换流站换流系统的宽频电路建模方法和应用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
建立高压直流换流站换流系统宽频等效电路模型,是准确计算换流阀系统过电压分布以及准确预测换流站电磁骚扰水平的关键,也是我国换流站电磁兼容技术国产化的基本要求。本文结合国家自然科学基金项目“高压直流换流阀系统参数提取及宽频等效电路模型的研究”(50707008)和“十一五”国家科技支撑重大项目课题20“±800kV直流输电线路表面电晕起始场强计算和±800kV换流站阀厅的电磁兼容问题研究”(2006BAA02A20),重点研究了高压直流换流阀系统以及换流站关键设备的宽频电路建模方法,测量结果验证了本文所提出的换流系统宽频等效拓扑的有效性和实用性。基于阀系统宽频等效电路,研究了换流阀系统过电压分布特性及其影响因素;基于换流站换流系统宽频拓扑,研究了±800kV高压直流换流站的传导电磁骚扰特性以及辐射电磁骚扰水平。本文主要研究成果如下:
     1.提出了基于黑箱理论与传统等效电路相结合的建模方法,该方法不但可以保持传统等效电路参数的意义,还可以考虑高频下器件的频变效应,有效的解决了黑箱理论与传统等效电路存在的问题。基于该方法,建立了换流阀主要器件的宽频等效电路。研究表明,采用所提方法建立的模型在较宽的频率范围内均有效,能够应用于电力电子系统的宽频建模。
     2.对不同型式的换流阀系统的各项寄生电容参数和寄生电感参数进行了提取,结合换流阀主要器件的宽频模型,建立了用于过电压计算与分布的换流阀系统宽频等效电路;对高压直流换流站交直流场内的关键设备进行了宽频建模研究,建立了换流站换流系统宽频拓扑。
     3.对阀模块以及多重阀塔开展了过电压实验研究,实验结果验证了换流阀宽频等效电路的有效性;对换流站内各种类型的电磁骚扰进行了现场测量,测量结果验证了换流站换流系统宽频拓扑的有效性。
     4.根据换流阀系统宽频等效电路,对各种型式的阀模块以及阀塔在各种过电压作用下的电压分布特性进行了计算,并对影响阀层电压梯度和晶闸管压降的各项参数进行了分析,得出了高压直流换流阀过电压分布规律。该研究可用于换流阀系统国产化过程中的均压和绝缘设计。
     5.根据换流站换流系统宽频拓扑,对±800kV高压直流换流站的传导电磁骚扰特性进行了仿真计算,以传导骚扰电流为激励,对换流站内以及周边的辐射电磁骚扰水平进行了预测计算,计算结果对换流站的电磁屏蔽设计以及设备的抗扰度要求有一定的工程参考价值。
Wideband modeling of converter systems is essential to predict the electromagnetic environment and calculate overvoltage distributions of thyristor valves in High Voltage Direct Current (HVDC) converter stations. This tenology is also the basic equirement of the national independent innovation of electromagnetic compatibility (EMC) in HVDC converter stations in China. Supported by the National Natural Science Foundation of China (Grant No.50707008) and the Eleventh Five-Year Plan for National Science and Technology (Grant No.2006BAA02A20), the modeling methodology of wideband equivalent topology of converter systems in HVDC converter stations is proposed to calculate the overvoltage distributions in the thyristor valves and to predict the electromagnetic environment of±800kV converter station. Compared with the measured results, the proposed methods are proved to be efficient. The main innovative achievements are as follows:
     1. An efficient method is proposed to model the passive devices with traditional equivalent circuit combined with black-box theory. The new method enables the designers to retain their existing physical models while providing a means to capture the high frequency effects accurately. Based on this method, wideband equivalent circuits of the valve components, such as thyristor, saturable reactor and snubber circuits, are obtained based on impedance measurement.
     2. Stray capacitances and inductance of different type of thyristor valves are extracted and analyzed. Combined with the wideband models of valve components, wideband model of the whole valve system is presented. The wideband models of the key equipments in AC and DC yard are also proposed in this paper, such as converter transformer, smoothing reactor, filters, et al.
     3. Overvoltage testing expriments are carried out. Voltage distributions are measured both in valve modules and valve tower. The experimental results verify the validity of the proposed wideband model of thyristor valves. Electromagnetic disturbances are measured on site and the results indicate that the wideband topology of the whole converter systems is effective.
