电塑性效应中金属流动应力的理论及实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电流所导致的金属在塑性变形过程中变形抗力下降,延伸率增加的现象被称为金属的电塑性效应。利用电塑性效应可大幅度地降低金属的加工硬化速率,减免常规塑性加工工艺中必须采用的软化退火、酸洗等工序,改善产品表面质量,提高成材率,电塑性效应有望在轧制、辊压、冷拔等金属的塑性加工中得到广泛的应用。但是,迄今为止人们对于金属电塑性效应的作用机理还不十分清楚,电塑性加工过程的理论分析和计算已经成为该技术推广的瓶颈。目前,国内外许多学者都在对金属的电塑性效应进行深入的研究,一旦能够在生产中应用电塑性效应,必将大大提高生产效率,降低生产成本,提高产品质量,这对于工业生产意义十分重大。因此,开展这方面的探索性工作对于加深电塑性效应的认识,促进相关工艺技术的发展和有效应用有着很强的理论意义。
     本文从位错滑移动力学、自由电子理论和量子理论三个方面深入研究电流导致金属流动应力降低的机理问题。以定向漂移的电子引起金属位错滑移所需激活能发生变化为出发点,研究定向漂移的电子与位错之间的能量交换量。基于位错热激活滑移速率公式,推导了电流作用下金属应变速率变化量的理论计算公式,得出了电流导致金属流动应力降低现象的本质为电流对金属的应变速率产生了影响的论断。利用实验数据回归了金属铜丝无电拉伸条件下的塑性变形过程的本构方程,综合考虑电流对该方程中应变速率和温度的影响,得出了金属铜丝电塑性拉伸条件下流动应力的理论计算公式,依据理论计算公式分析得出了电塑性效应中电流参数和物理参数对金属流动应力的影响规律。为了验证理论推导结果的准确性,进行了金属丝材的电塑性拉伸实验,将实验结果与理论计算结果进行了对比分析。本文的研究结果不仅为定量地分析电塑性效应中金属的流动应力提供了方法,而且为电塑性效应的工程应用奠定了理论基础。
     本文依据金属电塑性加工过程的实际需要,自行研制了脉冲电流发生装置,该装置采用了性能好、功率大的GTR模块控制电流回路的开启,利用多位波段开关控制并联的多路电路,从而在回路中实现了更大功率的脉冲电流。超低频示波器对脉冲电源输出电流的实测波形显示,该脉冲电流具有电流峰值大、波形好的特点,更好地满足了电塑性加工和理论研究对电源装置的要求。
     在电塑性效应机理研究的基础上,结合丝材带模拉拔的实际生产过程,建立金属丝材电塑性拉拔成型过程的数学模型,通过理论求解的方法对金属的电塑性拉拔变形过程进行了力学分析。最后,实验研究铜丝的电塑性拉拔过程,并将实验研究结果与理论计算结果进行了对比分析。
It has been found that electrical current can reduce the metal flow stree and increaseforming limit. This additional component has been termed an electropalstic effect.Electroplastic forming can also dramatically reduces the metal work hardening rate,simplify annealing and pickling process, improve surface quality of product, and increasethe rate of finished products. Hence, the electroplastic manufacturing processing isexpected to be widespread used in rolling, drawing and other plastic procesing fields.However, the mechanism of electroplastic effect is unclear up to now and the analysis intheory of electroplastic forming process has become a bottleneck of the engineeringapplication of electroplastic technology. At present, the meatl electroplastic effct is furtherresearched all over the world. Once the electroplastc forming technology can besuccessfully used in actual production process, it will improve productivity, lower cost,and improved plasticity. This is very signigicant and important for industrial production.Therefore, to develop the exploring researchs in the mechanism of electroplastic effect andthe development in the computation methods are of great importance for the developmentand application of the related technial.
     In this paper, based on dislocation glide dynamics, free electron theory and quantumtheory, the mechanism of metallic electroplastic effect is studied. From the perspective ofenergy exchange between free electrons and metallic ions, the change in activation energyof dislocation is studied. According to the thermally activated strain rate equations, therelationship between electric current and strain rate could then be obtained, and it showsthat the flow stress reduction results from the effect of current on strain rate. A series ofcarefully designed experiments will be carried out to determine the constitutive law forforming of copper wire without electricity applied. Taking into account the influence ofcurrent on the constitutive law, the relational expression of the metal’s flow stress andelectroplastic deformed conditions is presented. Then based on the relational expression,the influences of electrical parameter and physical parameter on material flow stressduring forming process companied with electroplastic effct are analysed. In order to verifythe accuracy of the theoretical derivation results, the experimental researches on tensile tests of metal wire are carried out, and the comparative analysis between theoreticcalculation and experimental results is also made. The results of this paper not onlyoffered a quantitative analysis method for metal’s flow stress decreasing in electroplasticeffect but also formed the basis of practical application for electroplastic effect.
