大容量风电机组接入对电网运行的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
风电机组装机容量的不断提高,促使国际风电技术的主要研究方向从电网正常条件下的运行转向电网故障条件下的穿越运行。风能属于不可控的能源,风电穿透率的提高会导致电网波动与闪变,电网不断对风电场接入提出更高的规范要求,风电技术领先的国家纷纷提出了故障穿越的标准。本文以主流的双馈异步风电机组和直驱型永磁同步风电机组为研究对象,围绕两种不同风电机组低电压穿越的相关问题进行研究,通过理论分析以及建模仿真,验证了研究的正确性。
     1、分析了两种主流变速恒频风电机组的结构,建立风力发电系统空气动力模型及传动系统模型。
     2、针对交流励磁双馈发电机组(DFIG),通过坐标变换建立了两相同步旋转坐标系下的DFIG发电机及网侧、转子侧PWM变换器的完整数学模型。提出了基于电网电压定向的网侧PWM变换器电压、电流双闭环控制策略;针对转子侧PWM变换器,计及定子电压和励磁电流,建立了两相同步旋转坐标系下的DFIG精确控制模型,提出了基于定子电压定向的改进矢量控制方案。通过仿真,验证了所建模型的有效性,为分析双馈发电机组的低电压穿越能力奠定了基础。
     3、针对直驱型永磁同步发电机组,首先建立了永磁同步发电机和PWM变换器的模型,分析了PWM变换器的能量传输,提出了采用电网电压定向的网侧变换器矢量控制策略,以及采用转子磁场定向的机侧矢量控制策略。仿真验证了所选方案的正确性,为分析永磁同步发电机组低电压穿越能力提供了仿真平台。
     4、分别分析了两种风电机组在严重对称电压跌落时的控制方案。针对双馈风电机组分析了Crowbar投切时间对系统的影响,以及转子Crowbar所串电阻的大小电网恢复的影响。针对水磁同同步发电机组,提出了直驱型永磁风力发电系统低电压穿越的控制逻辑,采用储能Crowbar,故障时无功控制策略实现了永磁同步风力发电系统的低电压穿越。
As the increased penetration of wind power generations in power system, modern grid codes concerning grid-connected wind turbines are developed. As a result, the wind turbine under normal grid conditions is well understood and applied, the fault ride-through operation and control of the wind power system when grid fault condition has been the main subject of much recent research and development worldwide. Because of the uncontrolled wind power and the grid system fault, countries have advantage over wind power generation have already come up with different standards of fault ride-through. This dissertation intends to study the control of DFIG and PMSG wind turbine in low voltage ride through technology. Verify the correctness of the study by theoretical analysis and the simulation model.
     1. Introduce the construction of two mainstream VSCF wind turbine, build up the aerodynamic model of the wind power system and the driveline components.
     2. The precise mathematical model of DFIG's grid-side converter and rotor-side converter are created. Based on the model, the dissertation presents an integrated system model with network, DFIG, grid-side converter and rotor-side converter included in the two-phase synchronous reference frame. Thereafter, a classical vector control scheme based on grid/stator voltage orientation and composed of dual closed-loops, viz., DC-link voltage control and AC current control loops, for DFIG's grid-side converter is introduced. While for rotor-side converter a precise control model taking the stator voltage variation transients into account is constructed in the synchronous reference frame, and improved vector control scheme is suggested based on stator voltage orientation. Simulated analysis verifies the correctness and effectiveness of the proposed DFIG's control model and the system's new vector control scheme under relatively grid voltage sag.
     3. The mathematical model of PWM converter is studied, and the part of the DC of Dual-PWM is described through analyzing the power transformation theory. The simulation models of the controller of grid-side converter which uses voltage-oreinted vector control strategy and the controller of motor-side converter which uses the rotor flux-oriented vector control strategy are built, and the simulation results show that the model and the control strategy are correct, which provides simulation platform support for the low voltage ride through.
     4. The dissertation studies control strategies and protection schemes for DFIG wind generation systems under serious grid voltage dip conditions. The timing of rotor crowbar's switching on and off is optimized. The impact of value of resistor series-connected to rotor crowbar on faulted network recovery is analyzed. On the basis, a fault ride-through operation scheme composed of a series-connected resistor rotor crowbar and an improved grid-side converter control strategy is proposed. In PMSG, the study puts forward a set of control logic for the based low voltage ride through. In the directly-driven permanent magnet wind power system simulation platform, the low voltage ride through of directly-driven PM wind generation system is achieved by using the power storage crowbar and reactive power control strategy during the breakdown time.
引文
[1]吴捷,杨俊华.绿色能源与生态环境控制[J].控制理论与应用,2004,21(6):864-86.
    [2]杨俊华.无刷双馈风力发电系统及其控制研究[D].广州:华南理工大学,2006.
    [3]任永峰.双馈式风力发电机组柔性并网运行与控制[M].北京:机械工业出版社,2011.
