甚高频容性耦合等离子体中电磁效应的数值研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
容性耦合等离子体被广泛地应用于半导体工业中,如薄膜沉积、材料刻蚀以及表面处理等。众所周知,在容性耦合等离子体放电中,较高的频率能够产生较高密度的等离子体和较低能量的离子。因此近年来,甚高频容性耦合等离子体源受到人们越来越广泛的关注。然而当放电频率较高时,尤其是在大面积反应腔室中,电磁效应(如驻波效应和趋肤效应)会显著地影响放电过程,并引起等离子体的不均匀性。由于电磁波的波长随着频率的增加而减小,当波长与腔室尺寸相当时,驻波效应会对等离子体产生显著的影响,使得等离子体密度的最大值出现在放电中心处。另一方面,等离子体密度随着放电的频率而增加。当等离子体密度较高时,射频波在等离子体中的趋肤深度将小于等离子体的厚度。此时,电磁波只能在等离子体表面传播,因此趋肤效应会使得等离子体密度的最大值出现在径向边缘处。由此可见,电磁效应会显著影响刻蚀和沉积过程的均匀性,因而需要对电磁效应进行系统的研究,以便于进一步优化等离子体工艺过程。
     在本论文的第一章,详细回顾了甚高频容性耦合等离子体源的研究背景、优势,以及研究过程中所面临的挑战。
     在第二章中,首先介绍了在数值模拟过程中所使用的二维等离子体流体力学模型。各种带电粒子和中性粒子的密度由连续性方程来描述,其中电子通量由漂移扩散近似方法来确定,而离子通量则通过求解完整的动量平衡方程来获得。在流体模型中,假设离子的温度与室温相等,因此仅需要求解电子的能量方程。为了考虑电磁效应,该模型与完整的麦克斯韦方程组进行耦合,以便确定出等离子体中电磁场的瞬时空间分布。此外,本章还介绍了所涉及到的边界条件以及模拟方法。
     在第三章中,针对氩气放电,通过比较由静电模型(仅求解泊松方程)和电磁模型(求解麦克斯韦方程组)得到的结果,研究了不同放电条件下电磁效应对等离子体的影响。结果表明:电磁效应对等离子体特性有着重要影响,尤其是在甚高频放电情况下,电磁效应导致等离子体密度显著地上升,电离率也呈现出不同的空间分布形式。当放电频率一定时,电磁效应随着电压的增加而减小。随着气压上升,由电磁模型得到的等离子体密度的最大值首先出现在径向边缘处,随后逐渐变得均匀,最后密度的最大值出现在放电中心处。此外,随着放电频率和气压的增加,边缘效应减弱。随着电压增加,趋肤效应取代驻波效应,成为影响等离子体分布的最主要的因素。
     在第四章中,针对H2放电等离子体,重点考察了两个同频率甚高频电源之间的相位差对等离子体瞬时行为以及径向均匀性的影响。结果表明:在不同的相位差下,等离子体中各状态参量的时空分布不仅形貌不同,幅值差异更是明显。当频率为13.56MHz,两个射频源为同相位时,径向电子流首先向侧壁移动,随后方向反转;而当两个射频源反相位时,径向电子通量在一个周期内呈现出两个峰值。当频率为100MHz,相位差为π时,径向电子通量在一个周期内出现四个峰值,而电离过程则主要发生在鞘层区域。此外,在不同的放电频率下,两个同频率电源之间的相位差对等离子体的径向均匀性有着不同的调制作用。
     在第五章中,针对Ar/CF4混合气体放电,研究了两个同频率电源之间的相位差对等离子体径向均匀性以及等离子体组分的影响。结果表明:当CF4含量仅为10%时,Ar+是最主要的正离子。在不同的放电频率下,相位差对等离子体的径向均匀性有着不同的影响。固定放电频率为100MHz,当CF4含量从10%增加为90%时,CF3+成为最主要的正离子,而且当相位差为π时,其密度的最大值从边缘处过度到放电中心处,这说明趋肤效应受到等离子体电负性的抑制。此外,负离子密度之和与电子密度的比率随着CF4含量的增加而增加,但是却随着频率的增加而降低。
     在第六章中,采用HPEM模型(Hybrid Plasma Equipment Model)并与全波麦克斯韦方程组耦合,研究了CF4/02等离子体中的电磁效应对等离子体特性的影响。此外,还从实验方面研究了射频源功率对刻蚀率均匀性的影响。结果表明:当放电频率为27MHz以及60MHz时,电磁效应使得等离子体密度有所增加,并对其空间分布产生显著影响。与单频放电相比,在双频2/60MHz放电中,刻蚀速率的均匀性得到显著改善。随着低频源功率增加,刻蚀过程增强,且放电中心处的刻蚀率明显高于边缘处。固定低频源功率为300W,刻蚀速率随着高频源功率的增加显著上升,且均匀性变差。
Capacitively coupled plasmas (CCP) are widely applied in the semiconductor industry, for instance, for deposition of thin films, etching of materials and surface treatment. It is well known that a higher frequency produces higher-density plasmas with lower-energy ions. Thus, special attention has been paid to very high frequency (VHF) plasma sources due to their higher ion flux and lower ion bombarding energy. However, at high frequency (i.e., tens of MHz to hundreds of MHz) in large-area reactors, the so-called electromagnetic effects (i.e. standing-wave effect and skin effect) have an important influence on the capacitive discharge, which may limit the plasma spatial uniformity. Indeed, when the excitation wavelength becomes comparable to the electrode dimension, the standing-wave effect becomes dominant, and it results in a substantial power deposition at the reactor center. On the other hand, when the skin depth is not large compared with the plasma thickness due to the high plasma density, the skin effect has a significant influence, and it yields a pronounced power deposition at the reactor edge. These effects are important for plasma processing applications, as they affect the uniformity of the etch and deposition processes. Therefore, it is important to understand the electromagnetic effects, and to suppress the nonuniformity, in order to control the discharge process and to improve the application.