     According to the requirement of electroplastic manufacturing processing, the pulsecurrent generator is designed and fabricated. The design adopts powerful GTR module tocontrol current circuit on or off, thus generating pulse current. The pulse power generationcircuitry can output multichannel signals. The multichannel signals are linked togetherwith the monostable triggers to get a large current. The ultra-low frequency oscillographshows that the pulse current has the features of the larger summit current and perfect pulsewave, which will be more suitable for the practical application.
     On the basis of the research of mechanism of metal electroplastic effect andcombining with wire drawing production practic, the mathematical models of metal wireelectropalstic forming process was derived. Finally, the experimental research on metalwire electropalstic drawing was carried out, and a comparative analysis is made betweenthe experimental and theoretical results.
引文
Troitskii O A, Likhtman V I. The Anisotropy of the Action of Electron and Radiation on theDeformation of Zine Single Crystal in the Brittle State[J]. Akad. Nauk. SSSR,1963,(148):332-334.
    Guan Lei, Tang Guoyi, Chu PaulK. Recent Advances and Challenges in Electroplastic ManufacturingProcessing of Metals[J]. Journal of Materials Research,2010,25(7):1215-1224.
    郑明新,张人佶,朱永华,等.电塑性效应及其应用[J].中国机械工程,1997,8(5):91-94.
    彭书华,杨俊杰,李尧.电致塑性效应机制研究及其进展[J].江汉大学学报,2013,141(2):61-65.
    Salandro W A, Bunget C J, Mears L. A Thermal-based Approach for Determining ElectroplasticCharacteristics[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal ofEngineering Manufacture,2012,226(5):775-788.
    Bunget C J, Salandro W A, Mears L. Thermomechanical Modeling Sensitivity Analysis of ElectricallyAssisted Forming[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal ofEngineering Manufacture,2013,227(8):1089-1098.
    Salandro W A, Bunget C J, Mears L. Electroplastic Modeling of Bending Stainless Steel Sheet MetalUsing Energy Methods[J]. Journal of Manufacturing Science and Engineering,2011,133(4):2011.
    Magargee J M, Fabrice C J. Characterization of Flow Stress for Commercially Pure Titanium Subjectedto Electrically Assisted Deformation[J]. Journal of Engineering Materials and Technology,2013,135(4):266-270.
    Troitskii O A. Electroplastic Effect in a Metal Single Crystal Deformed in an Electron Beamx[J]. FizTverd Tela,1971,13(1):185-188.
    Klimov K M, Shnyrev G D, Novikov I I. Electroplasticity of Meatls[J]. Kokl. Akad. Nauk,1974,(219):323-329.
    Troitskii O A, Rozno A G. Electroplastic effects in Metals[J]. Fiz. Tverd.Tela,1970,(12):161-165
    Troitskii O A. Effect of the Electron State of a Metal on Its Mechanical Properties and the Phenomenonof Electroplasticity[J]. Problemy Prochnosti,1977,(9):38-46.
    Troitskii O A, Moiseenko M M. Electroplastic Deformation of Zinc, Cadmium, and Lead Crystals[J].Russian Metallurgy,1987,23(11):159-161.
    Salandro W A, Bunget C J, Mears L. Several Factors Affecting the Electroplastic Effect During anElectrically-assisted Forming Process[J]. Journal of Manufacturing Science and Engineering,2011,133(6):186-191.
    Potapova A A, Stolyarov V V.. Structural Changes in Electroplastic Rolling and Annealing of TiNiAlloy Rod[J]. Steel in Translation,2010,40(10):888-891.
    Ugurchiev U K, Stolyarov V V. Deformability and Microhardness of Large-grain Titanium Alloys inRolling with Pulsed Current[J]. Journal of Machinery Manufacture and Reliability,2012,41(5):404-406.
    Stolyarov V V. Deformation and Structure of a Shape Memory Titanium Alloy during ElectroplasticProcessing[J]. Russian Metallurgy,2010,4:306-309.
    Troitskii O A, Stashenko V I. Stress Relaxation Investigation of the Electroplastic Deformation of aMetal[J]. Fiz. Met. Metalloved,1979,(253):180-185.
