新型电磁功能材料及其在天线设计中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于超材料具有一些天然材料所不具备的超常物理特性,近年来引起了国内外学者的广泛关注。在THz频段,利用超材料与电磁波的强烈电磁响应,可以实现THz频段的功能器件。石墨烯作为近年来新材料研究中另一个备受关注的热点,在THz频段的电磁学领域同样具有广阔的应用前景。本文中紧随当今电磁功能材料领域的研究热点,分析并设计了多款THz频段的电磁功能材料、器件及天线,并对部分模型进行加工和测试;利用电磁功能材料的特殊性质,将其应用于基站天线的设计之中,提高性能并减小天线的尺寸。作者的主要工作及创造性成果可概括为:
     1. THz频段超材料特性的分析和研究。分析传统开口谐振环在THz频段的材料特性及谐振原理,针对开口谐振环加工难度大和极化敏感的问题,提出同样基于R-L-C谐振的方形闭合环结构并详细分析其特性。利用材料特征的结构相关性,通过采用嵌套的方形环及方形环与十字形环组合的形式,设计多种在THz频段具有双频、三频特性且对入射波极化不敏感的超材料。使用砷化镓工艺线对样品进行加工并利用THz-TDS系统对材料的透射参数进行测试,测试结果与仿真结果吻合良好,验证了超材料设计的正确性。
     2. THz频段电磁功能器件的设计与分析。在方形金属环的基础上,利用对偶原理,采用镂空方形环结构设计一款THz频段的滤波器并分析了其特性。利用n型砷化镓衬底的半导体特性,设计一款基于方环结构的THz频段的有源调制器并分析其工作原理,通过调节金属电极两端的加载电压改变其透射率实现幅度调制。设计一款基于方环结构的双频THz吸波材料,实现在峰值处超过90%吸收率的吸收特性,并通过等效表面阻抗理论及去耦的Fabry-Perot谐振腔理论分析吸波材料的工作原理,验证设计结果。
     3.石墨烯材料在电磁学领域中的应用研究。在研究石墨烯表面电导率模型的基础上,对采用石墨烯材料的THz偶极子天线的特性进行了研究。与传统金属材料相比,石墨烯的表面等离子体特性使其产生慢波效应,天线的谐振尺寸可以达到十分之一甚至二十分之一空气中波长,大大减小天线的尺寸,并可以通过调节石墨烯的化学势来改变谐振频率。采用石墨烯材料作为贴片单元设计一款THz频段的平面反射阵天线,其单元间距小于空间波长的六分之一,并且单元的反射相位可以通过化学势来调节,使其具有电调的应用潜力。基于超材料结构设计一款THz石墨烯吸波材料,采用等效电路理论对其工作原理进行分析和验证,并利用光刻工艺对样品进行制作,样品的精度和质量都很好,为接下来的工作奠定了基础。
     4.电磁带隙结构在天线设计中的应用。针对无线通讯系统的极化分集技术设计两款基于折合振子的双同轴馈电贴片天线,具有低交叉极化与高端口隔离度的特性。在此基础上,将电磁带隙结构作为反射板应用于基站天线单元设计,提出两款低剖面、低交叉极化、高端口隔离度的双极化天线单元。与之前的设计相比,其高度降低了一半且方向图的前后比得到提高。另外,采用高阻抗反射板设计了一款具有低剖面特性的圆极化天线。文中对所设计的天线进行详细的分析,并通过加工测试验证设计的正确性,天线的性能优越,可用于基站及无线热点等通信系统中。电磁功能材料的引入为天线设计开启了一扇新的大门。
Metamaterial which has some peculiar physical properties has aroused wideattention all over the world recently. In the THz spectrum, the THz function devices canbe realized by using the strong electromagnetic response between metamaterial andelectromagnetic wave. As one of the new research focus in THz electromagnetism field,graphene also has a broad application prospect. This article followed the currentresearch hotspot in the field of electromagnetic functional materials. The analysis anddesign of many THz electromagnetic functional materials, devices and antenna areproposed and some of these models are processed and tested. The special properties ofelectromagnetic functional materials can be applied to the base station antenna design toimprove the performance. The author's main contribution can be summarized as:
     1. Analysis and research of the metamaterial in THz spectrum. The materialproperties and resonant principle of traditional Split Ring Resonator in THz spectrum isanalyzed. The R-L-C resonance square loop structure is designed to overcome thedifficulty in processing and polarization sensitivity. For the correlation with materialcharacteristics and structure, by adopting the nested square loops and cruciform andsquare loop combination form, a variety of THz metamaterials which is insensitive toincident wave polarization with dual-band and tri-band characteristics is implemented.The sample is fabricated by using GaAs processing line and tested by THz-TDS system.The results agree well with the simulation, which verified the design.
     2. Design and analysis of THz electromagnetic functional device. On the basis ofthe square metal loop and duality theory, a THz band filter composed of hollow squareloop is designed. By using the semiconductor properties of n-type GaAs substrate, aTHz active modulator based on the square loop structure is designed and analyzed. Thetransmissivity can be adjusted by varying the voltage between the metal electrodes. Adual-band THz absorber based on square loop structure is proposed and it can realizemore than90%absorption at the peak point. The characteristics of the absorber areanalyzed and demonstrated by the method of equivalent surface impedance theory anddecoupling Fabry-Perot cavity model.