     In this dissertation, we first briefly review the background, recent advances, and challenges of VHF-CCP, and also the problems we face in Chapter1. The contents of Chapter2to Chapter6are presented as follows.
     The two dimensional fluid model used in the dissertation is described in Chapter2. In this model, the continuity equations are used to give information on the density evolution for all species. The drift diffusion approximation is assumed for electrons; the momentum balance equation based on the cold fluid approximation is adopted for ions. Because the ions and the neutral species are assumed at room temperature, only the electron energy balance equation is needed. In order to take the electromagnetic effects into account, the full set of Maxwell equations is included instead of solving the electric field by Poisson equation directly. Besides, boundary conditions are also specified in order to complete the problem.
     The electromagnetic effects at various discharge conditions have been investigated in Ar plasmas by comparing the plasma characteristics obtained from the so-called electrostatic model (i.e., without taking into account the electromagnetic effects) and the electromagnetic model (which includes the electromagnetic effects) in Chapter3. The results indicate that the electromagnetic effects have an important influence on the plasma properties, especially at very high frequencies. Indeed, when the excitation source is in the high frequency regime and the electromagnetic effects are taken into account, the plasma density increases significantly and meanwhile the ionization rate profile evolves to a very different distribution. Furthermore, we also investigated the dependence of the plasma characteristics on the voltage and pressure, at constant frequency. It is observed that when the voltage is low, the difference between these two models becomes more obvious than at higher voltages. As the pressure increases, the plasma density profiles obtained from the electromagnetic model shift smoothly from edge-peaked over uniform to a broad maximum in the center. In addition, the edge effect becomes less pronounced with increasing frequency and pressure, and the skin effect instead of the standing-wave effect becomes dominant when the voltage is high.
     In Chapter4, the phase-shift effect on the transient behaviour of electrodynamics and power deposition, as well as the influence on the radial uniformity of several plasma characteristics in a hydrogen capacitively coupled plasma has been investigated. It is shown that the spatiotemporal distributions of the plasma characteristics obtained for various phase shift cases are obviously different both in shape and especially in absolute values. At the frequency of13.56MHz, the radial electron flux moves towards the chamber wall first and then is forced in the opposite direction, whereas it exhibits two peaks within one period at the reverse-phase case. In the very high frequency discharge, i.e.,100MHz, the radial electron flux is alternately positive and negative with four peaks during one period, and the ionization mainly occurs in the sheath region at a phase difference equal to π. Furthermore, the phase shift has different influences on the plasma radial uniformity at various frequencies.
     Chapter5shows the phase-shift effect on the plasma radial uniformity and the plasma composition at various frequencies and gas mixture ratios in Ar/CF4capacitively coupled plasmas. At low concentration of CF4(10%), Ar+are the major positive ions in the entire range of frequencies, and the phase-shift control shows different effects on the plasma uniformity at various frequencies. When the frequency is fixed at100MHz, the phase-shift control shows a different behavior at high concentration of CF4. For instance, the CF3+density profiles shift from edge-high over uniform to center-high at the reverse phase case, as the CF4content increases from10%to90%, which indicates that the skin effect is suppressed by the high electronegativity of the Ar/CF4=0.1/0.9mixture. Besides, the ratio of the total negative ion density to electron density decreases with increasing frequency, and it increases with CF4content.
     In chapter6, a2D hybrid model, called HPEM (Hybrid Plasma Equipment Model), incorporating a full-wave solution of Maxwell's equations, is employed to investigate the electromagnetic effects on the plasma characteristics, as well as the power effect on the etch rate in CF4/O2discharges. It is shown that the electromagnetic effects have an important influence on the plasma density distribution. When the electromagnetic effects are taken into account, the plasma density becomes higher, and exhibits different shapes. At the frequency of60MHz, the etch rate has a center-high profile. When adding a low frequency power into the discharge, the etch rate becomes higher and more uniform. As the low frequency power increases from300W to1000W, the etch rate at the reactor center increases faster than at the edge, and therefore the uniformity of the etch rate becomes worse. When the low frequency power is fixed at300W, the etch rate becomes nonuniform with increasing high frequency power, and it becomes higher due to the higher plasma density.
引文
[1]Lieberman M A and Lichtenberg A J. Principles of Plasma Discharges and Material Processing [M].2nd ed. New York:Wiley,2005.中文版为:蒲以康译.等离子体放电原理与材料处理[M].北京:科学出版社,2007:1-5.
    [2]Makabe T and Petrovic Z. Plasma Electronics:Applications in Microelectronic Device Fabrication [M]. New York, London:Taylor & Francis Group,2005:2.
    [3]Kuas S H and Wood P C. Inductively coupled plasma etching of poly-SiC in SF6 chemistries [J]. J. Vac. Sci. Technlo. A,2005,23:947-952.
    [4]Choy K L. Chemical vapour deposition of coatings [J]. Prog. Mater. Sci.,2003,48: 57-170.