    Spitsyn V I, Troitskii O A, Glazunzov P Y. Electroplastic Deformation of Metal before BrittleFracture[J]. Dokl. Akda. Nauk,1971,(199):810-816.
    Fu Yuming, Zhou Hongmei, Wang Junli. Analysis of Crack Arrest by Electromagnetic Heating in Metalwith Oblique-elliptical Embedding Crack[J]. Key Engineering Materials,2012,(525):405-408.
    付宇明,王俊丽,郑丽娟,等.含有裂纹的Al-Mg合金构件电磁热止裂[J].中国有色金属学报,2013,23(1):29-34.
    Gao Zhiwen, Zhou Youhe; Li Kangyong. Crack-inclusion Problem for a Long Rectangular Slab ofSuperconductor under an Electromagnetic Force[J]. Computational Materials Science,2010,50(2):279-282.
    Conrad H. Electroplasticity in metals and ceramics[J]. Materials Science and Engineering A,2000,287(2):276-287
    Yang D, Conrad H. Grain Size Dependence of Electroplastic Effect in NaCl[J]. British CeramicTransactions,1998,97(6):263-2672.
    Okazaki K, Kagawa M, Conrad H. Study of the Electroplastic Effect in Metals[J]. Scripta Metall,1978,12(11):1063-1038.
    Okazaki K, Kagawa M, Conrad H. Elecroplastic Effect in Titanium[J]. Metall Soc. of Aime,1980,1:177-280.
    Okazaki K, Kagawa M, Conrad H. Additional Results on the Electroplastic Effect in Metals[J]. ScriptaMetallurgica,1979,13(4):277-280.
    Okazaki K, Kagawa M, Conrad H. An Evaluation of the Contribution of Skin, Pinch and HeatingEffects to the electroplastic Effect in Titanium[J]. Materials Science and Engineering A,1980,45(2):109-116.
    Sprecher A F, Mannan S L, Conrad H. On the Temperature Rise Associated with the ElectroplasticEffect in Titauium[J]. Scripta Metallurgica,1983,17(6):769-772.
    Cao W D, Sprecher A F, Conrad H. Measurement of the Electroplastic Effect in Nb[J]. Journal ofPhysics E: Scientific Instruments,1989,22(12):1026-1034.
    Conrad H, Sprecher A F. Electroplasticity-The Effect of Electricity on the Mechanical Properties ofMetals[J]. The Journal of the Minerals, Metals&Materials Society,1990,(9):28-33.
    Cao W D, Sprecher A F, Conrad H. Effect of Strain Rate on the Elecroplastic Effect in Nb[J]. ScriptaMetallurgica,1989,23(1):151-155.
    Sprecher A F, Mannan S L, Conrad H. On the Mechanisms for the Electroplastic Effect in Metals[J].Acta Metall,1986,(34):1145-1162.
    Li S C, Conrad H. Electric Field Strengthening during Superplastic Creep of Zn-5Wt%Al: a NegativeElectroplastic Effect[J]. Scripta Materialia,1998,39(7):847-851.
    Barnak J P, Spreher A F, Conrad H. Colony size reduction in eutectic Pb-Sn castings byelectropulsing[J]. Scripta Metall,1995,32:879-884.
    Cao W.D, Conrad H. Effects of Stacking Fault Energy and Temperature on the Elecroplastic Effect inFCC Metals[J]. Process Micromech Advance Mater,1995:225-236.
    Silveira V L A, Porto M F S, Mannheimer W A. Electroplastic Effect in Copper Subjected to LowDensity Electric Current[J]. Scripta Metallurgica,1981,15(8):945-950.
    Martin A S, Nghiep D.M, Paufler P K. The Electroplastic Effect in V3Si[J]. Scripta Metallurgica,198014(10):1041-1045.
    Stolyarov, V V. Electroplastic Effect in Nanostructured Titanium Alloys[J]. Reviews on AdvancedMaterials Science,2010,31(2):163-166.
    Mai Jianming, Peng Linfa, Li Zhongqin. Experimental Study of Electrical Resistivity and Flow Stressof Stainless Steel316L in Electroplastic Deformation[J]. Materials Science and Engineering A,2011,528(11):3539-3544.
    Stolyarov V V. Features of Electroplastic Deformation and Electropulse Treatment for TiNi Alloys[J].Materials Science Forum,2013,738:297-300.
    Kinsey B, Cullen G, Jordan A. Investigation of Electroplastic Effect at High Deformation Rates for304SS and Ti-6Al-4V. CIRP Annals[J]. Manufacturing Technology,2013,62(1):279-282.