     4. Based on the wideband equivalent circuit of the thyristor valves, the voltage gradient of valve layers and voltage distribution among valve components were calculated under different kinds of overvoltages including switching, lightening and fast front overvoltage, and the influence factors were also discussed. Some regularity was obtained, e.g. the stray capacitances of the valves have an effect on the overvoltage distribution among valve components, while the parameters of the valve components can influence the voltage drop on thyristors. Lastly, some improved measures are proposed.
     5. Based on the wideband topology of the whole converter systems, the characteristic of the conductive electromagnetic disturbances in±800kV HVDC converter station is simulated and anslyzed. And the radio interference level is also calculated both inside and surrounding the converter station. These results could have a guide on immunity and valve hall screening design of future HVDC converter stations in China.
引文
[1]赵畹君.高压直流输电工程技术.北京:中国电力出版社,2004
    [2]刘振亚.特高压电网.北京:中国经济出版社,2005.
    [3]刘振亚,舒印彪,张文亮,等.直流输电系统电压等级序列研究.中国电机工程学报,2008,28(10):1~8.
    [4]舒印彪,张文亮.特高压输电若干关键技术研究.中国电机工程学报,2007,27(11):1~6.
    [5]Hylten-Cavallius and E. Olsson. Radio Noise from the Terminal Equipment of HVDC Systems. Direct Current, pp.172~181,1962.
    [6]S.A. Annestrand. Radio Interference from HVDC Converter Stations. IEEE Transactions on Power Apparatus and Systems, PAS-90(3):874~882,1972.
    [7]M.P. Sarma and T. Gilsig. A Method of Calculating the RI from HVDC Converter Stations. IEEE Transactions on Power Apparatus and Systems, PAS-92(3): 1009~1018,1973.
    [8]P.S. Maruvada, T. Gilsig and H.E. Orton. Theoretical and Experimental Study of the RI Generated by an HVDC Converter Station. Proceedings of the Canadian Communications and Power Conference, November 1974, Montreal, Canada, pp.125~126.
    [9]A.R. Morse, I.G. Jeffrey and M. Bulawka. Field Measurements on the Nelson River HVDC Line Including Comparisons with Test Line Data and Calculated Profiles. Proceedings of the Canadian Communications and Power Conference, October 1976, Montreal, Canada, pp.437~440.
    [10]A.R. Morse. Field Measurements of Station-Generated RI on the Nelson River HVDC Line in 1976. Proceedings of the International Electrical and Electronics Conference, September,1977, Toronto, Canada, pp.78~79.
    [11]T.R. Treasure. Power Line Carrier Experience on the Vancouver Island HVDC Tie. IEEE Transactions on Power Apparatus and Systems, PAS-98(1):318~322,1979.
    [12]R.M. Morris, A.R. Morse and J.P. Griffin, et al. The Corona and Radio Interference Performance of the Nelson River HVDC Transmission Lines. IEEE Transactions on Power Apparatus and Systems, PAS-98(6):1924~1936,1979.
    [13]D.J. Melvolil, L. Haglof and P. Degn. Carrier Frequency Harmonics Generated By HVDC Conversion. IEEE Transactions on Power Apparatus and Systems, PAS-99(2):564~572,1980.
    [14]G.H. Bacon, D.L. Hedrick and J.J. Fiedler, et al. Power Line Carrier Application Considerations Involving HVDC Transmission. IEEE Transactions on Power Apparatus and Systems, PAS-99(3):1089~1096,1980.
    [15]J.J. LaForest, C.B. Lindh and R.H. Lasseter, et al. Modeling of the DC Converter Equipment in the Carrier Band. IEEE Transactions on Power Apparatus and Systems, PAS-101(7):2137~2145,1982.
    [16]F.A. Fisher, R.H. Lasseter and C.B. Lindh. Measurements of the Electrical Niose Produced in the Carrier Band by a DC Converter. IEEE Transactions on Power Apparatus and Systems, PAS-101(7):2041~2048,1982.
    [17]N.A. Patterson. Carrier Frequency Interference from HVDC Systems. IEEE Transactions on Power Apparatus and Systems, PAS-104(11):3255~3261,1985.
    [18]Maruvada P S, Malewski R, Wong P S. Measurement of the Electromagnetic Enviroment of HVDC Converter Stations. IEEE Transactions on Power Delivery. 1989,4(2):1129~1136.
    [19]Dallaire R D, Maruvada P S. Evaluation of the Effectiveness of Shielding and Filtering of HVDC Converter Stations. IEEE Transactions on Power Delivery.1989, 4(2):1469~1475.