    [5]Dipeso G, Vahedi V, Hewett D W, et al. Two dimensional self consistent fluid simulation of radio frequency inductive sources [J]. J. Vac. Sci. Technol. A,1994, 12:1387-1396.
    [6]Barnes M S, Forster J C and Keller J H. Electron energy distribution function measurements in a planar inductive oxygen radio frequency glow discharge [J]. Appl. Phys. Lett.,1993,62:2622-2624.
    [7]0'Neill J A, Barnes M S and Keller J H. Optical ion energy measurements in a radio-frequency-induction plasma source [J]. J. Appl. Phys.1993,73:1621-1626.
    [8]Ventzek P L G, Hoekstra R J and Kushner M J. Two dimensional modeling of high plasma density inductively coupled sources for materials processing [J]. J. Vac. Sci. Technol. B,1994,12:461-477.
    [9]Ventzek P L G, Grapperhaus M and Kushner M J. Investigation of electron source and ion flux uniformity in high plasma density inductively coupled etching tools using two dimensional modeling [J]. J. Vac. Sci. Technol. B,1994,12:3118-3137.
    [10]Graves D B. Plasma processing [J]. IEEE Trans. Plasma Sci.,1994,22:31-42.
    [11]Yang J G, Yoon N S, Kim B C, et al. Power absorption characteristics of an inductively coupled plasma discharge [J]. IEEE Trans. Plasma Sci.,1999,27: 676-681.
    [12]Cunge G, Crowley B, Vender D, et al. Anomalous skin effect and collisionless power dissipation in inductively coupled discharges [J]. J. Appl. Phys.,2001,89: 3580-3589.
    [13]Matsuo S and Kiuchi M. Low temperature chemical vapor deposition method utilizing an electron cyclotron resonance plasma [J]. Jpn. J. Appl. Phys.,1983,22: L210-L212.
    [14]Asmussen J. Electron syslotron resonance microwave discharges for etching and thin film deposition [J]. J. Vac. Sci. Technol. A,1989,7:883-893.
    [15]Boswell R W. Plasma production using a standing helicon wave [J]. Phys. Lett. A, 1970,33:457-458
    [16]Nagatsu M, Xu G, Ghanashev I, et al. Mode identification of surface waves excited in a planar microwave discharge [J]. Plasma Sources Sci. Technol.,1997,6:427-434.
    [17]Sugau H, Ghanashev I, Nagatsu M. High density flat plasma production based on surface waves [J]. Plasma Sources Sci. Technol.,1998,7:192-205.
    [18]Goto H H, Lowe H D and Ohmi T. Dual excitation reactive ion etcher for low energy plasma processing [J]. J. Vac. Sci. Technol. A,1992,10:3048-3054.
    [19]Goto H H, Lowe H D and Ohmi T. Independent control of ion density and ion bombardment energy in a dual RF excitation plasma [J]. IEEE Trans. Semicond. Manuf.,1993,6: 58-64.
    [20]Kitajima T, Takeo Y, Nakano N, et al. Effects of frequency on the two-dimensional structure of capacitively coupled plasma in Ar [J]. J. Appl. Phys.,1998,84: 5928-5936.
    [21]Vahedi V, Birdsall C K, Liberman M A, et al. Verification of frequency scaling laws for capacitive radio-frequency discharges using two dimensional simulations [J]. Phys. Fluids B,1993,5:2719-2829.
    [22]Kalpakjian K M, Lieberman M A and Oldham W G. High frequency reactive ion etching of silylated photoresist [J]. J. Vac. Sci. Technol. B,1994,12:1351-1361.
    [23]Colgan M J, Meyyappan M and Murnick D E. Very high-frequency capacitively coupled argon discharges [J]. Plasma Sources Sci. Technol.,1994,3:181-189.
    [24]Perret A, Chabert P, Booth J P, et al. Ion flux nonuniformities in large-area high-frequency capacitive discharges [J]. Appl. Phys. Lett.,2003,83:243-245.
    [25]Perret A, Chabert P, Lolly J, et al. Ion energy uniformity in high-frequency capacitive discharges [J]. Appl. Phys. Lett.,2005,86:021501.
    [26]Vanier P E, Kampas F J, Corderman R R, et al. A study of hydrogenated amorphous silicon deposited by rf glow discharge in silane-hydrogen mixtures Ar [J]. J. Appl. Phys.,1984,56:1812-1820.
    [27]Kushner M J. A model for the discharge kinetics and plasma chemistry during plasma enhanced chemical vapor deposition of amorphous silicon [J]. J. Appl. Phys.,1988, 63:2532-2551.
    [28]Curtins H. Wyrsch N, Favre M, et al. Influence of plasma excitation frequency fora-Si:H thin film deposition [J]. Plasma Chem. Plasma Process.,1987,7:267-273.
    [29]Oda S, Noda J and Matsumura M. Preparation of a-Si:H Films by VHF Plasma CVD [J]. Matter. Res. Soc. Symp. Proc.,1988,118:117-22.
    [30]Howling A A, Dorier J L, Hollenstein Ch, et al. Frequency effects in si lane plasmas for plasma enhanced chemical vapor deposition [J]. J. Vac. Sci. Technol. A,1992, 10:1080-1085.
    [31]Sansonnens L, Pletzer A, Magni D, et al. A voltage uniformity study in large-area reactors for RF plasma deposition [J]. Plasma Sources Sci. Technol.,1997,6: 170-178.
