高场磁体的多物理场耦合作用机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文对高场磁体的多物理场耦合作用机理进行了详细的研究。本文分为两部分:
     第一部分研究脉冲磁体的多物理场耦合作用机理。主要工作包括:
     第二章建立了完整的多级脉冲磁体放电过程二维轴对称电磁热多场耦合模型,充分考虑了脉冲磁体导体的热效应、磁致电阻效应以及涡流效应。在此基础上研究了单级、两级以及三级脉冲磁体放电过程中电阻、电感、磁场、电流密度及温度的变化规律;研究了闭合导电环对脉冲磁体磁场波形的影响;研究了轴向开冷却通道对提高脉冲磁体的冷却效率的作用。
     第三章建立了完整的基于小应变条件的多级脉冲磁体二维轴对称静态弹塑性力学分析模型,充分考虑了初始应力和初始应变、轴向压力、洛伦兹力、热应力和导体等弹塑性材料的Bauschinger效应等因素。该模型能计算脉冲磁体从制作到放电过程整个加载历史以及循环加载,并能预测磁体的疲劳寿命。提出了新的脉冲磁体失效准则:导体等弹塑性材料的失效用最大等效塑性应变超过材料的极限塑性应变来判断即应变失效准则;纤维加固材料等正交各项异性弹性材料的失效用最大von Mises等效应力超过材料的极限抗拉强度来判断即应力失效准则。基于该模型和失效准则,采用有限元法,作者研究了单级脉冲磁体、两级脉冲磁体以及三级脉冲磁体的弹塑性力学行为。对于单级磁体,研究了导体等弹塑性材料的不同材料模型对脉冲磁体失效的影响;研究了动态响应对脉冲磁体失效的影响;研究了导体等弹塑性材料的Bauschinger效应对脉冲磁体失效的影响;对于多级脉冲磁体,还研究了互感对脉冲磁体弹塑性力学行为的影响。
     第四章研究了制作工艺和放电过程对脉冲磁体极限指标的作用机理,包括:预应力对脉冲磁体失效的影响、轴向压力对脉冲磁体失效的影响、锻炼放电过程对脉冲磁体失效的影响以及塑性变形对脉冲磁体不可逆电感的影响。
     第二部分研究超导磁体的多物理场耦合作用机理。主要工作包括:
     第五章建立了基于不同优化算法的高温超导磁体电磁设计优化模型。以一个Bi系高温超导磁体为例,比较了序列二次规划算法和遗传算法的寻优性能。
     第六章建立了超导磁体失超传播分析数值模型,充分考虑了交流损耗、焦耳热损耗、对流传热以及外界扰动。基于该模型,采用有限元法,作者对一个低温超导磁体进行了失超传播分析。
In this dissertation, a detailed study of multi-physics coupling mechanism in high-field magnets is carried out. The dissertation is divided into two parts:
     Part1presents the multi-physics coupling mechanism in pulse magnet. The main conclusions are:
     In chapter2, we present a complete coupling model of the electromagnetic and heat diffusion of two-dimensional axisymmetric multi-stage pulse magnet of the discharge process, fully taking into account the thermal effect, the magneto-resistance effect and the eddy current effect. On this basis, the change rules of the resistance, the inductance, the magnetic field, the current density and the temperature of the single-stage, two-stage and three-stage pulse magnets are given. Influence of the closed conductive ring on the magnetic field is studied. Effect of the axial cooling gap to improve the cooling efficiency of the pulse magnet is studied.
     In chapter3, we present a complete2D axisymmetric static elastic-plastic mechanical analysis model of multi-stage pulse magnet based on small strain condition, fully taking into account the initial stress and initial strain, the axial loading by the end plates, the Lorentz force, the thermal stress and the Bauschinger effect of the elastic-plastic materials such as conductors. This model can calculate the entire loading history from fabrication to discharge process, as well as cyclic loading, and can predict the fatigue life of pulse magnet. A new failure criteria of pulse magnet is presented:the maximum equivalent plastic strain exceeding the limit plastic strain is used to estimate the failure of elastic-plastic materials such as conductors; the maximum von Mises stress exceeding the ultimate tensile strength is used to estimate the failure of the orthotropic elastic materials such as fiber reinforcement materials. Based on the model and the new failure criteria, the elastic-plastic mechanical behavior of single-stage, two-stage and three-stage coils is carried out by finite element method. The impact of the different stress-strain curve models, the dynamic response and the bauschinger effect on the failure of the single-stage coil is studied. The impact of the mutual inductance on the elastic plastic mechanical behavior of the multi-stage coils is also studied.