    Zhu Rufei, Tang Guoyi, Shi Sanqiang. Effect of Electroplastic Rolling on Deformability and Oxidationof NiTiNb Shape Memory Alloy[J]. Journal of Materials Processing Technology,2013,213(1):30-35.
    Liu Yang, Wang Lei, Feng Fei. Effect of Pulse Current on Tensile Deformation Behavior of IN718Alloy[J]. Advanced Materials Research,2012,509:56-63.
    周本濂.材料制备中的非平衡过程[J].材料研究学报,1997,11(6):576-584.
    郑明新,朱永华,唐国翌,等.关于电塑性拔丝和其结构演变的讨论[J].清华大学学报,1998,38(2):28-32.
    唐国翌,郑明新,朱永华,等.电塑性加工技术及其工程应用[J].钢铁,1998,33(9):35-33.
    唐国翌,郑明新,朱永华,等.奥氏体不锈钢丝的电塑性拔制[J].金属制品,1997,23(1):6-9.
    张锦,唐国翌,闫允杰,等.电塑性加工对17-6Mn冷拔不锈钢丝的拔制应力和性能的影响[J].清华大学学报,2000,40(10):19-33.
    姚可夫,雨篷,郑明新,等. HOCr17Ni6Mn3钢丝电塑性拉拔的研究[J].金属学报,2000,36(6):630-633.
    Yao Kefu, Wang Jun, Zheng Mingxin. A Research on Electroplastic effect in Wire-drawing Process ofan Austenitic Stainless Stell[J]. Scripta Materialia,2001,45:533-539.
    刘志义,刘兵,邓小铁,等.脉冲电流对2091Al-Li合金超塑性及断裂行为的影响[J].金属学报,1993,29(2):89-92.
    刘志义,崔建忠,尹立新,等.2091Al-Li合金的电致超塑性.中国有色金属学报[J],1993,3(4):68-71.
    李尧,杨贤镛,陈洪,等.脉冲电流对Zn-22%Al合金超塑力学行为的影响[J].湖北工学院学报,1995,10(1):1-4.
    董晓华,李尧.金属的电致塑性和电致超塑性效应[J].湖北工学院学报,1996,11(4):1-5
    李淼泉,吴诗犉. LY12CZ铝合金在强电场中的超塑性变形[J].塑性工程学报,1996,9(3):41-46.
    李淼泉,吴诗犉. LY12CZ铝合金超塑性变形时的电场效应[J].金属学报,1995,31(6):272-275
    刘渤然,张彩碚,赖祖涵.在脉冲电流作用下Al-Li-Cu-Mg-Zr合金的超塑形变.材料研究学报,1999,8(4):385-389.
    刘渤然,张彩碚,赖祖涵.冷轧态AI-Li-Cu-Mg-Zr合金在脉冲电流作用下超塑形变中的位错形态[J].材料研究学报,1999,14(2):218-220.
    候东芳,董晓华,李尧,等.电流对金属超塑性变形中晶内位错形态的影响[J].三峡大学学报,2002,58(4):348-350.
    董晓华,候东芳,李尧.直流脉冲电流对7475铝合金超塑性变形中位错运动的影响[J].机械工程材料,2005,29(2):17-20.
    董晓华,候东芳,李尧.7475铝合金电致超塑性效应中位错运动的动力学分析[J].金属成型工艺,2004,22(1):37-40.
    李世春. Zn-5Al合金反常的电塑性效应[J].材料研究学报,1998,6(3):314-316.
    周亦胄,周本濓,郭晓楠,等.脉冲电流对45钢损伤恢复的作用[J].材料研究学报,2000,14(1):43-45.
    周亦胄,肖素红,甘阳,等.脉冲电流作用下碳钢淬火裂纹的愈合[J].金属学报,2000,36(1):29-36.
    周亦胄,罗申,贲昊喜,等.在脉冲电流作用下钢裂纹的愈合[J].材料研究学报,2003,17(2):169-172.
    吕宝臣,周亦胄,王宝全,等.脉冲电流对疲劳后30CrMnSiA钢组织结构的影响[J].材料研究学报,2003,17(1):15-18.
    王景鹏,贺笑春,王宝全,等.脉冲电流作用下40Cr钢淬火残余应力的消除[J].材料研究学报,2007,21(1):41-44.
    解焕阳,董湘怀,方林强.电塑性效应及在塑性成形中的应用新进展[J].上海交通大学学报,2012,46(7):1059-1062.