     3. Application research of graphene in the field of electromagnetism. Based on theconductivity model of graphene surface, a THz dipole antenna is designed. Comparedwith the traditional metal materials, the surface plasma resonance properties of graphene make it has a slow wave effect. The resonance length can reach one tenth or twentieth ofthe wavelength in the air, which greatly reduced the size of the antenna. And theresonance frequency of graphene can be changed by adjusting the chemical potential. ATHz reflection array antenna is proposed based on the graphene. The element spacing issmaller than one sixth of the wavelength in the air and has great potential in electricallycontrolling application. Based on the metamaterial structure, a THz graphene absorberis designed, which is analyzed by equivalent circuit theory. By using lithographyprocess, the THz absorber based on graphene is fabricated. The precision and quality ofsample are good, which laid the foundation for the next work.
     4. Application research of EBG structure in antenna design. Firstly, focus on thewireless communication system, two models of double coaxial feed patch antenna withlow cross polarization and high port isolation is design. On this basis, by using the EBGstructure as a reflection plate, two low profile dual polarized antenna with low crosspolarization and high port isolation is proposed. Compared with the previous design, theheight is lowered about a half and the front-back ratio is improved. Then, a circularpolarized antenna with low profile characteristic is design by applying high impedancereflector. The proposed antennas are analysis in detail and fabricated to verify the design.The introduction of electromagnetic functional materials lead a new way for antennadesign.
引文
[1] Veselago V. G., The Electrodynamics of Substances with SimultaneouslyNegative Values of μ and ε. Physics-Uspekhi,1968,10(4):509-514.
    [2] Pendry J. B., Holden A. J. and Stewart W. J., et al., Extremely Low FrequencyPlasmons in Metallic Mesostructures. Physical Review Letters,1996,76(25):4773.
    [3] Pendry J. B., Holden A. J. and Robbins D. J., et al., Magnetism From Conductorsand Enhanced Nonlinear Phenomena. IEEE Transactions on Microwave Theoryand Techniques,1999,47(11):2075-2084.
    [4] Smith D. R., Padilla W. J. and Vier D. C., et al., Composite Medium withSimultaneously Negative Permeability and Permittivity. Physical Review Letters,2000,84(18):4184.
    [5] Engheta N. and Ziolkowski R. W., Metamaterials: Physics and EngineeringExplorations. John Wiley&Sons,2006.
    [6] Valentine J., Zhang S. and Zentgraf T., et al., Three-Dimensional OpticalMetamaterial with a Negative Refractive Index. Nature,2008,455(7211):376-379.
    [7] Choi M., Lee S. H. and Kim Y., et al., A Terahertz Metamaterial with UnnaturallyHigh Refractive Index. Nature,2011,470(7334):369-373.
    [8] Krishnamoorthy H. N., Jacob Z. and Narimanov E., et al., Topological Transitionsin Metamaterials. Science,2012,336(6078):205-209.
    [9]汤世伟,朱卫仁,赵晓鹏,光波段多频负折射率超材料.物理学报,2009,58(5):第3220-3223页.
    [10]王甲富,屈绍波,徐卓等,基于双环开口谐振环对的平面周期结构左手超材料.物理学报,2009(5):第3224-3229页.
    [11] Pendry J. B., Schurig D. and Smith D. R., Controlling Electromagnetic Fields.Science,2006,312(5781):1780-1782.
    [12] Liu R., Ji C. and Mock J. J., et al., Broadband Ground-Plane Cloak. Science,2009,323(5912):366-369.
    [13] Ma H. F. and Cui T. J., Three-Dimensional Broadband Ground-Plane Cloak Madeof Metamaterials. Nature Communications,2010,1:21.
    [14] Cheng Q., Cui T. J. and Jiang W. X., et al., An Electromagnetic Black Hole Madeof Metamaterials. arXiv preprint arXiv:0910.2159,2009.
    [15] Zheludev N. I., The Road Ahead for Metamaterials. Science,2010,328(5978):582-583.
    [16]刘盛纲,钟任斌,太赫兹科学技术及其应用的新发展.电子科技大学学报,2009,38(5):第481-486页.
    [17] Sirtori C., Applied Physics: Bridge for the Terahertz Gap. Nature,2002,417(6885):132-133.
    [18] Kroto H. W., Heath J. R. and O'Brien S. C., et al., C60: Buckminsterfullerene.Nature,1985,318(6042):162-163.
    [19] Iijima S., Helical Microtubules of Graphitic Carbon. Nature,1991,354(6348):56-58.
    [20] Novoselov K. S., Geim A. K. and Morozov S. V., et al., Electric Field Effect inAtomically Thin Carbon Films. Science,2004,306(5696):666-669.
    [21] Geim A. K. and Novoselov K. S., The Rise of Graphene. Nature Materials,2007,6(3):183-191.
    [22] Landau L. D., Lifshitz E. M. and Reichl L. E., Statistical Physics, Part1. PhysicsToday,1981,34:74.
    [23] Geim A. K., Graphene: Status and Prospects. Science,2009,324(5934):1530-1534.
    [24] Vakil A. and Engheta N., Transformation Optics Using Graphene. Science,2011,332(6035):1291-1294.
    [25] Bagby J. S. and Nyquist D. P., Dyadic Green's Functions for Integrated Electronicand Optical Circuits. IEEE Transactions on Microwave Theory and Techniques,1987,35(2):207-210.
    [26] Yang F. and Rahmat-Samii Y., Electromagnetic Band Gap Structures in AntennaEngineering. Cambridge University Press Cambridge,2009.