    [32]Lieberman M A, Booth J P, Chabert P, et al. Standing wave and skin effects in large-area, high-frequency capacitive discharges [J]. Plasma Sources Sci. Technol., 2002,11:283-293.
    [33]Meyyappan M, Colgan M J. Very high frequency capacitively coupled discharges for large area processing [J]. J. Vac. Sci. Technol. A,1996,14:2790-2794.
    [34]Chabert P, Raimbault J L, Rax J M, et al. Self-consistent nonlinear transmission line model of standing wave effects in a capacitive discharge [J]. Phys. Plasmas, 2004,11:1775-1785.
    [35]Chabert P, Raimbault J L, Rax J M, et al. Suppression of the standing wave effect in high frequency capacitive discharges using a shaped electrode and a dielectric lens:Self-consistent approach [J]. Phys. Plasmas,2004,11:4081-4087.
    [36]Takatsuka H, Noda M, Yonekura Y, et al. Development of high efficiency large area silicon thin film modules using VHF-PECVD [J]. Solar Energy,2004,77:951-960.
    [37]Sansonnens L. Calculation of the electrode shape for suppression of the standing wave effect in large area rectangular capacitively coupled reactors [J]. J. Appl. Phys.,2005,97:063301.
    [38]Rauf S. Simulations of magnetized capacitively coupled plasmas operating at constant power and voltage [J]. Plasma Sources Sci. Technol.,2005,14:329-335.
    [39]Chabert P, Raimbault J L, Levif P, et al. Inductive heating and E to H transitions in capacitive dishcarges [J]. Phys. Rev. Lett.,2005,95:205001.
    [40]Chabert P, Raimbault J L, Levif P, et al. Inductive heating and E to H transitions in high frequency capacitive discharges [J]. Plasma Sources Sci. Technol.,2006, 15:S130-S136.
    [41]Rakhimova T V, Braginsky 0 V, Ivanov V V, et al. Experimental and theoretical study of RF plasma at low and high frequency [J]. IEEE Trans. Plasma Sci.,2006,34: 867-877.
    [42]A technique for uniform generation of very high frequency plasma suited to large area thin film deposition [J]. Appl. Phys. Lett.,2006,88:081502.
    [43]Sansonnens L, Howling A A and Hollenstein Ch. Electromagnetic field nonuniformities in large area, high-frequency capacitive plasma reactors, including electrode asymmetry effects discharges [J]. Plasma Sources Sci. Technol., 2006,15:302-313.
    [44]Chabert P. Electromagnetic effects in high-frequency capacitive discharges used for plasma processing [J]. J. Phys. D:Appl. Phys.,2007,40:R63-R73.
    [45]Lee I, Graves D B and Lieberman M A. Modeling electromagnetic effects in capacitive discharges [J]. Plasma Sources Sci. Technol.,2008,17:015018.
    [46]Mussenbrock T, Hemke T, Ziegler D, et al. Skin effect in a small symmetrically driven capacitive discharge [J]. Plasma Sources Sci. Technol.,2008,17:025018.
    [47]Rauf S, Bera K and Collins K. Self-consistent simulation of very high frequency capacitively coupled plasmas [J]. Plasma Sources Sci. Technol.,2008,17:035003.
    [48]Bera K, Rauf S and Collins K. Control of plasma uniformity using phase difference in a VHF plasma process chamber [J]. IEEE Trans. Plasma Sci.,2008,36:1366-1367.
    [49]Bera K, Rauf S, Ramaswamy K, et al. Effects of interelectrode gap on high frequency and very high frequency capacitively coupled plasmas [J]. J. Vac. Sci. Technol. A,2009,27:706-711.
    [50]Rauf S, Kenney J and Collins K. Three-dimensional model of magnetized capacitively coupled plasmas [J]. J. Appl. Phys.,2009,105:103301.
    [51]Bera K, Rauf S, Ramaswamy K, et al. Control of plasma uniformity in a capacitive discharge using two very high frequency power sources [J]. J. Appl. Phys.,2009, 106:033301.
    [52]Kenney J, Rauf S and Collins K. Effect of azimuthally asymmetric reactor components on a parallel plate capacitively coupled plasma [J]. J. Appl. Phys.,2009,106: 103302.
    [53]Bera K, Rauf S, Balakrishna A, et al. Plasma profile control using external circuit in a capacitively coupled plasma reactor [J]. IEEE Trans. Plasma Sci.,2010,38: 3241-3248.
    [54]Bera K, Rauf S, Kenney J, et al. Influence of inhomogeneous magnetic field on the characteristics of very high frequency capacitively coupled plasmas [J]. J. Appl. Phys.,2010,107:053302.
    [55]Rauf S, Chen Z and Collins K. Effect of resonance in external radio-frequency circuit on very high frequency plasma discharge [J]. J. Appl. Phys.,2010, 107:093302.
    [56]Chen Z, Rauf S and Collins K. Self-consistent electrodynamics of large-area high-frequency capacitive plasma discharge [J]. J. Appl. Phys.,2010,108:073301.
    [57]Yang Y and Kushner M J. Modeling of dual frequency capacitively coupled plasma sources utilizing a full-wave Maxwell solver:I. Scaling with high frequency [J]. Plasma Sources Sci. Technol.,2010,19:055011.
    [58]Yang Y and Kushner M J. Modeling of dual frequency capacitively coupled plasma sources utilizing a full-wave Maxwell solver:II. Scaling with pressure, power and electronegativity [J]. Plasma Sources Sci. Technol.,2010,19:055012.