     In chapter4, the mechanism of the fabrication process and discharge process of the limit indicators of pulse magnet is studied, including the impact of the prestress applied during coil winding, the axial loading by the end plates, and the discharge process of training on the failure and the plastic deformation of the irreversible inductance of the pulse magnet.
     Part2presents the multi-physics coupling mechanism in superconducting magnet. The main conclusions are:
     In chapter5, we present an electromagnetic design optimization model of the high temperature superconducting magnet based on different optimization algorithms. The optimization performance between SQP and GA is compared based on a high temperature superconducting magnet made by Bi-2223/Ag.
     In chapter6, we present a numerical analytical model of quench propagation of superconducting magnet, fully taking into account AC loss, Joule heat loss, convective heat transfer and external disturbances. On this basis, the quench analysis of a low temperature superconducting magnet is performed by finite element method.
引文
[1]CHANNEL J. New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance[J]. Physical Review Letters,1980.
    [2]Stormer H L, Chang A, Tsui D C, et al. Fractional quantization of the Hall effect[J]. Physical review letters,1983,50(24):1953-1956.
    [3]Lauterbur P C. All science is interdisciplinary-from magnetic moments to molecules to men[J]. Bioscience reports,2004,24(3):165-178.
    [4]Research N R C U. High magnetic field research and facilities[M]. National Academies,1979.
    [5]Bird M D, Bole S, Eyssa Y M, et al. The world's first 27 T and 30 T resistive magnets[J]. IEEE Transactions on Magnetics,1996,32(4):2444-2449.
    [6]Miller J R, Bird M D. A new series-connected hybrid magnet system for the national high magnetic field laboratory[J]. Applied Superconductivity, IEEE Transactions on, 2004,14(2):1283-1286.
    [7]Bird M D, Bole S, Eyssa Y M, et al. Test results and potential for upgrade of the 45 T hybrid insert[Z].2000:10,439-442.
    [8]Hayashi K, Hahakura S, Saga N, et al. Development of Ag-sheathed Bi2223 superconducting wires and their application to magnets [J]. Applied Superconductivity, IEEE Transactions on,1997,7(2):2201-2206.
    [9]Weiss K P, Weiss K P, Schwarz M, et al. Electromechanical and Thermal Properties of Bi2223 Tapes[Z]. IEEE,2007:17,3079-3082.
    [10]Pi W, Wang Y, Chen L, et al. Numerical Study of Current Distribution and Stability of LTS/HTS Hybrid Superconductor[J]. IEEE Transactions on Applied Superconductivity,2010,20(3).
    [11]Ozaki O, Fukumoto Y, Hirose R, et al. Quench analysis of multisection superconducting magnet[J]. IEEE Transactions on Appiled Superconductivity, 1995,5(2):483-486.
    [12]Pillsbury R D J, Oshima M T R J, Mann W R. PQUENCH; A 3-D quench propagation code using a logical coordinate system[Z].1991:27,2096-2099.
    [13]Oh S S, Wang Q L, Ha H S, et al. Quench characteristics of Bi-2223 coil at liquid helium temperature[Z].1999:9,1081-1084.
    [14]Schwerg N, Schwerg N, Auchmann B, et al. Quench Simulation in an Integrated Design Environment for Superconducting Magnets [J]. IEEE Transactions on Magnetics,2008,44(6).
    [15]Herlach F. Pulsed magnets[J]. Reports on Progress in Physics,1999,62:859.
    [16]Vanacken J, Liang L, Rosseel K, et al. Pulsed magnet design software[J]. Physica B: Condensed Matter,2001,294:674-678.
    [17]Li L. High-performance pulsed magnets:Theory, design and construction[D].,1998.
    [18]Li L, Herlach F. Magnetic and thermal diffusion in pulsed high-field magnets[J]. Journal of Physics D:Applied Physics,1998,31:1320.
    [19]Li L, Van Bockstal L, Herlach F, et al. Design study of a 60 T pulsed magnet with 10 ps risetime[J]. Magnetics, IEEE Transactions on,1996,32(4):2511-2513.
    [20]Li L, Van Bockstal L, Herlach F, et al. A 60 T nondestructive pulsed magnet for "Free Electron Laser for Infrared Experiments" (FELIX),1996[C].
    [21]Li H, Herlach F. Deformation analysis of pulsed magnets with internal and external reinforcement [J]. Measurement Science and Technology,1995,6:1035.
    [22]Li L, Van Bockstal L, Herlach F. Prestress effect on the mechanical behaviour of pulsed magnets [J]. Magnetics, IEEE Transactions on,1996,32(4):3001-3003.