    [27] Rao P. H. and Swaminathan M., A Novel Compact Electromagnetic BandgapStructure in Power Plane for Wideband Noise Suppression and Low Radiation.IEEE Transactions on Electromagnetic Compatibility,2011,53(4):996-1004.
    [28] Baracco J., Paquay M. and de Maagt P., An Electromagnetic Bandgap CurlAntenna for Phased Array Applications. IEEE Transactions on Antennas andPropagation,2005,53(1):173-180.
    [29] Lin B., Ye X. and Cao X., et al., Uniplanar Ebg Structure with Improved Compactand Wideband Characteristics. Electronics Letters,2008,44(23):1362-1363.
    [30] Caminita F., Costanzo S. and Di Massa G., et al., Reduction of Patch AntennaCoupling by Using a Compact Ebg Formed by Shorted Strips with InterlockedBranch-Stubs. IEEE Antennas and Wireless Propagation Letters,2009,8:811-814.
    [31] Caloz C. and Itoh T., Electromagnetic Metamaterials: Transmission Line Theoryand Microwave Applications. John Wiley&Sons,2005.
    [32] Cui T. J., Smith D. R. and Liu R., Metamaterials: Theory, Design, andApplications. Springer,2009.
    [33] Baena J. D., Marqués R. and Medina F., et al., Artificial Magnetic MetamaterialDesign by Using Spiral Resonators. Physical Review B,2004,69(1):14402.
    [34]李俊成,郭立新,刘松华, THz频段单面左手材料的设计及仿真研究.物理学报,2012,61(12):第124102页.
    [35] Chen H., Ran L. and Huangfu J., et al., Left-Handed Materials Composed of OnlyS-Shaped Resonators. Physical Review E,2004,70(5):57605.
    [36] Zhang S., Fan W. and Panoiu N. C., et al., Experimental Demonstration ofNear-Infrared Negative-Index Metamaterials. Physical Review Letters,2005,95(13):137404.
    [37]赵延,相建凯,李飒等,基于双鱼网结构的可见光波段超材料.物理学报,2011,60(5):第54211页.
    [38] Yen T., Padilla W. J. and Fang N., et al., Terahertz Magnetic Response FromArtificial Materials. Science,2004,303(5663):1494-1496.
    [39] Padilla W. J., Aronsson M. T. and Highstrete C., et al., Electrically ResonantTerahertz Metamaterials: Theoretical and Experimental Investigations. PhysicalReview B,2007,75(4):41102.
    [40] O'Hara J. F., Smirnova E. and Azad A. K., et al., Effects of MicrostructureVariations On Macroscopic Terahertz Metafilm Properties. Active and PassiveElectronic Components,2007,2007.
    [41] Azad A. K., Taylor A. J. and Smirnova E., et al., Characterization and Analysis ofTerahertz Metamaterials Based On Rectangular Split-Ring Resonators. AppliedPhysics Letters,2008,92(1):11119.
    [42] Chen H., O'Hara J. F. and Taylor A. J., et al., Complementary Planar TerahertzMetamaterials. Optics Express,2007,15(3):1084-1095.
    [43] O'Hara J. F., Smirnova E. and Chen H., et al., Properties of Planar ElectricMetamaterials for Novel Terahertz Applications. Journal of Nanoelectronics andOptoelectronics,2007,2(1):90-95.
    [44] Yuan Y., Bingham C. and Tyler T., et al., A Dual-Resonant TerahertzMetamaterial Based On Single-Particle Electric-Field-Coupled Resonators.Applied Physics Letters,2008,93(19):191110.
    [45] Wen Q., Zhang H. and Xie Y., et al., Dual Band Terahertz Metamaterial Absorber:Design, Fabrication, and Characterization. Applied Physics Letters,2009,95(24):241111.
    [46] Ekmekci E., Topalli K. and Akin T., et al., A Tunable Multi-Band MetamaterialDesign Using Micro-Split Srr Structures. Optics Express,2009,17(18):16046-16058.
    [47] Ekmekci E. and Turhan-Sayan G., Single Loop Resonator: Dual-Band MagneticMetamaterial Structure. Electronics Letters,2010,46(5):324-325.
    [48] Han N. R., Chen Z. C. and Lim C. S., et al., Broadband Multi-Layer TerahertzMetamaterials Fabrication and Characterization On Flexible Substrates. OpticsExpress,2011,19(8):6990-6998.
    [49] Lee H. and Lee H., A Dualband Metamaterial Absorber Based withResonant-Magnetic Structures. Progress In Electromagnetics Research Letters,2012,33.
    [50] Chen H., Padilla W. J. and Zide J. M., et al., Active Terahertz MetamaterialDevices. Nature,2006,444(7119):597-600.
    [51] Chen H., Padilla W. J. and Cich M. J., et al., A Metamaterial Solid-State TerahertzPhase Modulator. Nature Photonics,2009,3(3):148-151.
    [52] Driscoll T., Kim H. and Chae B., et al., Memory Metamaterials. Science,2009,325(5947):1518-1521.
    [53] O'Hara J. F., Singh R. and Brener I., et al., Thin-Film Sensing with PlanarTerahertz Metamaterials: Sensitivity and Limitations. Optics Express,2008,16(3):1786-1795.
    [54] Ng B., Hanham S. M. and Giannini V., et al., Lattice Resonances in AntennaArrays for Liquid Sensing in the Terahertz Regime. Optics Express,2011,19(15):14653-14661.
    [55] Chiang Y., Yang C. and Yang Y., et al., An Ultrabroad Terahertz Bandpass FilterBased On Multiple-Resonance Excitation of a Composite Metamaterial. AppliedPhysics Letters,2011,99(19):191909.