    阎峰云,黄旺,杨群英,等.电塑性加工技术的研究与应用进展[J].新技术新工艺,2010,6:59-62.
    Troitskii O A, Spitsyn V I, Sokolov N V. Application of High-Density Current in Plastic Working ofMetals Stress[J]. Physica Status Solidi (A) Applied Research,1979,52(1):85-93.
    Stashenko V I, Troitskii O A, Novikova N N. Electroplastic Drawing of a Cast-iron Wire[J]. Journal ofMachinery Manufacture and Reliability,2009,38(2):182-184.
    Stashenko V I, Troitskii O A, Novikova N N. Electroplastic Drawing Medium-Carbon Steel[J]. Journalof Machinery Manufacture and Reliability,2009,38(4):369-372.
    Stolyarov V V. Deformability and Nanostructuring of TiNi Shape-memory Alloys during ElectroplasticDrawing[J]. Materials Science and Engineering A,2009,503(1):18-20.
    Tang Guoyi, Zhang Jin, Zheng Minxin. Experimental Study of Electroplastic Effect on Stainless SteelWire304L[J]. Materials Science and Engineering A,2000,281:263–267.
    Tang Guoyi, Zheng Minxin, Zhu Yonghua. Application of the Electro-Plastic Technique in theCold-Drawing of Steel Wires[J]. Journal of Materials Processing Technology,1998,84(1):268-270.
    Yao Kefu, Wang Jun, Zheng Mingxin. A Research on Electroplastic Effect in Wire-drawing Process ofan Austenitic Stainless Steel[J]. Scripta Materialia,2001,45:533-539.
    余鹏.脉冲电流对H0Cr176Ni6Mn3焊丝拉拔行为影响的实验研究[D].北京:清华大学硕士学位论文,2000:23-42.
    Tang Guoyi, Zhang Jin, Yan Yunjie. The Engineering Application of the Electroplastic Effect in theCold-Drawing of Stainless Steel Wire[J]. Journal of Materials Processing Technology,2003,137:96–99.
    Zhang Jin, Tang Guoyi, Yan Yunjie. Effect of Current Pulses on the Drawing Stress and Properties ofCr17Ni6Mn3and4J42Alloys in the Cold-drawing Process[J]. Journal of Materials ProcessingTechnology,2002,120:13-16.
    李窘,方威,唐国翌,等.精密合金3J53钢丝的电塑性拔丝研究[J].金属制品,1999,25(5):14-16.
    Troitskii O A. Instrumental Effects in Investigations of Electroplastic Deformation[J]. IndustrialLaboratory,198450(1):87-89.
    Zhu Rufei, Tang Guoyi, Shi Sanqiang. Effect of Electroplastic Rolling on Deformability and Oxidationof NiTiNb Shape Memory Alloy[J]. Journal of Materials Processing Technology,2013,213(1):30-35.
    Zhu Rufei, Tang Guoyi, Shi Sanqiang. Effect of electroplastic rolling on the ductility andsuperelasticity of TiNi shape memory alloy[J]. Materials and Design,2013,44:606-611.
    Potapova A A, Stolyarov V V. Deformability and Shape Memory Properties in Ti50.0Ni50.0Rolledwith Electric Current[J]. Materials Science Forum,2013,738:383-387.
    Stolyarov V V. Features of Deformation Behavior at Rolling and Tension under Current in Tini Alloy[J].Reviews on Advanced Materials Science,2010,25(2):194-202.
    Lu Yongjin, Qu Timing, Zeng Pan. The Influence of Electroplastic Rolling on the MechanicalDeformation and Phase Evolution of Bi-2223/Ag Tapes. Journal of Materials Science,2010,45(13):3514-3519.
    Potapova A A, Stolyarov V V. Deformability and Structural Features of Shape Memory TiNi AlloysProcessed by Rolling with Current[J]. Materials Science and Engineering A,2013,579:114-117.
    Wang Shaonan, Tang Guoyi, Xu Zhuohui. Corrosion Behavior of the Electroplastic Rolled AZ31Magnesium Alloy in Simulated Sea Water[J]. Material Science and Technology,2010,18(3):339-343.
    王少楠.电脉冲对AZ31镁合金冲压性能和腐蚀性能的影响[D].北京:清华大学硕士论文,2009:23-25.
    方林强.电塑性滚压包边工艺研究[D].上海:上海交通大学硕士论文,2012:18-32
    Baranov S A, Staschenko V I, Sukhov A V. Electroplastic metal cutting[J]. Russian ElectricalEngineering,2011,82(9):477-479.