    [23]Eyssa Y M, Pernambuco Wise P. Design and modeling of coupled pulse magnets (electrical and thermal)[J]. Magnetics, IEEE Transactions on,1996,32(4): 2522-2525.
    [24]Eyssa Y M, Denis Markiewicz W, Pernambuco-Wise P. Plastic stress analysis of pulse and resistive magnets[J]. Magnetics, IEEE Transactions on,1996,32(4): 2526-2529.
    [25]Eyssa Y M, Pernambuco Wise P, Schneider-Muntau H J, et al. Comparative analysis of micro-composite and macro-composite conductors for pulse magnets[J]. Magnetics, IEEE Transactions on,1996,32(4):2462-2465.
    [26]Peng T, Li L, Vanacken J, et al. Efficient design of advanced pulsed magnets[J]. Applied Superconductivity, IEEE Transactions on,2008,18(2):1509-1512.
    [27]彭涛.脉冲强磁体分析设计的理论与实践[D].华中科技大学,2005.
    [28]Peng T, Herlach F. Design principles for optimized pulsed magnets,2008[C],
    [29]Peng T, Gu C L, Rosseel K, et al. Advanced numerical simulation of pulsed magnets with a finite element method[J]. Measurement Science and Technology, 2005,16:562.
    [30]Witte H, Gaganov A, Kozlova N, et al. Pulsed Magnets-Advances in Coil Design Using Finite Element Analysis[J]. Applied Superconductivity, IEEE Transactions on, 2006,16(2):1680-1683.
    [31]Witte H. Magnet design using finite element analysis[D]. University of Oxford, 2007.
    [32]Song Y, Peng T, Li L, et al. Electrical and Thermal Modeling of Pulsed Magnets Using Finite Element Analysis[J]. Applied Superconductivity, IEEE Transactions on, 2010,20(3):1785-1789.
    [33]Skourski Y, Herrmannsdorfer T, Sytcheva A, et al. Finite-Element Simulation and Performance of Pulsed Magnets[J]. Applied Superconductivity, IEEE Transactions on,2008,18(2):608-611.
    [34]Askenazy S. Coilin and Coilex:A route for 100 T non-destructive magnets[J]. Physica B:Condensed Matter,1996,216(3-4):221-225.
    [35]Askenazy S. Analytical solution for pulsed field coils placed in a magnetic field[J]. Physica B:Condensed Matter,1995,211(1-4):56-64.
    [36]Frings P H, Herlach F, Askenazy S, et al. A two-stage ("coilex-coilin") pulsed-magnet system with a hybrid supply[J]. Applied Superconductivity, IEEE Transactions on,2000,10(1):522-525.
    [37]Bird M D, Bole S, Eyssa Y M, et al. Design and construction of 12-MW magnets at the NHMFL[J]. Magnetics, IEEE Transactions on,1994,30(4):2200-2203.
    [38]Zherlitsyn S, Bianchi A D, Herrmannsdoerfer T, et al. Coil Design for Non-Destructive Pulsed-Field Magnets Targeting 100 T[J]. Applied Superconductivity, IEEE Transactions on,2006,16(2):1660-1663.
    [39]Bacon J, Baca A, Coe H, et al. First 100 T non-destructive magnet outer coil set[J]. Applied Superconductivity, IEEE Transactions on,2000,10(1):514-517.
    [40]Frings P, Billette J, JB E Ard J, et al. New Developments at the National Pulsed Field Laboratory in Toulouse[J]. Applied Superconductivity, IEEE Transactions on, 2008,18(2):592-595.
    [41]Zherlitsyn S, Herrmannsdorfer T, Wustmann B, et al. Design and Performance of Non-Destructive Pulsed Magnets at the Dresden High Magnetic Field Laboratory [J]. Applied Superconductivity, IEEE Transactions on,2010,20(3):672-675.
    [42]Li L, Lesch B, Eyssa Y, et al. Insert coil design of the first 100 T non-destructive magnet[J]. Applied Superconductivity, IEEE Transactions on,2000,10(1):518-521.
    [43]Zhang G, Fang Y, Song F, et al. Optimal design and FEM analysis of the superconducting magnets of EMS-MAGLEV models using Bi-2223 tapes[Z].2004: 14,1850-1853.
    [44]Cavaliere V, Cioffi M, Formisanao A, et al. Shape optimization of high Tc superconducting magnets[J]. Magnetics, IEEE Transactions on,2002,38(2): 1129-1132.