    [56] Peralta X. G., Smirnova E. I. and Azad A. K., et al., Metamaterials for ThzPolarimetric Devices. Optics Express,2009,17(2):773-783.
    [57] Lin Y., Qian Y. and Ma F., et al., Development of Stress-Induced CurvedActuators for a Tunable Thz Filter Based On Double Split-Ring Resonators.Applied Physics Letters,2013,102(11):111908.
    [58] Li J., Shah C. M. and Withayachumnankul W., et al., Mechanically TunableTerahertz Metamaterials. Applied Physics Letters,2013,102(12):121101.
    [59] Zhang C., Jin B. and Han J., et al., Terahertz Nonlinear SuperconductingMetamaterials. Applied Physics Letters,2013,102(8):81121.
    [60] Alves F., Kearney B. and Grbovic D., et al., Strong Terahertz Absorption UsingSio2/Al Based Metamaterial Structures. Applied Physics Letters,2012,100(11):111104.
    [61] Wang B., Zhou J. and Koschny T., et al., Nonplanar Chiral Metamaterials withNegative Index. Applied Physics Letters,2009,94(15):151112.
    [62] Kim S. H., Hashi S. and Ishiyama K., A Basic Study of a Triangular MagnetChain for Locomotion Control. Journal of Applied Physics,2011,109(7):7E-318E.
    [63] Basilio L. I., Warne L. K. and Langston W. L., et al., Microwave-Frequency,Negative-Index Metamaterial Designs Based On Degenerate DielectricResonators. IEEE Antennas and Wireless Propagation Letters,2012,11:113-116.
    [64] Zedler M. and Eleftheriades G. V., Anisotropic Transmission-Line Metamaterialsfor2-D Transformation Optics Applications. Proceedings of the IEEE,2011,99(10):1634-1645.
    [65] Lovat G., Burghignoli P. and Capolino F., et al., Combinations of Low/HighPermittivity and/Or Permeability Substrates for Highly Directive PlanarMetamaterial Antennas. IET Microwaves, Antennas&Propagation,2007,1(1):177-183.
    [66] Poutrina E., Huang D. and Urzhumov Y., et al., Nonlinear Oscillator MetamaterialModel: Numerical and Experimental Verification. Optics Express,2011,19(9):8312-8319.
    [67] Tao H., Kadlec E. A. and Strikwerda A. C., et al., Microwave and Terahertz WaveSensing with Metamaterials. Optics Express,2011,19(22):21620-21626.
    [68] Huang M., Yang J. and Jun S., et al., Simulation and Analysis of a MetamaterialSensor Based On a Microring Resonator. Sensors,2011,11(6):5886-5899.
    [69] Chen T., Li S. and Sun H., Metamaterials Application in Sensing. Sensors,2012,12(3):2742-2765.
    [70] Zhu B., Feng Y. and Zhao J., et al., Switchable Metamaterial Reflector/Absorberfor Different Polarized Electromagnetic Waves. Applied Physics Letters,2010,97(5):51906.
    [71] Li W., Liu Z. and Zhang X., et al., Switchable Hyperbolic Metamaterials withMagnetic Control. Applied Physics Letters,2012,100(16):161108.
    [72] Quach J. Q., Su C. and Martin A. M., et al., Reconfigurable QuantumMetamaterials. Optics Express,2011,19(12):11018-11033.
    [73] Tavallaee A. A., Hon P. W. and Chen Q., et al., Active TerahertzQuantum-Cascade Composite Right/Left-Handed Metamaterial. Applied PhysicsLetters,2013,102(2):21103.
    [74]韩鹏昱,刘伟,谢亚红等,石墨烯与太赫兹科学.物理,2009,38(06).
    [75] Novoselov K. S., Fal V. I. and Colombo L., et al., A Roadmap for Graphene.Nature,2012,490(7419):192-200.
    [76] Saito R., Dresselhaus G. and Dresselhaus M. S., Physical Properties of CarbonNanotubes. World Scientific,1998.
    [77] Berger C., Song Z. and Li T., et al., Ultrathin Epitaxial Graphite:2D Electron GasProperties and a Route Toward Graphene-Based Nanoelectronics. The Journal ofPhysical Chemistry B,2004,108(52):19912-19916.
    [78] Zhang Y., Small J. P. and Pontius W. V., et al., Fabrication andElectric-Field-Dependent Transport Measurements of Mesoscopic GraphiteDevices. Applied Physics Letters,2005,86(7):73104.
    [79] Berger C., Song Z. and Li X., et al., Electronic Confinement and Coherence inPatterned Epitaxial Graphene. Science,2006,312(5777):1191-1196.
    [80] Hass J., Feng R. and Li T., et al., Highly Ordered Graphene for Two DimensionalElectronics. Applied Physics Letters,2006,89(14):143106.
    [81] Novoselov K., Geim A. K. and Morozov S., et al., Two-Dimensional Gas ofMassless Dirac Fermions in Graphene. Nature,2005,438(7065):197-200.
    [82] Ouyang Y., Yoon Y. and Fodor J. K., et al., Comparison of Performance Limitsfor Carbon Nanoribbon and Carbon Nanotube Transistors. Applied PhysicsLetters,2006,89(20):203107.
    [83] Bolotin K. I., Sikes K. J. and Jiang Z., et al., Ultrahigh Electron Mobility inSuspended Graphene. Solid State Communications,2008,146(9):351-355.