    [20]Stephen A S, Robert V. Devore, Ross Caldecott et al. Design and RF Operation of Scale Model of Dickson ±400kV HVDC Converter Station. IEEE Transactions on Power Apparatus and Systems.1985, PAS-104(7):1930~1936.
    [21]Robert V D, Kimball D F, Kasten D G, et al. RF Analysis of a 12-pulse HVDC Converter. IEE Proceedings of Generation, Transmission and Distribution.1988, 135(3):210~218.
    [22]Ross C, Robert V D, Kasten D G, et al. HVDC Converter Station Tests in the 0.1 to 5 MHz Frequency Range. IEEE Transactions on Power Delivery.1988,3(3): 971-977.
    [23]Ross C, Yilu Liu, Stephen A S, et al. Measurement of the Frequency Dependent Impedance of Major Station Equipment. IEEE Transactions on Power Delivery. 1990,5(1):474~480.
    [24]Liu Y, Sebo S A, Wright S E. Modeling of Converter Transformer Using Frequency Domain Terminal Impedance Measurements. IEEE Transactions on Power Delivery, 1993,8 (1):66~72.
    [25]D.G. Kasten, R. Caldecott, S.A. Sebo and Y. Liu. A Computer Program for HVDC Converter Station RF Noise Calculations. IEEE Transactions on Power Delivery, 9(2):750~756,1994.
    [26]D.G. Kasten, Y. Liu, R. Caldecott and S.A. Sebo. Radio Frequency Performance Analysis of High Voltage DC Converter Stations. Proceedings of 2001 IEEE Porto Power Tech, (4):10~13,2001.
    [27]B.W. Jaekel. Investigations on Radio Interference and Power Line Carrier Interference of A Back-to-back Converter. Proceedings of Sixth International Conference on AC and DC Power Transmission, pp.58~63,1996.
    [28]B.W. Jaekel, T. Quoc-Bu. Electromagnetic Environment near HVDC Thyristor Valves. Proceedings of Eleventh International Symposium on High Voltage Engineering, London,1999.
    [29]Murata Y, Tanabe S, Ukawa Y, et al.3D-MoM Analysis of Radio Frequency Noise Radiation from HVDC Converter Station. Proceedings of IEEE International Symposium on Electromagnetic Compatibility, Seattle,1999.
    [30]于永清.葛-上直流线路无线电干扰测试分析.中国电力,1993,7:36~40.
    [31]贺景亮.预测直流换流站无线电干扰频率的数学模拟法。武汉水利电力学院学报,1987,2:60~67.
    [32]肖遥,张小武,邬雄,等.HVDC换流站取消载波通信噪声滤波器的可行性.电力系统自动化,2007,31(10):102~107.
    [33]万保全,邬雄,路遥,等.±800 kV云广UHVDC输电线路合成场强计算.高电压技术,32(9):143~145.
    [34]马为民,聂定珍,万保权,等.高压直流换流站阀厅屏蔽效能的研究.高电压技术,2008,34(11):2400~2407.
    [35]马为民,聂定珍,万保权,等.高压直流换流站换流阀电磁干扰的测量.高电压技术,2008,34(7):1317~1323.
    [36]孙竹森,王勤,万保权,等.±500kV三沪直流输电线路电磁环境测试分析.高电压技术,2007,33(5):65~68.
    [37]Xie Huichun, Zhang Xiaowu, Zhang Guangzhou. Experimental Study on Characteristics of RF Interference Generated by Valves and Shielding Effectiveness of Valve Hall of HVDC Converter Station. DRPT2008, Nanjing China,2008.
    [38]薛辰东,瞿雪弟,杨一鸣.±800 kV换流站无线电干扰研究.电网技术,2008,32(2):1~5.
    [39]范建斌,于勇清,刘泽洪,等.±800 kV特高压直流输电标准体系的建立.电网技术,2006,30(14):1~6.
    [40]Zhanqing Yu, Jinliang He, Rong Zeng, et al. Experimental Research on EMI of PLC System of ±500kV HVDC Converter Station. Proceedings of the 2006 4th Asia-Pacific Conference on Environmental Electromagnetics, pp.624~627,2006.
    [41]Zhanqing Yu, Jinliang He, Rong Zeng, et al. Electromagnetic Interference Propagation in AC Voltage Measuring Systems of ±500kV HVDC Converter Station. Proceedings of the 2006 4th Asia-Pacific Conference on Environmental Electromagnetics, pp.444~447,2006.
