应用超导磁体电磁优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来超导磁体已经获得迅速发展,已经在超导发电机、超导变压器、超导电缆、超导限流器以及超导磁储能系统等领域获得广泛应用。因为它与常规的磁体相比,有更好的经济性和运行特性,而且在一些条件下,超导磁体是唯一的可取方案。基于超导磁体的诸多优点和在特定条件下不可替代的优势,对于超导磁体的设计,制造工作也在国内外竞相展开。
     首先,本文介绍了磁体设计中的磁场理论研究和广泛应用于电磁领域的有限元分析软件ANSYS,并以单螺管磁体为例论证了ANSYS用于电磁场计算的可靠性。然后,对于新型超导材料MgB2论证了其用于磁体制备的可行性。借用模拟退火算法和遗传算法的思想,结合ANSYS优化工具,针对MgB2超导材料的特性进行了35kJ储能磁体优化设计,得到一种新颖的磁体结构。
     最后,由于螺管型磁体会出现较强漏磁场,会对其在工程中的应用带来的不便,本文介绍了几种磁屏蔽的方法,并以六螺管轴线式磁体为例分析了几何尺寸对磁体电磁特性的影响。针对工程实际中可能的应用,分别以两个不同的优化目标,对二螺管、四螺管、六螺管轴线式磁体进行了优化设计。
     传统的磁体设计依靠电磁场基本理论,计算中引入大量的公式,过程繁琐而且误差较大,本文将ANSYS有限元分析软件应用于磁体设计,使磁体的设计优化工作更加简洁、结果更加准确可靠。所以,本课题中所研究的基于有限元分析的超导储能磁体设计方法具有简明、准确、可行的特点,具有较强的实用性。
Recently with the development of superconducting magnet technology, superconducting magnet is widely used in electrical region such as superconducting motor, superconducting transformer, superconducting cable, SFCL (superconducting fault current limiter), SMES (superconducting magnetic energy system) and so on. Comparing with the common magnet, the superconducting magnet is more economical and applied. And sometimes it is unique in the special condition. Because of its unique superiority, a lot of designing and fabricating work about it is developed all over the world.
     Firstly, the electromagnetic theory and the FEA software ANSYS which are applied in the design of superconducting magnet are introduced. Then the author demonstrates ANSYS is responsible when it is used in electromagnetic analysis.
     Secondly, the author demonstrates that the new superconducting material MgB2 can be used well in superconducting magnet. Combined the Simulated Annealing Algorithm and GA with the optimization tools of ANSYS, the author finished the optimal design of 35kJ SMES made by MgB2, and get a solenoid models of new type.
     Finally, SMES based on single-solenoid structure produces an undesirable fringe magnetic field, which limits the application of SMES. The paper introduces several magnetic field shielding methods, and analyzes the connection between the parameters and magnetic performance. Considering the demands of engineering, the author finished the optimal design of two-solenoids, four-solenoids and six-solenoids, with two difference optimal aims.
     The traditional method of magnet design which just depends on basal electromagnetic theory is not only complicated but also not precise. The numerical calculation method using ANSYS which is introduced in this paper makes the design more quickly and reliably. In conclusion the numerical calculation method which is used in the design of SMES coil is more simple, precise and feasible.
引文
[1]唐跃进,李敬东,段献忠等. 21世纪电力工业的一个重要发展方向.中国工程科学, 2000,2(4):1~7
    [2]唐跃进,李敬东,叶妙元等.未来电力系统中的超导技术.电力系统自动化, 2001,25(2):70~75
    [3]林良真,张金龙,李传义等.超导电性及其应用.北京:北京工业大学出版社, 1998
    [4]林良真.高温超导磁体研究进展.现代物理知识, 2000,(3):47~47
    [5]唐跃进,李敬东,潘垣等.超导旋转电机——发电机和电动机的研究现状.电力系统自动化, 2001,25(4):72~76
    [6]戴训江.超导电力装置的电磁特性.华中科技大学硕士毕业论文,2002
    [7]马信山,张济世,王平.电磁场基础.北京:清华大学出版社,1995
    [8]雷照银.轴对称线圈磁场计算.北京:中国计量出版社,1990
    [9]刘圣民.电磁场的数值方法.武汉:华中理工大学出版社,1991
    [10]王秉中.计算电磁学.北京:科学出版社,2002
    [11]李荣华,沈果忱.有限元方法及其理论基础.北京:人民教育出版社,1981
    [12]姜礼尚,庞之恒.有限元方法及其理论基础.北京:人民教育出版社,1980
    [13]金建铭(美)著,王建国(译).电磁场有限元方法.西安:西安电子科技大学出版社,1997
    [14] Buchanan George R(著),董文军,谢伟松(译).有限元分析.北京:科学出版社,2002
    [15]唐兴伦,范群波. Ansys工程应用教程.北京:中国铁道出版社,2003
    [16] Ansys电磁场分析指南Ansys Guide Book China