    Conrad H. Thermally Activated Plastic Flow of Metals and Ceramics with an Electric Filed orCurrent[J]. Materials Science and Engineering A,2002,322(6):100-107.
    Troitskii O A. The Electonic Wind in Metals[J]. Tyazheloe Mashinostroenie,2003,2:30-34.
    Molotskii M, Fleurov V. Magnetic Effect in Electroplasticity of Metals[J]. Physical Review B,1995,52(22):15829-15834.
    郑明新,朱永华,唐国翌,等.关于电塑性拔丝和结构演变的讨论[J].清华大学学报.1998,38(2):28-32.
    唐国翌,郑明新,朱永华等.奥氏体不锈钢丝的电塑性拔制[J].金属制品.1997,23(1):6-9.
    Salandro A W, Bunget C, Mears L. Several Factors Affecting the Electroplastic Effect During anElectrically-assisted Forming Process[J]. Journal of Manufacturing Science and Engineering,2011,133(6):56-62.
    冯端.金属物理学(第三卷)[M].北京:科学出版社,1999:362-372.
    赵敬世.位错理论基础.北京:国防工业出版社[M],1989:130-139.
    Conrad H. Thermally Activated Deformation of Metals[J]. Journal of Metals,1964,(7):582-588
    Yaroshevich V, Ryvkina D. Thermal-activation Nature of Plastic Deformation in Metals[J]. Fiz TverdTela,1970,24(3):464-477.
    Conrad H. The athermal component of the flow stress in crystalline solids[J]. Materials Science andEngineering A,1970,(6):265-273.
    П.И.波卢欣.金属与合金的塑性变形抗力[M].林治平,译.北京:机械工业出版社,1984:341-344.
    王晓敏.新编电学基础[M].北京:科学出版社,2011:231-248.
    于正兴.电学[M].上海:上海科学技术出版社,2009:128-203.
    弗里埃德尔.位错[M].王熠,译.北京:科学出版社,1980:149-150.
    张永德.量子力学[M].北京:科学出版社,2009:132-144.
    田莳.材料物理性能[M].北京:北京航空航天大学出版社,2009:95-112.
    韦丹.固体物理[M].北京:北京清华大学出版社,2003:101-109.
    黄昆.固体物理学[M].北京:高等教育出版社,2000:173-181.
    莫特,马塞.原子碰撞理论[M].赵恒忠,译.北京:科学出版社,1960:223-230.
    阿隆索.大学物理学基础(第三卷)[M].梁宝洪,译.北京:人民教育出版社,2011:285-293.
    郭伟国.金属的塑性流动行为及其本构关系研究[D].西安:西北工业大学博士论文.2007:54-68.
    陈忠伟,胡锐,李金山,等. FCC晶体结构多晶铜的动态本构方程参数确定[J].西北工业大学学报,2004,22(6):700-704.
    邵志芳,戴铁军,那顺桑,等.30MnSiV钢变形阻力的实验研究[J].河北理工学院学报,2002,24(2):11-15.
    孙正波.应用数理统计[M].长沙:国防科技大学出版社,2011:233-241.
    师义民.数理统计[M].北京:科学出版社,2009:173-175.
    杨蕴林,陈英国,董企铭,等.在普通拉伸试验机上实现恒应变速率变形的方法[J].洛阳工学院学报,1985,(7):57-64.
    林兆荣.金属塑性成形原理与应用[M].南京:航空工业出版社,1990:120-124.
    汪大年.金属塑性成形原理[M].北京:机械工业出版社,1986:108-109.
    王祖唐.金属塑性成形理论[M].北京:机械工业出版社,1989:92-94.
    徐效谦,明绍芬.特殊钢钢丝[M].北京:冶金工业出版社,2005:16-18.
    曹乃光.金属塑性加工原理[M].北京:冶金工业出版社,1986:176-177.
    刘周同.电塑性拔丝加电装置设计的理论分析及数值模拟[D].河北:燕山大学硕士论文,2012:56-63.
    茹铮,余望,阮煦寰.塑性加工摩擦学[M].北京:科学出版社,1992:132-139.
    翟文杰,齐毓霖,陈仁际.电压对金属摩擦力的影响及机理分析[J].材料保护,1995,(11):32-34.
    陈仁际,翟文杰,齐毓霖.用外加电压控制摩擦力的机理与技术[J].摩擦学学报,1996,16(3):235-238.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700