    [45]Noguchi S, Yamashita M, Yamashita H, et al. An optimal design method for superconducting magnets using HTS tape[J]. Applied Superconductivity, IEEE Transactions on,2001,11(1):2308-2311.
    [46]radial magentic field reduction to improve critical current of hts solenoid[EB/OL].
    [47]reduction of radial magnetic fields in hts solenoids with different constrant conditions[EB/OL].
    [48]Korpela A, Lehtonen J, Mikkonen R. Optimization of HTS superconducting magnetic energy storage magnet volume[J]. Superconductor Science and Technology,2003,16:833.
    [49]Pitel J, Kovac P, Melisek T, et al. Influence of the winding geometry on the critical currents and magnetic fields of cylindrical coils made of Bi (2223) Ag anisotropic tapes[J]. Applied Superconductivity, IEEE Transactions on,2000,10(1):478-481.
    [50]Yamaguchi M, Fukui S, Muta I, et al. Performance evaluation of high temperature superconducting coil[J]. Physica C:Superconductivity,2002,372:1406-1409.
    [51]王超,王秋良.多种优化方法及其在高温超导磁体优化设计中的应用[J].低温物理学报,(9).
    [52]王超.Bi系高温超导磁体的电磁设计研究[D].中国科学院研究生院(电工研究所)电工理论与新技术,2005.
    [53]王超,王秋良.基于混合算法的传导冷却高温超导磁体的优化设计[J].低温物理学报,(0).
    [54]Wilson M. Stabilization of superconductors for use in magnets [J]. IEEE Transactions on Magnetics,1977,13(1):440-446.
    [55]Burkhardt E E, Nakamae S, Schwartz J. Stability models for high-Tc superconducting conductors [J]. Applied Superconductivity, IEEE Transactions on, 1995,5(2):393-396.
    [56]Bauer P. Stability of superconducting strands for accelerator magnets[D]. Citeseer, 1998.
    [57]Markiewicz W D, Vaghar M R, Dixon I R, et al. Generalized plane strain analysis of solenoid magnets[J]. Magnetics, IEEE Transactions on,1994,30(4):2233-2236.
    [58]Gavrilin A V, Eyssa Y M. Modeling of electromagnetic and thermal diffusion in a large pure aluminum stabilized superconductor under quench[J]. Applied Superconductivity, IEEE Transactions on,2001,11(1):2599-2602.
    [59]Zhao Z P, Iwasa Y, Williams J E C, et al. Normal-zone propagation in adiabatic superconducting magnets. II. Quench properties of a 12 coil 17.6 T 750 MHz NMR magnet[J]. IEEE Transactions on Appiled Superconductivity,1993,3(1):281-284.
    [60]Wilson M N. Computer simulation of the quenching of a superconducting magnet[J]. RHEL/M,1968,151.
    [61]Bottura L. Quench Analysis of Superconducting Magnets:A Numerical Study[D]., 1993.
    [62]Eyssa Y M, Markiewicz W D. Quench simulation and thermal diffusion in epoxy-impregnated magnet system[J]. Applied Superconductivity, IEEE Transactions on,1995,5(2):487-490.
    [63]Eyssa Y M, Markiewicz W D, Swenson C A. Quench heater simulation for protection of superconducting coils[Z].1999:9,1117-1120.
    [64]Meunier G, Others. The finite element method for electromagnetic modeling[M]. ISTE,2008.
    [65]张洪武.有限元分析与CAE技术基础[J].2003.
    [66]Partha P B, Jarem J, Banerjee P P. Computational methods for electromagnetic and optical systems[M]. CRC,2010.
    [67]卡德斯图赛Kardestuncer H.和诸德超.有限元法手册[M].1996.
    [68]Swenson C A, Marshall W S, Miller E L, et al. Pulse magnet development program at NHMFL[J]. Applied Superconductivity, IEEE Transactions on,2004,14(2): 1233-1236.
    [69]Peng T, Song Y, Herlach F, et al. Influence of a Thick Stainless Steel Shell on the Field Waveform of a Pulsed Magnet[J]. Journal of Low Temperature Physics, 2010,159(1):341.
    [70]Frings P, Witte H, Jones H, et al. Rapid Cooling Methods for Pulsed Magnets[J]. Applied Superconductivity, IEEE Transactions on,2008,18(2):612-615.
    [71]冯慈璋.电磁场[M].高等教育出版社,1983.
    [72]金建铭,王建国,物理.电磁场有限元方法[M].西安电子科技大学出版社,1998.