    [84] Mikhailov S. A. and Ziegler K., New Electromagnetic Mode in Graphene.Physical Review Letters,2007,99(1):16803.
    [85] Grigorenko A. N., Polini M. and Novoselov K. S., Graphene Plasmonics. NaturePhotonics,2012,6(11):749-758.
    [86] Hill A., Mikhailov S. A. and Ziegler K., Dielectric Function and Plasmons inGraphene. EPL (Europhysics Letters),2009,87(2):27005.
    [87] Otsuji T., Tombet S. B. and Satou A., et al., Graphene-Based Devices in TerahertzScience and Technology. Journal of Physics D: Applied Physics,2012,45(30):303001.
    [88] Sensale-Rodriguez B., Fang T. and Yan R., et al., Unique Prospects forGraphene-Based Terahertz Modulators. Applied Physics Letters,2011,99(11):113104.
    [89] Sensale-Rodriguez B., Yan R. and Kelly M. M., et al., Broadband GrapheneTerahertz Modulators Enabled by Intraband Transitions. Nature Communications,2012,3:780.
    [90] Andryieuski A., Lavrinenko A. V. and Chigrin D. N., Graphene Hyperlens forTerahertz Radiation. Physical Review B,2012,86(12):121108.
    [91] Sensale-Rodriguez B., Yan R. and Rafique S., et al., Extraordinary Control ofTerahertz Beam Reflectance in Graphene Electro-Absorption Modulators. NanoLetters,2012,12(9):4518-4522.
    [92] Alaee R., Farhat M. and Rockstuhl C., et al., A Perfect Absorber Made of aGraphene Micro-Ribbon Metamaterial. Optics Express,2012,20(27):28017-28024.
    [93] Rutherglen C. and Burke P., Nanoelectromagnetics: Circuit and ElectromagneticProperties of Carbon Nanotubes. Small,2009,5(8):884-906.
    [94] Dragoman M., Muller A. A. and Dragoman D., et al., Terahertz Antenna BasedOn Graphene. Journal of Applied Physics,2010,107(10):104313.
    [95] Gomez-Diaz J. S. and Perruisseau-Carrier J. Microwave to Thz Properties ofGraphene and Potential Antenna Applications: Antennas and Propagation (ISAP),2012:239-242.
    [96] Perruisseau-Carrier J. Graphene for Antenna Applications: Opportunities andChallenges From Microwaves to Thz: Antennas and Propagation Conference(LAPC),2012:1-4.
    [97] Nair R. R., Blake P. and Grigorenko A. N., et al., Fine Structure Constant DefinesVisual Transparency of Graphene. Science,2008,320(5881):1308.
    [98] Nikitin A. Y., Guinea F. and Garcia-Vidal F. J., et al., Surface Plasmon EnhancedAbsorption and Suppressed Transmission in Periodic Arrays of Graphene Ribbons.Physical Review B,2012,85(8):81405.
    [99] Xu B. Z., Gu C. and Li Z., et al., A Novel Structure for Tunable TerahertzAbsorber Based On Graphene. Optics Express,2013,21(20):23803-23811.
    [100]Yablonovitch E., Inhibited Spontaneous Emission in Solid-State Physics andElectronics. Physical Review Letters,1987,58(20):2059.
    [101]John S., Strong Localization of Photons in Certain Disordered DielectricSuperlattices. Physical Review Letters,1987,58(23):2486-2489.
    [102]Sievenpiper D., High-Impedance Electromagnetic Surfaces'. PhD, University ofCalifornia,1999.
    [103]付云起,袁乃昌,温熙森,微波光子晶体天线技术.国防工业出版社,2006.
    [104]Liu T. and Zhang W. Compound Techniques for Broadening the Bandwidth ofMicrostrip Patch Antenna: Microwave Conference Proceedings,1997:241-244.
    [105]Shackelford A. K., Lee K. and Luk K. M., Design of Small-Size Wide-BandwidthMicrostrip-Patch Antennas. IEEE Antennas and Propagation Magazine,2003,45(1):75-83.
    [106]郑秋容,袁乃昌,付云起,紧凑型电磁带隙结构在短路微带天线中的应用.电子与信息学报,2007,29(7):第1500-1502页.
    [107]Horii Y. and Tsutsumi M., Harmonic Control by Photonic Bandgap On MicrostripPatch Antenna. IEEE Microwave and Guided Wave Letters,1999,9(1):13-15.
    [108]Yang F. and Rahmat-Samii Y., Reflection Phase Characterizations of the EbgGround Plane for Low Profile Wire Antenna Applications. IEEE Transactions onAntennas and Propagation,2003,51(10):2691-2703.
    [109]Deo P., Mehta A. and Mirshekar-Syahkal D., et al., Thickness Reduction andPerformance Enhancement of Steerable Square Loop Antenna Using Hybrid HighImpedance Surface. IEEE Transactions on Antennas and Propagation,2010,58(5):1477-1485.
    [110]Shen N., Koschny T. and Kafesaki M., et al., Optical Metamaterials with DifferentMetals. Physical Review B,2012,85(7):75120.
    [111]Jackson J. D., Classical Electrodynamics. Wiley,1998.
    [112]Cherenkov P. A., Visible Emission of Clean Liquids by Action of Γ Radiation.Doklady Akademii Nauk SSSR,1934,2:451.
    [113]Tamm I. E. and Frank I. M. Coherent Radiation of Fast Electrons in a Medium:Dokl. Akad. Nauk SSSR,1937:107-112.
    [114]Pendry J. B., Negative Refraction Makes a Perfect Lens. Physical Review Letters,2000,85(18):3966.
