磁浮列车牵引系统工程应用问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
低速磁浮列车采用直线感应电机牵引车辆,电机的特性影响着列车的牵引性能;磁浮列车与轮轨列车存在诸多不同,现有的《列车牵引计算规程》没有相关的计算支持。因此,针对低速磁浮列车直线感应电机的特性计算分析与牵引计算软件开发都具有重要的意义。主要工作如下:
     (1)针对解析方法和有限元数值方法的不足,采用多层理论,建立了磁浮列车用直线感应电机的计算模型,优化了模型参数,通过计算结果与实验测量对比验证了该理论计算的有效性与准确性。
     (2)针对工程应用中在次级复合材料间添加一层绝缘层材料的情况,分析了添加绝缘层对电机次级电磁场分布的影响,得出了绝缘层厚度与功率因数、牵引力的关系。针对列车运行过程中经常发生的初级与次级横向错位情况,探讨了错位对电机性能的影响。
     (3)针对中低速磁浮列车工程应用中牵引计算的空白,建立了其牵引计算模型:包括单质点受力模型、运动方程、电流和能耗计算、约束条件。分析了牵引策略特点,重点讲述了不同牵引策略下的算法流程的设计,解决了软件核心算法的实现问题。
     (4)提出了牵引计算软件功能设计方案,并进行了软件界面设计和数据库设计。使用本文所编制软件对唐山试验线进行牵引计算,通过计算结果与实验测试结果的比较,初步论证了软件的可行性与准确性。最后,对拟建中的北京S1线西段进行了牵引计算,得出的结果对线路设计优化具有借鉴价值。
The low speed maglev train utilizes linear induction motor (LIM) as its traction system, thus the characteristics of the motors affect the performance of the traction; there are many differences between the low speed maglev train and the conventional wheel-rail train, so the“Traction Calculation Rules for Trains”does not support the calculation for the maglev train. Therefore, the work of calculating the characteristics of the LIM and developing a traction calculation software has a significant meaning. The main work is listed below:
     (1) For the disadvantages of the theoretical analysis method and the finite element method, in this thesis, the multi-layer theory is employed to establish the LIM model, and the model parameters are optimized using this model; the effectiveness and accuracy of theoretical calculation method are validated by a comparison of the calculation results and the experiments.
     (2) For the case of adding a layer with insulated materials into the composite materials of the secondary motor, the influences of the insulated layer on the secondary are analyzed, and the relationship among the thickness of insulated layer, the power factor, and the propulsive force is obtained. The influences on the performance of the LIM due to the lateral displacement between the primary and the secondary of the motor, which occurs when the vehicle is running, are discussed as well.
     (3) For the blank of traction calculation for the maglev train, a traction calculation model is established, which includes single particle maglev train model, motion equations, current and energy consumption calculations, and constraints. The characteristics of the traction strategies are analyzed. The flow charts of the algorithms using different traction strategies are presented, which solves the software implementation problems of the core algorithms.
     (4) A design scheme for the functions of the traction calculation software is presented, and the software interface and a database are designed. The traction of the low speed maglev vehicle in the Tangshan maglev test line is calculated using the calculation software developed in this dissertation; by comparison of the calculation result and the experimental result, the feasibility and the accuracy of the software are preliminarily validated. Finally, the west segment of the Beijing S1 route, which is to be constructed, is calculated using the software, and the result is of important significance for the optimization of the maglev routes.
引文
[1]吴祥明.磁浮列车[M].上海科学技术出版社, 2003.
    [2]陈贵荣,常文森.磁悬浮列车发展综述[J].国外铁道车辆, 1993,(1):17~20.
    [3]叶云岳.直线电机原理与应用[M].机械工业出版社, 2000.
    [4]纳斯尔,波尔达著.龙遐令等译.直线电机[M].科学出版社, 1982.
    [5] C.H. Lee, C.Y. Chin. A Theoretical Analysis of Linear Induction Motors[J]. IEEE Transactions on Power Apparatus and Systems, 1979,PAS-98(2):679~688.
    [6] S.Yamamura H.Ito Y.Ishulawa. Theories of the Linear Induction Motor and Compensated Linear Induction Motor[J]. IEEE. Transactions on Power Apparatus and Systems, 1972,PAS-91(4):1700~1710.
    [7] G.W.Mclean. Review of Recent Progress in Linear Motors[J]. IEEE Proceedings, 1988,135(6):380~416.
    [8] T. Higuchi, S. Nonaka, M. Ando. On The Design of High Efficiency Linear Induction Motors for Linear Metro[J]. IEE of Japan, 2000.
    [9]刘建强.直线电机轨道交通牵引传动系统研究[D].北京交通大学, 2008.
    [10]陈红艳.直线感应电机电磁特性数值计算与仿真设计[D].西南交通大学, 2008.
    [11]黄波.直线感应电机的电磁力研究[D].西南交通大学, 2007.
    [12]杨中平等.日本直线电机地铁车辆技术[J].都市快轨交通, 2006,19(2):63~67.
    [13] T.Onuki, Y.Kamiya, K.Fukaya, W.J.Jeon. Characteristics Analysis of Linear Induction Motor with Two Types of Secondary Structure based on Electromagnetic Field and Electric Circuit Analysis[J]. IEEE Transactions on Magnetics, 1999,35(5): 4022~4024.
    [14]张宏.直线感应牵引电动机牵引性能的研究[D].西南交通大学, 2006.
    [15]中华人民共和国铁道部.列车牵引计算规程[S].中国铁道出版社, 1999.
    [16]饶忠.列车牵引计算[M].中国铁道出版社, 1996.