    [42]Yu Zhanqing, He Jinliang and Zeng Rong, el al. Simulation Analysis on EMI of ± 800kV UHVDC Converter Station.2007 IEEE International Symposium on Electromagnetic Compatibility. pp.1~5,2007.
    [43]Yu Zhanqing, He Jinliang and Zeng Rong, el al. Simulation Analysis on Conducted EMD Caused by Valves in ±800 kV UHVDC Converter Station. IEEE Transactions on Electromagnetic Compatibility,2009,51(2):236~244.
    [44]余占清,何金良,张波,等.高压直流换流站中换流阀传导骚扰时域仿真分析.中国电机工程学报,2009,29(10):17~23.
    [45]余占清,何金良,曾嵘,等.高压换流站的主要电磁骚扰源特性.高电压技术,2008,34(5):898~902.
    [46]曾嵘,余占清,傅闯,等.±500 kV换流站交流侧刀闸操作对直流侧二次系统电磁干扰分析.南方电网技术,2008,2(4):18~22.
    [47]余占清.特/超高压直流换流站电磁骚扰特性研究:[博士学位论文].北京:清华大学,2008.
    [48]刘磊.高压直流换流站阀系统宽频建模与电磁骚扰特性的研究:[博士学位论文].河北:华北电力大学,2008.
    [49]Weidong Zhang, Xiang Cui, Jie Zhao, et al. Measurement and analysis of electromagnetic disturbances in ±500kV converter stations.18th International Zurich Symposium on EMC, Singapore, pp.249~252,2007.
    [50]Tiebing Lu, Han Feng, Zhibin Zhao, et al. Analysis of the Electric Field and Ion Current Density Under Ultra High-Voltage Direct-Current Transmission Lines Based on Finite Element Method. IEEE Transactions on Magnetics,2007,43(4): 1221-1224.
    [51]Lei Liu, Xiang Cui, Qi Wang, et al. Measurement and calculation of the transient electromagnetic disturbances of secondary system in HVDC converter station. ICEF 2008, Chongqing, China,2008.
    [52]Lei Liu, Xiang Cui, Xuelian Gao. Synthesis of wide frequency model of HVDC valve elements.19th International Zurich Symposium on EMC, Singapore, pp.459-462,2008.
    [53]Karady G. and Gilsig T. The Calculation of Turn-On Overvoltages in a High Voltage DC Thyristor Valve. IEEE Transactions on Power Apparatus and Systems, 1971, PAS-90(6):2802~2811.
    [54]Karady G. and Gilsig T. The Calculation of Turn-off Overvoltages in a High Voltage dc Thyristor Valve. IEEE Transactions on Power Apparatus and Systems, 1972, PAS-91(2):565~574.
    [55]Karady G. and Gilsig T. The Calculation of Transient Voltage Distribution in a High Voltage DC Thyristor Valve. IEEE Transactions on Power Apparatus and Systems,1973, PAS-92(3):893~899.
    [56]Tadokoro M., Yamamoto T., Shoji Y., et al. Numerical investigation of the effect of valve reactor design on thyristor stress in a HVDC thyristor valve. Proceedings of Transmission and Distribution Conference, Los Angeles, California,1996.
    [57]S. Kobayashi, T. Takahashi, T. Yoshino, et al. A unit arrester application for HVDC thyristor valve. IEEE Transactions on Power Appratus and Systems,1984, PAS-103(2):3080-3088.
    [58]Tanabe S., Kobayashi S., Sampei M. Study on overvoltage protection in HVDC LTT valve. IEEE Transactions on Power Delivery,2000,15(2):545~550.
    [59]Harrison R. E., Shemie R. K., Krishnayya P. C. S. A Proposed Test Specification for HVDC Thyristor Valves. IEEE Transactions on Power Apparatus and Systems, 1978, PAS-97(6):2207~2218.
    [60]Elahi H., Flugum R. W., Wright S. E., et al. Insulation coordination process for HVDC converter stations:preliminary and final designs. IEEE Transactions on Power Delivery,1989,4(2):1037~1048.
    [61]D.J. Melvold, P.C.Odam, J.J.Vithayathil. Transient overvoltages on an HVDC bipolar line during monopolar line faults. IEEE Transactions on Power Appratus and Systems,1977, PAS-96(2):591~601.
    [62]IEEE Working Group. Insulation Coordination Designs of HVDC Converter Installations. IEEE Transactions on Power Apparatus and Systems,1979, PAS-98(5):1761~1776.