    [59]Yang Y and Kushner M J. Graded conductivity electrodes as a means to improve plasma uniformity in dual frequency capacitively coupled plasma sources [J]. J. Phys. D: Appl. Phys.,2010,43:152003.
    [60]Yang Y and Kushner M J.450 mm dual frequency capacitively coupled plasma sources: Conventional, graded, and segmented electrodes [J]. J. Appl. Phys.,2010,108: 113306.
    [61]Satake Koji, Yamakoshi H and Noda M. Experimental and numerical studies on voltage distribution in capacitively coupled very high frequency plasmas [J]. Plasma Sources Sci. Technol.,2004,13:436-445.
    [62]Schmidt H, Sansonnens L, Howling A A, et al. Improving plasma uniformity using lens-shaped electrodes in a large area very high frequency reactor [J]. J. Appl. Phys.,2004,95:4559-4564.
    [63]Howling A A, Derendinger L, Sansonnens L, et al. Probe measurements of plasma potential nonuniformity due to edge asymmetry in large area radio frequency reactors:The telegraph effect [J]. J. Appl. Phys.,2005,97:123308.
    [64]Sansonnens L, Schmidt H, Howling A A, et al. Application of the shaped electrode technique to a large area reactangular capacitively coupled plasma reactor to suppress standing wave nonuniformity [J]. J. Vac. Sci. Technol. A,2006,24: 1425-1430.
    [65]Kawamura K, Mashima H, Takeuchi Y, et al. Development of large-area a-Si:H films deposition using controlled VHF plasma [J]. Thin Solid Films,2006,506-507:22-26.
    [66]Hebner G A, Barnat E V, Miller P A, et al. Frequency dependent plasma characteristics in a capacitively coupled 300 mm wafer plasma processing chamber [J]. Plasma Sources Sci. Technol.,2006,15:879-888.
    [67]Miller P A, Barnat E V, Hebner G A, et al. Spatial and frequency dependence of plasma currents in a 300 mm capacitively coupled plasma reactor [J]. Plasma Sources Sci. Technol.,2006,15:889-899.
    [68]Barnat E V, Miller P A, Hebner G A, et al. Electric fields in the sheath formed in a 300 mm, dual frequency capacitive argon discharge [J]. Plasma Sources Sci. Technol.,2007,16:330-336.
    [69]Barnat E V, Miller P A, Hebner G A, et al. Measured radial dependence of the peak sheath coltages present in very high frequency capacitive discharge [J]. Appl. Phys. Lett.,2007,90:201503.
    [70]Volynets V N, Ushakov A G, Sung D, et al. Experimental study of spatial nonuniformities in 100 MHz capacitively coupled plasma using optical probe [J]. J. Vac. Sci. Technol. A,2008,26:406-415.
    [71]Ahn S K and Chang H Y. Experimental observation of the inductive electric field and related plasma nonuniformity in high frequency capacitive discharge [J]. Appl. Phys. Lett.,2008,93:031506.
    [72]Sung D, Jeong S, Park Y, et al. Effect on plasma and etch rate uniformity of controlled phase shift between rf voltages applied to powered electrodes in a triode capacitively coupled plasma reactor [J]. J. Vac. Sci. Technol. A,2009,27:13-19.
    [73]Sung D, Woo J, Lim K, et al. Plasma uniformity and phase controlled etching in a very high frequency capacitive discharg [J]. J. Appl. Phys.,2009,106:023303.
    [74]Volynets V, Shin H, Kan D, et al. Experimental study of plasma non-uniformities and the effect of phast shift control in a very high frequency capacitive discharge [J]. J. Phys. D:Appl. Phys.,2010,43:085203.
    [75]Ryan K,O'Farrell D and Ellingboe A R. Spatial structure of plasma potential oscillation and ion saturation current in VHF multi-tile electrode plasma source [J]. Current Applied Physics,2011,11:S114-S116.
    [76]Abdel-Fattah E, Bazavan M and Sugai H. Electron energy distribution functions measured by Langmuir probe with optical emission spectroscopy in very high frequency capacitive discharge in nitrogen [J]. Phys. Plasmas,2012,19:113503.
    [77]Abdel-Fattah E. Investigation of capacitively coupled argon plasma driven at various frequencies and validation of surface waves excitation [J]. Physics Letter A,2013,377:297-302.
    [78]Abdel-Fattah E and Sugai H. Combined effects of gas pressure and exciting frequency on electron energy distribution functions in hydrogen capacitively coupled plasmas [J]. Phys. Plasmas,2013,20:023501.
    [79]Abdel-Fattah E. Characteristics of capacitively coupled helium plasma driven by various frequencies under constant power conditions [J]. Vacuum,2013,97:65-70.
    [80]Sansonnens L and Schmitt J. Shaped electrode and lens for a uniform radio-frequency capacitive plasma [J]. Appl. Phys. Lett.,2003,82:182-184.
    [81]Sansonnens L. Calculation of the electrode shape for suppression of the standing wave effect in large area rectangular capacitively coupled reactors [J]. J. Appl. Phys.,2005,97:063304.
    [82]Takeuchi Y, NawataY, OgawaK, et al. Preparation of large uniform amorphous silicon films by VHF-PECVD using a ladder-shaped antenna [J]. Thin Solid Films,2001,386: 133-136.
    [83]Lieberman M A. Analytical solution for capacitive RF sheath [J]. IEEE Trans. Plasma Sci.,1988,16:638-644.