    [17]毛保华等.城市轨道交通[M].科学出版社,2001.
    [18]列车牵引计算规程解释编写组.列车牵引计算规程解释[M].中国铁道出版社,1984.
    [19]刘少克.实心转子异步电机的多层理论研究[J].华中科技大学工学硕士学位论文, 1988.
    [20]龙遐令.直线感应电动机的理论和电磁设计方法[M].科学出版社, 2006.
    [21]傅丰礼.实心转子异步电动机的电磁场研究和参数计算[J].华中科技大学博士学位论文, 1986.
    [22] Michel Poloujadoff.The Theory of Linear Induction Machinery[M]. Clarendon Press of Oxford,1978.
    [23] S.Yamamura Theory of LIM[M]. University of Tokyo Press, 1978.
    [24]陈明光等.城市轨道车组运行仿真技术研究[J].铁道车辆, 2000, 38(增刊):8~15.
    [25]王靖宇.城市轨道交通列车动力学模型的仿真研究[D].北京交通大学, 2009.
    [26]石红国.列车运行过程仿真及优化研究[D].北京交通大学, 2006.
    [27]石红国等.城市轨道交通牵引计算算法[J].交通运输工程学报, 2004,4(3):4~13.
    [28]程家兴.列车节能操纵中最优方案的算法[J].微机发展, 1999(2):1~4.
    [29]曾宇清等.高速铁路牵引计算层次约束方法[J].中国铁道科学, 2009,30(6):97~102.
    [30]周峰.动车组牵引计算建模及软件仿真[D].西南交通大学. 2007.
    [31]刘少克等.日本磁悬浮列车HSST-100运行试验综述[J].机车电传动,1997(6): 29-31.
    [32]王旭.低速磁浮列车运行控制系统关键技术研究[D].国防科学技术大学. 2007.
    [33]毛保华等.列车运行计算与设计[M].人民交通出版社. 2008.
    [34]唐锐,吴俊泉.低速磁悬浮列车在我国城轨交通中的应用前景[J].都市快轨交通, 2006,19(2):12~16.
    [35]刘华清编译.德国磁悬浮列车Transrapid[M].电子科技大学出版社, 1995.
    [36] Yoshioka H等.山梨磁悬浮试验线车辆MLX01的动力学性能[J].国外铁道车辆, 2000,37(5):27~32.
    [37]渡边郁夫.日本铁道数字ATC系统的开发[J].中国铁路, 1998(1):46~49.
    [38]唐耀. C#程序设计实用教程[M].中国水利水电出版社, 2005.
    [39]苏桃.列车牵引计算与操纵[M].中国铁道出版社, 2008.
    [40]马大炜等.关于列车牵引计算的研究[J].中国铁路, 2001(9):15~20.
    [41]谢小淞.城市轨道交通列车牵引计算系统的研究[J].交通标准化, 2005(9):22~24.
    [42]李晓明等.列车牵引计算在城市轨道交通中的应用研究[J].市政技术, 2007(6):495~497.
    [43]王自力.列车节能运行优化操纵的研究[J].西南交通大学学报, 1994,29(3):275~280.
    [44]杨光.高速磁浮列车最优速度曲线及其跟踪控制研究[D].北京交通大学, 2007.
    [45]曾剑群.动车组牵引计算仿真系统的研究[D].北京交通大学, 2009.
    [46] D.Posiermeyer. Software Tool and Their Verification by Experiments[J]. Vehicle System Dynamics, 1993,22:123~139.
    [47] Rongfang(Rachel) Liu Iakov M.Golovitcher. Energy-efficient Operation of Rail Vehicles[M]. Transportation Research Part A, 2003,37(10):917~932.
    [48]肖如鸿,张明玉.用多层理论对特定异步电机的分析与计算[J].山东工业大学学报, 1993,23(1):32~39.
    [49]肖如鸿,张明玉.用多层理论对镀铜实心转子电机的分析与计算[J].山东工业大学学报, 1991,21(4):43~65.
    [50]李景川,顾积栋.多层理论在圆筒型直线感应电动机计算上的应用[J].电工电能新技术, 1997(3):5~9.
    [51]廖勇.基于ATO的列车牵引计算算法设计与实现[J].铁路计算机应用, 2010,19(6):18~21.
    [52]王青元等.基于WindowsCE的牵引计算软件嵌入式应用程序设计[J].铁道机车车辆, 2009,29(5):41~44.
    [53] J.-F.Chen, R.-L.Lin, Y.-C.Liu. Optimization of an MRT Train Schedule: Reducing Maximum Traction Power by Using Genetic Algorithms[J]. IEEE Transactions on Power Systems, 2005,20(3):1366~1372.
    [54]张志洲,张惠霞.韩国磁悬浮列车发展[J].国外铁道车辆, 2006,43(4):~.
    [55] J Greig, E.M.Freeman. Traveling waves problem in electrical machines. Proc IEE 1967,144(11):1681~1683.
    [56] K.Adamiak, J.Mizia, G.E.Dawson, A. R. Eastham. Finite element force calculation in linear induction machines[J]. IEEE Transactions on Magnetics. 1987,23(5): 3005~3007.
    [57] Mendrea E.A, Gierczak E. Two Dimensional Analysis of Linear Induction Motor Using Fourier’s series method[J]. Arch.Elektrotech. 1982,65:97~106.
    [58]陈杰. Matlab宝典[M].电子工业出版社. 2007.
    [59]张三慧.电磁学[M].清华大学出版社, 2000.
    [60]傅丰礼,唐孝镐.异步电动机设计手册[M].机械工业出版社, 2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700