    [4]张兴,张龙云,杨淑英等.风力发电低电压穿越技术综述[J].电力系统及其自动化学报,2008,20(2):1-8.
    [5]Case C.Connecting Wind Farms to the Grid-what You Need to now[R].Vancouver, Canada:2006.
    [6]Erdman W, Behnke M. Low Wind Speed Turbine Project Phase Ⅱ:the Applic ation of Medium-voltage Whitaker (BEW) Engineering San Ramon [R].California,USA:2005.
    [7]Kariniotakis G.N., Stavrakakis G.S., Nogaret E.F. Wind power forecastion using advanced neural networks models[C].IEEE Trans. on Energy Conversion, December 1996, 11(4):762-767
    [8]Feijoo A.E., Cidras J., Dornelas J.L.G. Wind speed simulation in wind farms for steady-state security assessment of electrical power systems[C]. IEEE Trans, on Energy Conversion, December 1999,14(4):1582-1588
    [9]P.M. Anderson, A. BOSE. Stability simulation of wind turbine systems[C].IEEE Trans.Power App. Syst., Dec.1983,102:3791-3795
    [10]GWEC.Global Wind Report Annual market update 2011 [R].Europe:GWEC,2012.
    [11]J.A.Baroudi, V.Dinavahi, A.M.Knight. A Review of Power Converter Topologies for Wind Generators[J].Renewable Energy,2007,32(14):2369-2385.
    [12]赵仁德.变速恒频双馈风力发电机交流励磁电源研究[D].杭州:浙汀大学,2005:43-86.
    [13]R.Pena, J.C.Clare, G.M.Asher. Doubly Fed Induction Generator Using Back-to-back PWM Converters and its Application to Variable-Speed Wind-Energy Generation[J].Electric Power Applications,1996,143(3):231-241.
    [14]A.Petersson, S.Lundberg, T.Thiringer. Comparison Between Stator-Flux and Grid-Flux-Oriented Rotor Current Control of Doubly-Fed Induction Generators[C].Aachen.35th Annual IEEE Power Electronics Specialists Conference.Germany:Annual IEEE,2004:482-486.
    [15]A.Petersson. Analysis, Modeling and Control of Doubly-Fed Induction Generators for Wind Turbines [D].Goteborg:Chalmers University of Techno logy,2005.
    [16]刘其辉.变速恒频风力发电系统运行与控制研究[D].杭州:浙江大学:137-156,2005.
    [17]李辉,杨顺昌,廖勇.并网双馈发电机电网 电压定向励磁控制的研究[J].中国电机工程学报,2003,23(8):87-90.
    [18]J.W.Choi, S.K.Sul. Fast Current Controller in Three-Phase AC/dc Boost Converter Using d-q Axis Cross Coupling[J].IEEE Transactions on Power Electronics,1998,19(1):179-185
    [19]M.P.Kazmierkowski,R.Krishnan,F.Blaabjerg. Control in Power Electronics Selected Problems[M].New York:Academic Press,2002.
    [20]赵仁德,贺益康.无电网电压传感器三相PWM整流器虚拟电网磁链定向矢量控制研究[J].中国电机工程学报,2005,25(20):56-61.
    [21]M.Malinowski, M.Jasinski, M.P.Kazmierkowski. Simple Direct Power Control of Three-Phase PWM Rectifier Using Space-Vector Modulation(DPC-SVM)[J]IEEE Transactions on Industrial Electronics,2004,51(2):447-457.
    [22]S.A.Larrinaga,M. A.Rodriguez Vidal,E.Oyarbide,J.R.T.Apraiz. Predictive Control Strategy for DC/AC Converters Based on Direct Power Control[J]. IEEE Transactions on Industrial Electronics,2007,54(3):1261-1271.
    [23]I).Zhe, L.Xu. Direct Power Control of DFIG With Constant Swiching Frequency and improved Transient Performance[J|.IEEE Transactions on Energy conversion,2007,22(1):110-118.
    [24]G.Abad,M.A.Rodriguez,J.Poza.Two-Level VSC-Based Predictive Direct Power Control of the Doubly Fed Induction Machine with Reduced Power Ripple at Low Constant Switching Frequency[J].IEEE Transactions on Energy Conversion,2008,23(2):570-580.
    [25]G.Abad,M.A.Rodriguez,J.Poza.Two-Level VSC-Based Predictive Direct Power Control of the Doubly Fed Induction Machine with Reduced Torque and Flux Ripples at Low Constant Switching Frequency[J].IEEE Transactions on Energy Conversion,2008,23(3):1050-1061..
    [26]D. Santos-Martin,J.L. Rodriguez-Amenedo,S. Arnalte.Direct Power Control Applied to Doubly Fed Induction Generator Under Unbalanced Grid Voltage Conditions[J].IEEE Transactions on Power Electronics,2008,23(5):2328-2336.