    [63]IEEE.857-1990. IEEE guide for test procedures for HVDC thyristor valves. New York:IEEE,1990.
    [64]IEEE.857-1996. IEEE recommended practice for test procedures for high-voltage direct-current thyristor valves. New York:IEEE,1997.
    [65]IEC.60700-1. Thyristor valves for high voltage direct current power transmission. Part1:Electrical testing. Switzerland:IEC,2003
    [66]IEC.60071-5. Procedures for high-voltage direct current (HVDC) converter stations. Switzerland:IEC,2002.
    [67]赵中原,邱毓昌,于永明,等.换流阀内可控硅端电压特性分析和缓冲电路参数优化.中国电力,2003,33(1):52~54
    [68]赵中原,朱周侠,邱毓昌,等.高压直流输电用可控硅宏模型.高电压技术,2002,28(9):1~3
    [69]赵中原,邱毓昌,于永明,等.用晶闸管宏模型分析换流阀内电压分布特性.电网技术,2003,27(9):33-36.
    [70]邹刚,陈祥训,郑健超,等.用于电力电子系统暂态过程分析的晶闸管宏模型.中国电机工程学报,1999,19(6):1~5.
    [71]温家良,刘正之,傅鹏.一种简化晶闸管宏模型及其在暂态分析中的应用.电力电子技术,2002,36(2):66~68.
    [72]蓝元良,汤广福,印永华,等.串联晶闸管反向恢复暂态过程的研究.电网技术,2006,30(16):15~19.
    [73]汤广福,贺之渊,邓占峰.基于器件物理特性的晶闸管阀串联机制系统化研究.中国电机工程学报,2006,26(12):39~44.
    [74]贺之渊,邓占锋,查鲲鹏,等.晶闸管阀过电流实验装置过电压保护策略的研究.中国电机工程学报,2006,26(13):56~61.
    [75]王毅,石新春,李和明,等.基于统一离散时域建模法的晶闸管串联运行暂态仿真.电力系统自动化,2004,28(18):41~44.
    [76]赵中原,邱毓昌,方志,等.换流阀内雷电冲击电压的分布及影响因素.高电压技术,2002,28(3):1~3.
    [77]崔东,冯建强,贾涛,等.±500 kV HVDC换流阀冲击实验技术.电力设备,2006,7(3):30~32.
    [78]崔东,李彦明,王建生,等.晶闸管换流阀冲击电压特性研究.高压电器,2005,41(1):39~40.
    [79]R. Scheich, J. Roudet. EMI conducted emission in the differential mode emanating from an SCR:phenomena and noise level prediction. IEEE Transactions on Power Electronics,1995,10(2):105~110.
    [80]Richard Redl. Electromagnetic environmental impact of power electronics equipment. Proceedings of the IEEE,2001,89(6):926~938.
    [81]Qingmin Li, W. H. Siew, Martin G. Stewart, et al. Radiated emissions From FACTS equipment operational within substations. IEEE Transactions on Power Delivery, 2005,20(2):1788~1796.
    [82]Gonzalez, D., Balcells, J., Santolaria, A, et al. Conducted EMI Reduction in Power Converters by Means of Periodic Switching Frequency Modulation. IEEE Transactions on Power Electronics,2007,22(6):2271~2281.
    [83]Meng Jin, Ma Weiming, Pan Qijun, et al. Identification of Essential Coupling Path Models for Conducted EMI Prediction in Switching Power Converters. IEEE Transactions on Power Electronics,2006,21(6):1795~1803.
    [84]钱照明,陈恒林.电力电子装置电磁兼容研究最新进展.电工技术学报,2007,22(7):1~11.
    [85]汪东艳,张林昌.电力电子装置电磁兼容性的研究进展.电工技术学报,2000,15(1):47~51.
    [86]Clayton R. Paul. Introduction to Electromagnetic Compatibility. New York:Wiley, 2006.
    [87]吴茂林,崔翔.电压互感器宽频特性的建模.中国电机工程学报,2003,23(10):1~5.
    [88]梁贵书,张喜乐,王晓晖,等.特快速暂态过电压下变压器绕组高频电路模型的研究.中国电机工程学报,2006,26(4):144~148.
    [89]Giulio Antonini. SPICE Equivalent circuit of frequency-domain responses. IEEE Transactions on Electromagnetic Compatibility,2003,45(3):502~512.
    [90]A. Dounavis, E. Gad, R. Achar, et al. Passive model reduction of multiport distrbuted interconnects. IEEE Transactions on Microwave and Techniques,2000, 48 (12):2325-2334.