    [84]Godyak V A, Piejak R B and Sternberg N. A comparison of RF electrode sheath models [J]. IEEE Trans. Plasma Sci.,1993,21:378-382.
    [85]Kim H C, Lee J K and Shon J W. Analytic model for a dual frequency capacitive discharge [J]. Phys. Plasmas,2003,10:4545-4551.
    [86]Turner M M and Chabert P. Collisionless heating in capacitive discharges enhanced by dual frequency excitation [J]. Phys. Rev. Lett.,2006,96:205001.
    [87]Ashida S, Lee C and Lieberman M A. Spatially averaged (global) model of time modulated high density argon plasmas [J]. J. Vac. Sci. Technol. A,1995,13: 2498-2507.
    [88]Lee C and Lieberman M A. Global model of Ar,O2, Cl2, and Ar/O2 high density plasma discharges [J]. J. Vac. Sci. Technol. A,1995,13:368-380.
    [89]Lee C, Graves D B, Lieberman M A, et al. Global model of plasma chemistry in a high density oxygen discharge [J]. J. Electrochem. Soc.,1994,141:1546-1555.
    [90]Chung T H, Yoon H J and Seo D C. Global model and scaling laws for inductively coupled oxygen discharge plasmas [J]. J. Appl. Phys.,1996,86:3536-3542.
    [91]Mussenbrock T, Ziegler D and Brinkmann R P. A nonlinear global model of a dual frequency capacitive discharge [J]. Phys. Plasmas,2006,13:083501.
    [92]Graves D B and Jensen K F. A continuum model of DC and EF discharges [J]. IEEE Trans. Plasma Sci.,1986,14:78-91.
    [93]Gogolides E and Sawin H H. Continuum modeling of radio frequency glow discharges. Ⅰ. Theory and results for electropositive and electronegative gases [J]. J. Appl. Phys.,1992,72:3971-3987.
    [94]Boeuf J P and Pitchford L C. Two dimensional model of a capacitvely coupled rf discharge and comparisons with experiments in the gaseous electronics conference reference reactor [J]. Phys. Rev. E,1995,51:1376-1390.
    [95]Meyyappan M and Govindan T R. Radio frequency discharge modeling:Moment equations approach [J]. J. Appl. Phys.,1993,74:2250-2259.
    [96]Lymberopoulos D P and Economou D J. Modeling and simulation of glow discharge plasma reactors [J]. J. Vac. Sci. Technol. A,1994,12:1229-1236.
    [97]Hammond E P, Mahesh K an dMoin P. A numerical thod to simulate radio freuqnecy plasma discharges [J]. J. Comput. Phys.,2002,176:402-429.
    [98]Vender D and Boswell R W. Numerical modeling of low pressuure RF plasmas [J]. IEEE Trans. Plasma Sci.,1990,18:725-732.
    [99]Nanbu K. Theory of cumulative small angle collisions in plasmas [J]. Phys. Rev. E,1997,55:4642-4652.
    [100]Vahedi V and Surendra M. A Monte Carlo collision model for the particle-in-cell method:applications to argon and oxygen discharges [J]. Comput. Phys. Commun., 1995,87:179-198.
    [101]Georgieva V, Bogaerts A and Gijbels R. Particle-in-cell/Monte Carlo simulation of a capacitively coupled radio frequency Ar/CF4 discharge:Effect of gas composition [J]. J. Appl. Phys.,2003,93:2369-2379.
    [102]Matyash K, Schneider R, Taccogna F, et al. Particle in cell simulation of low temperature laboratory plasmas [J]. Contrib. Plasma Phys.,2007,47:595-634.
    [103]Sato N and Tagashira H. A hybird Monte Carlo/Fluid model of RF plasmas in a SiH4/H2 Mixture [J]. IEEE Trans. Plasma Sci.,1991,19:102-112.
    [104]Sommerer T J and Kushner M J. Numerical investigation of the kinetics and chemistry of rf glow discharge plasmas sustained in He, N2,02, He/N2/02, He/CF4/O2, and SiH4/NH3 using a Monte Carlo-fluid hybrid model [J]. J. Appl. Phys.,1992,71:1654-1673.
    [105]Kratzer M, Brinkmann R P, Sabisch W, et al. Hybrid model for the calculation of ion distribution functions behind a direct current or radio frequency driven plasma boundary sheath [J]. J. Appl. Phys.,2001,90:2169-2179.
    [106]Heil B G, Brinkmann R P and Czarnetzki U. A hybrid, one dimensional model of capacitively coupled radio frequency discharges [J]. J. Phys. D:Appl. Phys.,2008, 41:225208.
    [107]Kushner M J. Hybrid modeling of low temperature plasmas for fundamental investigations and equipment design [J]. J. Phys. D:Appl. Phys.,2009,42:194013.
    [108]Yee K S. Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media [J]. IEEE. Trans. Antennas Propag.,1966, 14:302-307.
    [109]葛德彪,闫玉波.电磁波时域有限差分方法(第二版)[M].西安:西安电子科技大学出版社,2005:1-14.
    [110]陆金甫,关治.偏微分方程数值解法(第二版)[M].北京:清华大学出版社,2004:77-80.
    [111]Boris J P, Landsberg A M, Oran E S, et al. LCPFCT-flux-corrected transport algorithm for solving generalized continuity equations [R]. NRL/MR/6410-93-7192, 1993.