    [115]Fang N., Lee H. and Sun C., et al., Sub–Diffraction-Limited Optical Imagingwith a Silver Superlens. Science,2005,308(5721):534-537.
    [116]Goos F. and H nchen H., Ein Neuer Und Fundamentaler Versuch ZurTotalreflexion. Annalen der Physik,1947,436(7‐8):333-346.
    [117]Lubkowski G., Bandlow B. and Schuhmann R., et al., Effective Modeling ofDouble Negative Metamaterial Macrostructures. IEEE Transactions onMicrowave Theory and Techniques,2009,57(5):1136-1146.
    [118]Simovski C. R., On Electromagnetic Characterization and Homogenization ofNanostructured Metamaterials. Journal of Optics,2011,13(1):13001.
    [119]Moss C. D., Grzegorczyk T. M. and Zhang Y., Numerical Studies of Left HandedMetamaterials. Progress In Electromagnetics Research,2002,35:315-334.
    [120]Ziolkowski R. W. and Heyman E., Wave Propagation in Media Having NegativePermittivity and Permeability. Physical Review E,2001,64(5):56625.
    [121]Rousochatzakis I. and Soukoulis C. M., Transmission Losses in Left-HandedMaterials. arXiv preprint cond-mat/0206022,2002.
    [122]Smith D. R., Schultz S. and Marko P., et al., Determination of EffectivePermittivity and Permeability of Metamaterials From Reflection and TransmissionCoefficients. Physical Review B,2002,65(19):195104.
    [123]Smith D. R., Vier D. C. and Koschny T., et al., Electromagnetic ParameterRetrieval From Inhomogeneous Metamaterials. Physical Review E,2005,71(3):36617.
    [124]Chen X., Grzegorczyk T. M. and Wu B., et al., Robust Method to Retrieve theConstitutive Effective Parameters of Metamaterials. Physical Review E,2004,70(1):16608.
    [125]Majid H. A., Abd Rahim M. K. and Masri T., Microstrip Antenna's GainEnhancement Using Left-Handed Metamaterial Structure. Progress InElectromagnetics Research M,2009,8:235-247.
    [126]吉特, THz-TDS实验方法研究及其应用.博士学位论文,中国科学院上海应用物理研究所,2007.
    [127]Geim A. K. and Kim P., Carbon Wonderland. Scientific American,2008,298(4):90-97.
    [128]Geim A. K. and Novoselov K. S., Nature Mater.6,183(2007); Ak Geim and AhMacdonald. Physics Today,2007,60(8):35.
    [129]Palacios T., Hsu A. and Wang H., Applications of Graphene Devices in RfCommunications. IEEE Communications Magazine,2010,48(6):122-128.
    [130]Barone V., Hod O. and Scuseria G. E., Electronic Structure and Stability ofSemiconducting Graphene Nanoribbons. Nano Letters,2006,6(12):2748-2754.
    [131]Balandin A. A., Ghosh S. and Bao W., et al., Superior Thermal Conductivity ofSingle-Layer Graphene. Nano Letters,2008,8(3):902-907.
    [132]Saito K., Nakamura J. and Natori A., Ballistic Thermal Conductance of aGraphene Sheet. Physical Review B,2007,76(11):115409.
    [133]Charlier J., Eklund P. C. and Zhu J., et al., Electron and Phonon Properties ofGraphene: Their Relationship with Carbon Nanotubes, Carbon nanotubes.Springer,2008:673-709.
    [134]Chen J., Jang C. and Xiao S., et al., Intrinsic and Extrinsic Performance Limits ofGraphene Devices On Sio2. Nature Nanotechnology,2008,3(4):206-209.
    [135]Katsnelson M. I., Zitterbewegung, Chirality, and Minimal Conductivity inGraphene. The European Physical Journal B-Condensed Matter and ComplexSystems,2006,51(2):157-160.
    [136]Katsnelson M. I., Novoselov K. S. and Geim A. K., Chiral Tunnelling and theKlein Paradox in Graphene. Nature Physics,2006,2(9):620-625.
    [137]Novoselov K., Geim A. K. and Morozov S., et al., Two-Dimensional Gas ofMassless Dirac Fermions in Graphene. Nature,2005,438(7065):197-200.
    [138]Kuzmenko A. B., Van Heumen E. and Carbone F., et al., Universal OpticalConductance of Graphite. Physical Review Letters,2008,100(11):117401.
    [139]Slepyan G. Y., Maksimenko S. A. and Lakhtakia A., et al., Electrodynamics ofCarbon Nanotubes: Dynamic Conductivity, Impedance Boundary Conditions, andSurface Wave Propagation. Physical Review B,1999,60(24):17136.
    [140]Falkovsky L. A. and Pershoguba S. S., Optical Far-Infrared Properties of aGraphene Monolayer and Multilayer. Physical Review B,2007,76(15):153410.
    [141]Christensen J., Manjavacas A. and Thongrattanasiri S., et al., Graphene PlasmonWaveguiding and Hybridization in Individual and Paired Nanoribbons. ACS Nano,2011,6(1):431-440.
    [142]Gusynin V. P. and Sharapov S. G., Transport of Dirac Quasiparticles in Graphene:Hall and Optical Conductivities. Physical Review B,2006,73(24):245411.
    [143]Gusynin V. P., Sharapov S. G. and Carbotte J. P., Unusual Microwave Responseof Dirac Quasiparticles in Graphene. Physical Review Letters,2006,96(25):256802.