    [73]Peng T, Gu C L, Rosseel K, et al. Advanced numerical simulation of pulsed magnets with a finite element method[J]. Measurement Science and Technology, 2005,16:562.
    [74]Herlach F, Peng T, Vanacken J. Experimental and theoretical analysis of the heat distribution in pulsed magnets [J]. Applied Superconductivity, IEEE Transactions on, 2006,16(2):1689-1691.
    [75]Peng T, Li L, Vanacken J, et al. Efficient design of advanced pulsed magnets [J]. Applied Superconductivity, IEEE Transactions on,2008,18(2):1509-1512.
    [76]Herlach F. Magnets for the 21st century [J]. Physica B:Condensed Matter, 1998,246:152-157.
    [77]宋运兴.80T脉冲强磁体理论分析研究[D].华中科技大学电力系统及其自动化,2009.
    [78]杨传普等.电路理论—时域与频域分析[M].武汉:华中科技大学出版社,2006.
    [79]汤蕴璆.电机内的电磁场[M].科学出版社,1998.
    [80]郭宽良.数值计算传热学[M].1987.
    [81]许国良.工程传热学[M].2005.
    [82]Scott R B 和 A. Cryogenic engineering[M]. Van Nostrand,1959.
    [83]Cochran V, Lesch B, Li L, et al. Design, winding and impregnation of the National High Magnetic Field Laboratory high performance magnet [J]. Applied Superconductivity, IEEE Transactions on,2000,10(1):550-553.
    [84]山田嘉昭,钱仁根,乔端.非线性有限元法基础[Z].1988.
    [85]郭乙木,陶伟明,庄茁.线性与非线性有限元及其应用[M].2004.
    [86]王勖成.有限单元法[M].2003.
    [87]陈森灿,徐秉业.塑性理论简明教程[M].1981.
    [88]殷有泉.固体力学非线性有限元引论[M].1987.
    [89]王超,王秋良.基于混合算法的传导冷却高温超导磁体的优化设计[J].低温物理学报,(1).
    [90]李宗元,龚金双.一种有扰动项的序列二次规划算法及其收敛性[J].应用数学学报,(1).
    [91]苏三买.遗传算法及其在航空发动机非线性数学模型中的应用研究[D].西北工业大学航空宇航推进理论与工程,2002.
    [92]雷英杰.MATLAB遗传算法工具箱及应用[M].西安电子科技大学出版社,2005.
    [93]杨杰.系统仿真的新技术探讨—(2):遗传算法[J].计算机仿真,1996,13(2):49-52.
    [94]王秋良.高磁场超导磁体科学[M].2008.
    [95]Wilson M. Some basic problems of superconducting magnet design[J]. IEEE Transactions on Magnetics,1981,17(5):1815-1822.
    [96]Yamada R, Marcsin E, Lee A, et al.3D ANSYS quench simulation of cosine theta Nb3Sn high field dipole magnets[J]. Applied Superconductivity, IEEE Transactions on,2004,14(2):291-294.
    [97]Iwasa Y. Case studies in superconducting magnets,1994[M]. JanPlenum Press.
    [98]Lim H. Normal zone propagation in high-temperature superconducting tape-wound coils[D]. Massachusetts Institute of Technology,1996.
    [99]Mao S. Numerical simulation of quench propagation in superconducting magnets by using high order methods[D].
    [100]Wang X. Quench behavior of yttrium barium copper oxide coated conductors[D].
    [101]Anderson P W. Theory of Flux Creep in Hard Superconductors [J]. Physical Review Letters,1962,9(7):309-311.
    [102]King C G, Grey D A, Mantone A, et al. Flux jump stability in Nb3Sn tape[J]. Applied Superconductivity, IEEE Transactions on,1997,7(2):1524-1528.
    [103]Banno N 和 AN. Numerical analysis of AC loss in high Tc twisted tape carrying AC transport current in external AC magnetic field. Effect of twisting on loss reduction[Z].1999:9,2561-2564.
    [104]Ang I C. Stability and quench protection of high-temperature superconductors[D]. Massachusetts Institute of Technology,2006.
    [105]Yunus M I, Iwasa Y, Williams J E C. Ac loss induced quenching in multicoil adiabatic superconducting magnets[J]. Cryogenics,1995,35(2):93-100.
    [106]Yamada R, Kim S W, Lee A, et al. Quenches and resulting thermal and mechanical effects on epoxy impregnated Nb3Sn high field magnets,2001 [C].
    [107]Takei H. Electrical Resistivity of Nb-Ti Superconductors[J]. Trans. Jpn. Inst. Met., 1984,25(7):511-515.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700