    [91]M. Elzinga, K. L. Virga, L. Zhao, et al. Pole-residue formulation for transient simulation of high-frequency interconnects using householder LS curve-fitting techniques. IEEE Transactions on Advanced Packaging,2000,23(2):142~147.
    [92]D. Saraswat, R. Achar, M. S. Nakhla. A fast algorithm and practical considerations for passive macromodeling of measured/simulated data. IEEE Transactions on Advanced Packaging,2004,27(1):57~70.
    [93]R. Achar, M. S. Nakhla. Simulation of high-speed interconnects. Proceedings of IEEE,2001,89(5):693~728.
    [94]Joel Kolstad, Chris Blevins, John M. Dunn, et al. A new circuit augmentation method for modeling of interconnects and passive components. IEEE Transactions on Advanced Packaging,2006,29(1):67~77.
    [95]D. Paul, M. S. Nakhla, R. Achar, et al. Broadband modeling of high-Frequency microwave devices. IEEE Transactions on Microwave and Techniques,2009,57(2): 361~373.
    [96]Gustavsen B, Semlyen A. Rational approximation of frequency domain responses by vector fitting. IEEE Trans. on Power Delivery,1999,14(3):1052~1061.
    [97]Gustavsen B, Semlyen A. Enforcing passivity for admittance matrices approximated by rational functions. IEEE Trans. on Power Delivery,2001,16 (1): 97~104.
    [98]Gustavsen B. Improving the pole relocating properties of Vector Fitting. IEEE Trans.on Power Delivery,2006,21(3):1587~1592.
    [99]Qin Yu, Holmes, T.W. A study on stray capacitance modeling of inductors by using the finite element method. IEEE Transactions on Electromagnetic Compatibility, 2001,43(1):88~93.
    [100]He, J., Hu, J., Gu, S., et al. Analysis and Improvement of Potential Distribution of 1000kV Ultra-High-Voltage Metal-Oxide Arrester. IEEE Transactions on Power Delivery,2009,24(3):1225~1233.
    [101]Mao Xinkui and Chen Wei. More precise model for parasitic capacitances in high-frequency transformer.2002 IEEE 33rd Annual Power Electronics Specialists Conference, Vol.2, pp.23~27,2002.
    [102]Haiyan Lu, Jianguo Zhu, and S. Y. Ron Hui. Experimental determination of stray capacitances in high frequency transformers. IEEE Transactions on Power Electronics,2003,18(5):1105~1112.
    [103]赵东元,于歆杰,金春莲,等.高压直流输电系统中的滤波装置.国际电力,2002,6(2):38~40.
    [104]李普明,徐政,黄莹,等.高压直流输电交流滤波器参数的计算.中国电机工程学报,2008,28(16):115~121.
    [105]段玉倩,黎小林,饶宏,等.云广特高压直流输电系统直流滤波器性能的若干问题.电力系统自动化,2007,31(10):90~94.
    [106]杨金根,马为民.灵宝换流站交流滤波器性能研究.高电压技术,2004,30(11):60~62.
    [107]刘丽芳,杜明军.高压直流换流站载频噪声滤波器研究.电力系统通信,2006,27(170):49~53.
    [108]郑劲,文俊,石岩,等.特高压直流输电直流侧高频干扰及滤波器型式.高电压技术,2006,32(12):174~177.
    [109]IEEE Working Group 3.4.11. Modeling of metal oxide surge arresters. IEEE Transactions on Power Delivery,1992,7(1):302~309.
    [110]张桂红,郭洁,徐燕飞,等.金属氧化物避雷器陡波下模型的准确性分析.高电压技术,2007,33(3):83~86.
    [111]Ali F. Imece, Daniel W. Durbak, Hamid Elahi, et al. Modeling guidelines for fast front transients. IEEE Transactions on Power Delivery,1996,11(1):493~506.
    [112]Standler R. B. Equations for some transient overvoltage test waveforms. IEEE Transactions on Electromagnetic Compatibility,1988,30(1):69~71.
    [113]Farouk A.M. Rizk, Sherif I. Kamel. Modelling of HVDC Wall Bushing Flashover in Nonuniform Rain. IEEE Transactions on Power Delivery,1991,6(4):1650~1662.
    [114]吴维韩,张芳榴,等.电力系统过电压数值计算.北京:科学出版社,1989
    [115]F. Tesche, M. Ianoz, F. Carlsson. EMC Analysis Methods and Computational Models. New York:Wiley,1997.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700