    [144]Peres N., Guinea F. and Neto A. C., Electronic Properties of DisorderedTwo-Dimensional Carbon. Physical Review B,2006,73(12):125411.
    [145]Guinea F., Neto A. C. and Peres N., Electronic States and Landau Levels inGraphene Stacks. Physical Review B,2006,73(24):245426.
    [146]Ziegler K., Minimal Conductivity of Graphene: Nonuniversal Values From theKubo Formula. Physical Review B,2007,75(23):233407.
    [147]Falkovsky L. A. and Varlamov A. A., Space-Time Dispersion of GrapheneConductivity. The European Physical Journal B,2007,56(4):281-284.
    [148]Gusynin V. P., Sharapov S. G. and Carbotte J. P., Magneto-Optical Conductivityin Graphene. Journal of Physics: Condensed Matter,2007,19(2):26222.
    [149]Wallace P. R., The Band Theory of Graphite. Physical Review,1947,71(9):622.
    [150]Gusynin V. P., Sharapov S. G. and Carbotte J. P., Sum Rules for the Optical andHall Conductivity in Graphene. Physical Review B,2007,75(16):165407.
    [151]Chew W. C., Waves and Fields in Inhomogeneous Media. IEEE Press New York,1995.
    [152]Ishimaru A., Electromagnetic Wave Propagation, Radiation, and Scattering.Prentice Hall Englewood Cliffs, NJ,1991.
    [153]Tamir T. and Oliner A. A., The Spectrum of Electromagnetic Waves Guided by aPlasma Layer. Proceedings of the IEEE,1963,51(2):317-332.
    [154]Sprinkle M., Soukiassian P. and De Heer W. A., et al., Epitaxial Graphene: TheMaterial for Graphene Electronics. Physica status solidi (RRL)-Rapid ResearchLetters,2009,3(6): A91-A94.
    [155]Ni Z., Wang Y. and Yu T., et al., Raman Spectroscopy and Imaging of Graphene.Nano Research,2008,1(4):273-291.
    [156]Li X., Cai W. and An J., et al., Large-Area Synthesis of High-Quality andUniform Graphene Films On Copper Foils. Science,2009,324(5932):1312-1314.
    [157]Pan Y., Zhang H. and Shi D., et al., Highly Ordered, Millimeter‐Scale,Continuous, Single‐Crystalline Graphene Monolayer Formed On Ru (0001).Advanced Materials,2009,21(27):2777-2780.
    [158]Bae S., Kim H. and Lee Y., et al., Roll-to-Roll Production of30-Inch GrapheneFilms for Transparent Electrodes. Nature Nanotechnology,2010,5(8):574-578.
    [159]Li X., Magnuson C. W. and Venugopal A., et al., Graphene Films with LargeDomain Size by a Two-Step Chemical Vapor Deposition Process. Nano Letters,2010,10(11):4328-4334.
    [160]Reina A., Jia X. and Ho J., et al., Large Area, Few-Layer Graphene Films OnArbitrary Substrates by Chemical Vapor Deposition. Nano Letters,2008,9(1):30-35.
    [161]Kim K. S., Zhao Y. and Jang H., et al., Large-Scale Pattern Growth of GrapheneFilms for Stretchable Transparent Electrodes. Nature,2009,457(7230):706-710.
    [162]Lee W. H., Suk J. W. and Lee J., et al., Simultaneous Transfer and Doping ofCvd-Grown Graphene by Fluoropolymer for Transparent Conductive Films OnPlastic. ACS Nano,2012,6(2):1284-1290.
    [163]Caldwell J. D., Anderson T. J. and Culbertson J. C., et al., Technique for the DryTransfer of Epitaxial Graphene Onto Arbitrary Substrates. ACS Nano,2010,4(2):1108-1114.
    [164]Bae S., Kim S. J. and Shin D., et al., Towards Industrial Applications of GrapheneElectrodes. Physica Scripta,2012,2012(T146):14024.
    [165]Kahng Y. H., Lee S. and Park W., et al., Thermal Stability of Multilayer GrapheneFilms Synthesized by Chemical Vapor Deposition and Stained by MetallicImpurities. Nanotechnology,2012,23(7):75702.
    [166]Klein M. W., Enkrich C. and Wegener M., et al., Single-Slit Split-RingResonators at Optical Frequencies: Limits of Size Scaling. Optics Letters,2006,31(9):1259-1261.
    [167]Yuan Y., Bingham C. and Tyler T., et al., Dual-Band Planar Electric Metamaterialin the Terahertz Regime. Optics Express,2008,16(13):9746-9752.
    [168]Courant R., Variational Methods for the Solution of Problems of Equilibrium andVibrations. Bulletin of the American Mathematical Society,1943,49(1):1-23.
    [169]谢拥军, HFSS原理与工程应用.科学出版社,2009.
    [170]Liu X., Powell D. A. and Alù A., Correcting the Fabry-Perot Artifacts inMetamaterial Retrieval Procedures. Physical Review B,2011,84(23):235106.
    [171]高建平,电磁对偶原理的准确叙述与证明.大学物理,1991,9:第7页.
    [172]Rivas J. G., Bolivar P. H. and Kurz H., Thermal Switching of the EnhancedTransmission of Terahertz Radiation through Subwavelength Apertures. OpticsLetters,2004,29(14):1680-1682.
    [173]Chen H., Padilla W. J. and Cich M. J., et al., A Metamaterial Solid-State TerahertzPhase Modulator. Nature Photonics,2009,3(3):148-151.