    [27]关宏亮,赵海翔,王伟胜等.风电机组低电压穿越功能及其应用[J].电工技术学报,2007,22(10):173-177.
    [28]李建林.全功率变流器永磁直驱风电系统低电压穿越特性研究[J].电力系统自动化,2008,32(19):29-33.
    [29]胡书举,李建林,许洪华.永磁直驱风电系统低电压运行特性的分析[J].电力系统自动化,2007,31(17):73-77.
    [30]瞿兴鸿,廖勇等.永磁同步直驱风力发电系统的并网变流器设计[J].电力电子技术,2008,42(3):22-24.
    [31]刘平,康勇,陈坚.PWM整流器的矢量控制[J].华中理工大学学报,2000,28(6):37-39
    [32]陈瑶.直驱型风力发电系统全功率并网变流技术的研究[M].北京:北匕京交通大学,2008:54-57.
    [33]Ana I.Estanqueiro,et al.A Dynamic Wind Generation Model for Power Systems Studies[J].IEEE Trans on Power Systems,2007.22(3):920-928.
    [34]史伟伟,:蒋全,胡敏强等.三相电压型PWM整流器的数学模型和主电路设计[J].东南大学学报(自然科学版),2002,32(1):50-55
    [35]杨淑英.双馈型风力发电变流器及其控制[M].合肥:合肥工业大学,2007:58-64.
    [36]胡书举,李建林,许洪华.直驱风电系统变流器建模和跌落特性仿真[J].高电压 技术,2008,34(5):949-954.
    [37]I.Erlich,U.Bachmann.Grid Code Requirements Concerning Connection and Operation of Wind Turbines in Germany[C].IEEE Power Engineering Society General Meeting,2005:1253-1257.
    [38]I.Erhich,W.Winter,A.Dittrich.Advanced Grid Requirements for the Integration of Wind Turbines into the GermanTransmission System[C].IEEE Power Engineering Society General Meeting,2006
    [39]C.Jauch, J.Matevosyan, T.Ackermann, S.Bolik.International Comparison of Requirements for Connection for Wind Turbines to Power Systems[J].Wind energy,2005,8(3):295-306.
    [40]National Grid Electricity Transmission.The Grid Code.2006:www. nationalgrid.com.
    [41]E.ON NETz GmbH. Grid Code for High and Extra High Voltage.2003:www. eon-netz.com.
    [42]胡家兵.双馈异步风力发电系统电网故障穿越运行研究[D].杭州:浙江大学,2009.
    [43]J.Lopez, P.Sanchis, X.Roboam, L.Marroyo.Dynamic Behavior of the Doubly Fed Induction Generator During Three-Phase Boltage Dips[J].IEEE Transaction on Energy Conversion,2007,22(3):709-717.
    [44]胡家兵,贺益康,刘其辉.基于最佳功率给定的最大风能追踪控制策略[J].电力系统自动化,2005,29(24):32-38.
    [45]李建林.风力发电系统低电压运行技术[M].北京:机械工业出版社,2008.
    [46]张兴,张龙云,杨淑英等.风力发 电低山压穿越技术综述[J] 电力系统及其自动化学报,2008,20(2):1-8.
    [47肖磊.直驱型永磁风力发电系统低电压穿越技术研究[J].长沙:湖南大学,2009.
    [48]蔡彦涛.大型风电场接入电力系统暂态稳定性研究[D].广州:广东工业大学,2011.
    [49]李先奇.变速恒频风电组风电场并网的系统电压稳定性研究[D].华中科技大学,2008.
    [50]齐锋光.风力发电机组并网运行研究[D].太原:太原理工大学,2006.
    [51]S M Muyeen, Toshiaki Murata.Stability Augmentation of a Grid-connected Wind Farm[M].Beijing:China Machine Press,2010.
    [52]李晶.变速恒频双馈风电机组动态模型及其并网控制策略的研究[D].保定:华北电力大学,2004.
    [53]霍志红,郑源等.风力发电机组控制技术[M].北京:中国水利水电出版社,2005.
    [54]宋战锋.低电压故障下双馈风力发电系统特性分析与运行[D].天津:天津大学,2009.
    [55]徐科.变速永磁同步风力发电机交流并网系统运行控制研究[D].南京:东南大学,2007.
    [56]赵静.双馈异步风力发电机低电压穿越时的Crowbar保护技术[D].杭州:浙江大学,2010.
    [57]胡家兵,孙丹,贺益康,赵仁德.电网电压骤降下双馈风力发电机建模与控制[J].电力系统自动化,2006,30(8):21-26.
    [58]HU Jiabing, HE Yikang.Dynamic Modeling and Robust Current Control of Wind-Turbine Driven DFIG during External AC Voltage Dip[J].Journal of Zhejiang University,SCIENCE A.2006,7(10):1757-1764.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700