    [112]Yoon J S, Song M Ym Han J M, et al. Cross sections for electron collisions with hydrogen molecules [J]. J. Phys. Chem. Ref. Data,2008,37:913-931.
    [113]Tawara H, Itikawa Y, Nishimura H, et al. Cross sections and related data for electron collisions with hydrogen molecules and molecular ions [J], J. Phys. Chem. Ref. Data,1990,19:617-636.
    [114]Salabs A and Brinkmann R P. Numerical investigation of dual frequency capacitively coupled hydrogen plasmas [J]. Plasma Sources Sci. Technol.,2005,14:S53-S59.
    [115]Phelps A V. Cross sections and swarm coefficients for H', H2+, H3+, H, H2, and H-in H2 for Energies from 0.1 eV to 10 keV [J]. J. Phys. Chem. Ref. Data,1990,19: 653-675.
    [116]Denpoh K and Nanbu K. Self-consistent particle simulation of radio-frequency CF4 discharge with implementation of all ion-neutral reactive collisions [J]. J. Vac. Sci. Technol. A,1998,16:1201-1206.
    [117]Segawa S, Kurihara M, Nakano N, et al. Dependence of Driving Frequency on Capacitively Coupled Plasma in CF4 [J]. Jpn. J. Appl. Phys.,1999,38:4416-4422.
    [118]Schulze J, Derzsi A and Donko Z. Electron heating and the electrical asymmetry effect in dual-frequency capacitive CF4 discharges [J]. Plasma Sources Sci. Technol.,2011,20:045008.
    [119]Rauf S and Kushner M J. Argon metastable densities in radio frequency Ar, Ar/02 and Ar/CF4 electrical discharges [J]. J. Appl. Phys.,1997,82:2805-2813.
    [120]Georgieva V and Bogaerts A. Numerical simulation of dual frequency etching reactors:Influence of the external process parameters on the plasma characteristics [J]. J. Appl. Phys.,2005,98:023308.
    [121]Georgieva V and Bogaerts A. Plasma characteristics of an Ar/CFi/N2 discharge in an asymmetric dual frequency reactor:numerical investigation by a PIC/MC model [J]. Plasma Sources Sci. Technol.,2006,15:368-377.
    [122]Li Z C, Chang D L, Li X S, et al. Experimental investigation of ion energy distributions in a dual frequency capacitively coupled Ar/CF4 plasma [J]. Phys. Plasmas,2010,17:033501.
    [123]Kitajima T, Takeo Y and Makabe T. Two-dimensional CT images of two-frequency capacitively coupled plasma [J]. J. Vac. Sci. Technol. A,1997,17:2510-2516.
    [124]Yagisawa T, Shimada T and Makabe T. Modeling of radial uniformity at a wafer interface in a 2f-CCP for SiO2 etching [J]. J. Vac. Sci. Technol. B,2005,23: 2212-2217.
    [125]Rapp D and Englander-Golden P. Total cross sections for ionization and attachment in gases by electron impact. I. positive ionization [J]. J. Chem. Phys.,1965,43: 1464-1479.
    [126]Tachibana K. Excitation of the 1s5, 1s4, 1s3, and 1s2 levels of argon by low-energy electrons [J]. Phys. Rev. A,1986,34:1007-1015.
    [127]McFarland R H and Kinney J D. Absolute cross sections of lithium and other alkali metal atoms for ionization by electrons [J]. Phys. Rev.,1965,137:A1058-A1061.
    [128]Lymberopoulos D P and Economou D J. Fluid simulations of glow discharges:Effect of metastable atoms in argon [J]. J. Appl. Phys.,1993,73:3668-3679.
    [129]Bonham R A. Electron Impact Cross Section Data for Carbon Tetrafluoride [J]. Jpn. J. Appl. Phys.,1994,33:4157-4164.
    [130]Hayashi M and Nimura T. Calculation of electron swarm parameters in fluorine [J]. J. Appl. Phys.,1983,54:4879-4882.
    [131]So S Y, Oda A, Sugawara H, et al. Transient behaviour of CF4 rf plasmas after step changes of power source voltage [J]. J. Phys. D:Appl. Phys.,2001,34: 1919-1927.
    [132]Zhao S X, Gao F, Wang Y N, et al. The effect of F2 attachment by low-energy electrons on the electron behaviour in an Ar/CF4 inductively coupled plasma [J]. Plasma Sources Sci. Techno1.,2012,21:025008.
    [133]Donko Z and Petrovic Z L. Ion behavior in capacitively-coupled dual-frequency discharges [J]. J. Phys.:Conf. Ser.,2007,86:012011.
    [134]Efremov A, Woo J C, Kim G H, et al. Etching characteristics and mechanisms of the MgO thin films in the CF4/Ar inductively coupled plasma [J]. Microelectron. Eng.,2007,84:638-645.
    [135]Mogab C J, Adams A C and Flamm D L. Plasma etching of Si and SiO2—The effect of oxygen additions to CF4 plasmas [J]. J. Appl. Phys.,1978,49:3796-3803.
    [136]d'Agostino R, Cramarossa F, De Benedictis S, et al. Spectroscopic diagnostics of CF4-O2 plasmas during Si and SiO2 etching processes [J]. J. Appl. Phys.,1981, 52:1259-1265.
    [137]Kim J W, Kim Y C and Lee W J. Reactive ion etching mechanism of plasma enhanced chemically vapor deposited aluminum oxide film in CF4/O2 plasma [J]. J. Appl. Phys., 1995,78:2045-2049.