    [174]Landy N. I., Sajuyigbe S. and Mock J. J., et al., Perfect Metamaterial Absorber.Physical Review Letters,2008,100(20):207402.
    [175]Landy N. I., Bingham C. M. and Tyler T., et al., Design, Theory, andMeasurement of a Polarization-Insensitive Absorber for Terahertz Imaging.Physical Review B,2009,79(12):125104.
    [176]Tao H., Landy N. I. and Bingham C. M., et al., A Metamaterial Absorber for theTerahertz Regime: Design, Fabrication and Characterization. Optics Express,2008,16(10):7181-7188.
    [177]Tao H., Bingham C. M. and Pilon D., et al., A Dual Band Terahertz MetamaterialAbsorber. Journal of physics D: Applied physics,2010,43(22):225102.
    [178]Chen H., Interference Theory of Metamaterial Perfect Absorbers. Optics express,2012,20(7):7165-7172.
    [179]李瑞华,宽带反射阵天线的研究与设计.硕士学位论文,西安电子科技大学,2012.
    [180]Huang J., Reflectarray Antenna. Wiley Online Library,2007.
    [181]Niu T., Withayachumnankul W. and Ung B. S., et al., ExperimentalDemonstration of Reflectarray Antennas at Terahertz Frequencies. Optics Express,2013,21(3):2875-2889.
    [182]庞宝茂,现代移动通信.清华大学出版社,2004.
    [183]Anderson H. R., Fixed Broadband Wirelesssystem Design. John Wiley&Sons,2003.
    [184]Qu D., Shafai L. and Foroozesh A., Improving Microstrip Patch AntennaPerformance Using Ebg Substrates. IEE Proceedings-Microwaves, Antennas andPropagation,2006,153(6):558-563.
    [185]Coccioli R., Yang F. and Ma K., et al., Aperture-Coupled Patch Antenna OnUc-Pbg Substrate. IEEE Transactions on Microwave Theory and Techniques,1999,47(11):2123-2130.
    [186]Ghorbani K. and Waterhouse R. B., Dual Polarized Wide-Band Aperture StackedPatch Antennas. IEEE Transactions on Antennas and Propagation,2004,52(8):2171-2175.
    [187]Serra A. A., Nepa P. and Manara G., et al., A Wide-Band Dual-Polarized StackedPatch Antenna. IEEE Antennas and Wireless Propagation Letters,2007,6:141-143.
    [188]Wong K., Tung H. and Chiou T., Broadband Dual-Polarized Aperture-CoupledPatch Antennas with Modified H-Shaped Coupling Slots. IEEE Transactions onAntennas and Propagation,2002,50(2):188-191.
    [189]Chen Z. N. and Chia M. Y. W., Experimental Study On Radiation Performance ofProbe-Fed Suspended Plate Antennas. IEEE Transactions on Antennas andPropagation,2003,51(8):1964-1971.
    [190]Chin C., Xue Q. and Wong H., et al., Broadband Patch Antenna with LowCross-Polarisation. Electronics Letters,2007,43(3):137-138.
    [191]Li P., Lai H. W. and Luk K. M., et al., A Wideband Patch Antenna withCross-Polarization Suppression. IEEE Antennas and Wireless Propagation Letters,2004,3(1):211-214.
    [192]Sim C., Chang C. and Row J., Dual-Feed Dual-Polarized Patch Antenna with LowCross Polarization and High Isolation. IEEE Transactions on Antennas andPropagation,2009,57(10):3321-3324.
    [193]Fu Y. Q., Zheng Q. R. and Gao Q., et al., Mutual Coupling Reduction BetweenLarge Antenna Arrays Using Electromagnetic Bandgap (Ebg) Structures. Journalof Electromagnetic Waves and Applications,2006,20(6):819-825.
    [194]Zhang Y., Wang B. and Shao W., et al., Artificial Ground Planes for PerformanceEnhancement of Microstrip Antennas. Journal of Electromagnetic Waves andApplications,2011,25(4):597-606.
    [195]Iriarte J., Ederra I. and Gonzalo R., High Dielectric Constant Ebg Technology toAvoid Gratings Lobes and Scan Blindness in Array Configurations. Journal ofElectromagnetic Waves and Applications,2013,27(18):2341-2354.
    [196]李龙,广义电磁谐振与EBG电磁局域谐振研究及应用.博士学位论文,西安电子科技大学,2005.
    [197]Sung Y., Investigation Into the Polarization of Asymmetrical-Feed TriangularMicrostrip Antennas and its Application to Reconfigurable Antennas. IEEETransactions on Antennas and Propagation,2010,58(4):1039-1046.
    [198]Chen H., Wang Y. and Lin Y., et al., Microstrip-Fed Circularly PolarizedSquare-Ring Patch Antenna for Gps Applications. IEEE Transactions onAntennas and Propagation,2009,57(4):1264-1267.
    [199]Caso R., Buffi A. and Pino M. R., et al., A Novel Dual-Feed Slot-CouplingFeeding Technique for Circularly Polarized Patch Arrays. IEEE Antennas andWireless Propagation Letters,2010,9:183-186.
    [200]Sudha T., Vedavathy T. S. and Bhat N., Wideband Single-Fed CircularlyPolarised Patch Antenna. Electronics Letters,2004,40(11):648-649.
    [201]Luo G. Q., Sun L. L. and Dong L. X., Single Probe Fed Cavity Backed CircularlyPolarized Antenna. Microwave and Optical Technology Letters,2008,50(11):2996-2998.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700