless Components Letters, 2005, 15(5):375-377.
    [58] L. Zhili, L. Thylen. On the Accuracy and Stability of Several Widely Used FDTD Approaches for Modeling Lorentz Dielectrics. IEEE Transactions on Antennas and Propagation, 2009, 57(10):3378-3381.
    [59] C. Hailin, C. Bin, F. Dagang, Liu. Heng. Extension of the ADI-BOR-FDTD Method to Debye Dispersive Media. IEEE Microwave and Wireless Components Letters, 2009, 19(6):344-346.
    [60] J. Chaoqun, C. Xiang, L. Lin. Subcell FDTD modeling of electrically thin dispersive layers using Z transforms. 17th International Zurich Symposium on Electromagnetic Compatibility,2006:196-199.
    [61] D.M. Sullivan. Nonlinear FDTD formulations using Z transforms. IEEE Transactions on Microwave Theory and Techniques, 1995, 43(3):676-682.
    [62] V. Demir, A.Z. Elsherbeni, E. Arvas. FDTD formulation for dispersive chiral media using the Z transform method[J]. IEEE Transactions on Antennas and Propagation, 2005, 53(10):3374-3384.
    [63] T. Hruskovec, C. Zhizhang. FDTD modeling of magnetized ferrites using Z transforms. IEEE Antennas and Propagation Society International Symposium, 1999, 2(2):1324-1327.
    [64] D. Sullivan. The use of Z transform theory for numerical simulation of dispersive and non-linear materials with the FDTD method. Antennas and Propagation Society International Symposium, 1994, 3(3):1450-1453.
    [65] D.F. Kelley, R.J. Luebbers. Piecewise linear recursive convolution for dispersive media using FDTD. IEEE Transaction Antennas and Propagation, 1997, 44(6):792-797.
    [66] L. Junyub, L. Jeonghae, J. Hyunkyo. Linear lumped loads in the FDTD method using piecewise linear recursive convolution method. Microwave and Wireless Components Letters, 2006, 16(4):158-160.
    [67] L. Junyub, L. Jeonghae, J. Hyunkyo. Modeling linear lumped loads in the FDTD method using piecewise linear recursive convolution method. Antennas and propagation Society International Symposium, 2005, 2B(2B):142-145.
    [68] W. Rui, W. Gaofeng. PLRC-WCS FDTD Method for Dispersive Media. Microwave and Wireless Components Letters, 2009, 19(6):341-343.
    [69] Q. Chen, M. Katsurai, P.H. Aoyagi. An FDTD formulation for dispersive media using a current density. Antennas and Propagation, 1998, 46(11):1739-1746.
    [70] C. Huilan, J. Zhonghe, Chen. Zhaoqun. A new FDTD algorithm for plasma at high collision frequencies. 8th International Symposium on Antennas, Propagation and EM Theory, 2008:918-916.
    [71]刘少斌,韩道福,袁乃昌.等离子体覆盖导体柱双站散射特性的PLJERC-FDTD分析.南昌大学学报, 2003, 25(3):1-5.
    [72]庄钊文,袁乃昌,莫锦军等.军用雷达目标散射截面.北京:科学出版社, 2007:147-149.
    [73] R.J. Luebbers, F.P. Hunsberger, K.S. Kunz. FDTD formulation for frequency dependent permittivity. Antennas and Propagation Society International Symposium, 1989, 1:50-53.
    [74] R.J. Luebbers, F.P. Hunsberger, K.S. Kunz. A frequency-dependent finite-difference time-domain formulation for transient propagation in plasma. IEEE Transactions on Antennasand Propagation, 1991, 39(1):29-34.
    [75] C.M. Furse, S.P. Mathur, O.P. Gandhi. Improvements to the finite-difference time-domain method for calculating the radar cross section of a perfectly conducting target. IEEE Transactions on Microwave Theory and Techniques, 1990, 38(7):919-927.
    [76] B. Chaudhury, S. Chaturvedi. Study and Optimization of Plasma-Based Radar Cross Section Reduction Using Three-Dimensional Computations. IEEE Transactions on Plasma Science, 2009, 37(11): 2116-2127.
    [77] S. Blalock, J. Davis, D. Dension. Measured and FDTD Calculated Ultra Wide Band (UWB) RCS for treated test fixtures. Radar Conference, 2008:1593-1596.
    [78] B. Chaudhury, S. Chaturvedi. 3-d simulations for radar cross-section reduction using plasma absorbers. IEEE Conference Record-Abstracts, The 33rd IEEE international Conference on Plasma Science, 2006:24-24.
    [79] R.A. Hartunian, G.E. Stewart, S.D. Fergason, et al. Causes and Mitigation of Radio Frequency(RF) Blackout During Reentry of Reusable Launch Vehicles. AEROSPACE REPORT NO. ATR-2007(5309)-1.
    [80]张鲁民,潘梅林.载人飞船返回舱空气动力学.北京:国防工业出版社, 2002:162-168.
    [81]王一平.工程电动力学.西安:西安电子科技大学出版社, 2007:1-48.
    [82]中国人民解放军总装备部军事训练教材编辑工作委员会.再入物理.北京:国防工业出版社, 2005: 190-201.
    [83]吕英华.计算电磁学的数值方法.北京:清华大学出版社, 2006: 106-315.
    [84]杨永常、魏志勇、方美华等.利用FDTD法分析再入过程时计算区域入射波的引入.装备环境工程, 2009,6(4):23-26.
    [85] Yang Yongchang, Wei Zhiyong, Fang Meihua, et al. Analysis fro scattering of plasma sheath of aircraft by ZT-FDTD method in three-dimensional space[C]. SPIE Proceedings of ICSIT 2009.
    [86] C.Britton Rorabaugh. Simulating Wireless Communication Systems-Pratical Models In C++. Prentice Hall PTR. 2004:192-192.
    [87]董乃涵、赵汉章、吴是静.非均匀等离子鞘套中电波传输的近似计算.宇航学报, 1984, 1 (1):51-56.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700