    [17]王世山,王德林,李彦明.大型有限元软件Ansys在电磁领域的使用.高压电器, 2002, 38(3):27~33
    [18]黄水龙.超导磁体的分析与优化设计.华中科技大学硕士毕业论文,2000
    [19] H. Kumakura, H. Kitaguchi, et al. Performance tests of Bi-2223 pancake magnet, Cryogenics, 1998 ,38(6):639~643
    [20] Haigun Lee, Juan Bascunan, et al. A High-Temperature SuperconductingDouble-Pancake Insert for an NMR Magnet, IEEE, trans, 2003,13(2):1546~1549
    [21] A.I. Morozov, L.S.Soloviev, et al.“The Structure of Magnetic Fields”, in: M.A. Leontovich(Ed.), Review of Plasma Physics, Consultant Bureau, New York, 1996, 2:1~101
    [22] K.-H. Mess, et al.“Superconducting Accelerator Magnets”, World Scientific, Singapore, 2001:44~53
    [23]康立山,谢云.非数值并行算法——模拟退火算法.北京:科学出版社,1994
    [24]李晓莉,雷功炎.关于随机优化算法的几点讨论.计算数学, 1996,11(4):435~441
    [25]罗恒廉,李智华,费鸿俊.模拟退火法在电磁系统参数优化设计中的应用.电工技术杂志, 1999,21(3):34~36
    [26]梁伟,唐跃进,李敬东. Y系超导螺管储能磁体的优化设计.低温物理学报. 2005,27(5):968~971
    [27]陈国良.遗传算法及其应用.北京人民邮电出版社, 1996
    [28]戴陶珍.传导冷却高温超导储能磁体的电磁热综合分析.华中科技大学博士毕业论文, 2005
    [29] Nagamatsu J, Nakagawa N, et al. Superconductivity at 39K in magnesium diboride. Nature, 2001, 410:63~64
    [30] Ginzburg V L, Kizhnitz P A, et al. High temperature superconductivity. New York: Consultants, 1982
    [31] Slusky J S, Ragado H, Hayward M A, et al. Loss of superconductivity with the addition of Al to MgB2 and a structural transition in Mg1-xAlxB2. Nature, 2001, 410:343~345
    [32] Buzea C, Yamashita T, et al. Review of the superconducting properties of MgB2. Supercond Sci Technol, 2001, 14: 115~146
    [33]李绍春,朱嘉林,禹日成等. MgB2超导体块材的高压合成.高压物理学报, 2001, 15(3): 226~228
    [34] Gumbel A, Eckert J, Fuchs G, et al. Improved superconducting properties in nanocrystalline bulk MgB2. Appl Phys Letts, 2002,80(15): 2725~2727
    [35] Gao Y D, Ding J, Rao G V S, et al. Magnetic properties and superconductivity of mechanically alloyed (Mg1-xFex)B2 samples with x=0.0-0.4. J Appl Phys, 2003, 93(10): 8656~8658
    [36] Abe H, Naito M, Nogi K, et al. Low temperature formation of superconductingMgB2 phase from elements by mechanical milling. Physica C, 2003, 391: 211~216
    [37]夏庆林,易健宏等.新型超导体MgB2超导电性及制备技术进展.粉末冶金技术, Feb. 2006, 24(1):69~74
    [38] Ronald M. Scanlan, Alexisp, et al. Malozemoff, and David C. Larbalestier, Superconducting materials for large scale applications, Proceedings of the IEEE, October 2004,92(10):1639~1654
    [39] www.amsuper.com
    [40] R.Musenich, P.fabbricatore, S. Farinon, C. Ferdeghini, et al. Behavior of MgB react & wind coils above 10K, R. Musenich, IEEE Trans. Appl. Superconductivity, 2005,15(2):1452~1456
    [41] L.D.Cooley, C. B, et al. Eom, Potential application of magnesium diboride for accelerator magnet applications, Proceedings of the 2001 Particle Accelerator Conference, Chicago, 2001:203~207
    [42]石晶,唐跃进,周羽生等. 35kJ/7kW直接冷却高温超导磁储能系统,电力系统自动化, 2006,30(24):99~106
    [43]宋鸣,刘秀成,王赞机等.基于组合优化方法的螺线管型超导磁体的建模和电磁优化,电工电能新技术, 2005,24(4):34~38
    [44] Shinichi Nomura, Shirabe Akita, et al. Design considerations for SMES systems using MgB2 and/or High-Temperature Superconductivity, 2006,16(2):1~4
    [45]施斌,余运佳.超导储能系统的磁屏蔽,电工电能新技术, 1999,4:33~36
    [46]杜晓纪.复合螺管式微型超导储能磁体的多目标优化,华中科技大学,硕士毕业论文, 2004
    [47] Jorma Lehtonen, Risto Mikkonen, Raine Perala, et al. Temperature dependent self-field effect in measured V (I, B)- characteristics of Bi-2223/Ag tapes, Physica C, 2004, 401: 151~154

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700