    [138]Plumb I C and Ryan K R. A model of the chemical processes occurring in CF4/O2 discharges used in plasma etching [J]. Plasma Chem. Plasma Proess.,1986,6: 205-230.
    [139]Dalvie M and Jensen K F. The importance of free radical recombination reactions in CF4/O2 plasma etching of silicon [J]. J. Vac. Sci. Technol. A,1990,8:1648-1653.
    [140]Kimura T and Noto M. Experimental study and global model of inductively coupled CF4/O2 discharges [J]. J. Appl. Phys.,2006,100:063303.
    [141]Booth J P, Corr C S, Curley G A, et al. Fluorine negative ion density measurement in a dual frequency capacitive plasma etch reactor by cavity ring-down spectroscopy [J]. Appl. Phys. Lett.,2006,88:151502.
    [142]Song S H and Kushner M J. Control of electron energy distributions and plasma characteristics of dual frequency, pulsed capacitively coupled plasmas sustained in Ar and Ar/CF4/02 [J]. Plasma Sources Sci. Technol.,2012,21:055028.
    [143]Chabert P and Braithwaite N:Physics of radio freuqency plasmas [M]. Cambridge: Cambridge Univeristy Press,2011:187-217.
    [144]Kinder R L and Kushner M J. Consequences of mode structure on plasma properties in electron cyclotron resonance sources [J]. J. Vac. Sci. Technol. A,1999,17: 2421-2430.
    [145]Vasenkov A V and Kushner M J. Modeling of magnetically enhanced capacitively coupled plasma sources:Ar/C4F8/02 discharges [J]. J. Appl. Phys.,2004,95: 834-845.
    [146]Vyas V and Kushner M J. Scaling of hollow cathode magnetrons for ionized metal physical vapor deposition [J]. J. Vac. Sci. Technol. A,2006,24:1955-1969.
    [147]Kinder R L and Kushner M J. Wave propagation and power deposition in magnetically enhanced inductively coupled and helicon plasma sources [J]. J. Vac. Sci. Technol. A,2001,19:76-86.
    [148]Agarwal A and Kushner M J. Characteristics of pulsed plasma doping sources for ultrashallow junction formation [J]. J. Appl. Phys.,2007,101:063305.
    [149]Lu J and Kushner M J. Trench filling by ionized metal physical vapor deposition [J]. J. Vac. Sci. Technol. A,2001,19:2652-2663.
    [150]Tinck S, Boullart W and Bogaerts A. Investigation of etching and deposition processes of Cl2/O2/Ar inductively coupled plasmas on silicon by means of plasma-surface simulations and experiments [J]. J. Phys. D:Appl. Phys.,2009,42: 095204.
    [151]Tinck S, Boullart W and Bogaerts A. Modeling Cl2/O2/Ar inductively coupled plasmas used for silicon etching:effects of Si02 chamber wall coating [J]. Plasma Sources Sci. Technol.,2011,20:045012.
    [152]Tinck S and Bogaerts A. Modeling SiH4/O2/Ar inductively coupled plasmas used for filling of microtrenches in shallow trench isolation (STI) [J]. Plasma Process. Polym.,2012,9:522.
    [153]Meeks E, Larson R S, Vosen S R, et al. Modeling chemical downstream etch systems for NF3/O2 mixtures [J]. J. Electrochem. Soc.,1997,144:357-366.
    [154]Phelps A V. JILA Information Center Report No.28 [R]. Univeristy of Colorado, 1985.
    [155]Vasenkov A V, Li X, Oehrlein G S and Kushner M J. Properties of C-C4F8 inductively coupled plasmas. II. Plasma chemistry and reaction mechanism for modeling of Ar/c-C4F8/O2 discharges [J]. J. Vac. Sci. Technol. A,2004,22:511-530.
    [156]Laher R R and Gilmore F R. Updated excitation and ionization cross sections for electron impact on atomic oxygen [J]. J. Phys. Chem. Ref. Data,1990,19:277-305.
    [157]Liu W and Victor G A. Electron energy deposition in carbon monoxide gas [J]. Astrophys. J.,1994,435:909-919.
    [158]Lowke J J, Phelps A V and Irwin B W. Predicted electron transport coefficients and operating characteristics of CO2/N2/He laser mixtures [J]. J. Appl. Phys.,1973, 44:4664-4671.
    [159]http://www.caeonline.com/
    [160]Gray D C, Sawin H H and Butterbaugh J W. Quantification of surface film formation effects in fluorocarbon plasma etching of polysilicon [J]. J. Vac. Sci. Technol. A,1991,9:779-785.
    [161]Zhang D and Kushner M J. Surface kinetics and plasma equipment model for Si etching by fluorocarbon plasmas [J]. J. Appl. Phys.,2000,87:1060-1069.
    [162]Zhao S X, Gao F, Wang Y N, et al. Gas ratio effects on the Si etch rate and profile uniformity in an inductivelycoupled Ar/CF4 plasma [J]. Plasma Sources Sci. Technol., 2013,22:015017.
    [163]Takagu S, Onoue S, Lyanagi K, et al. Predictable topography simulation of SiO2 etching by C5F8 gas combined with a plasma simulation, sheath model and chemical reaction model [J]. Plasma Sources Sci. Technol.,2013,22:S64-S71.
    [164]P. De Schepper. Interuniversity Microelectronics Centre, Kapeldreef 75 B-3001, Leuven, Belgium.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700