坑道直流聚焦超前探测有限元数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
坑道直流电阻率法勘探技术以其简便、经济和资料易于解释的优点被广泛的应用于坑道超前预报工作中。但是由于自身工作方式以及工作环境的限制,测量时掘讲堂子面后方坑道腔体及坑道表面不均匀干扰始终是传统坑道直流超前探测无法避免的影响因素。针对此问题,阮百尧提出了利用同性点源的相斥、聚集原理进行坑道勘探的新技术-直流聚焦电阻率超前探测技术。本文在国家自然科学基金项目(40774057)的资助下,进行了基于电流聚焦理念的坑道掌于面和坑道底板及侧壁的垂向聚焦超前探测方案研究。作为坑道直流超前探测中一种全新的方法技术,有必要选取适用的技术手段对其工作机理和应用条件以及探测能力进行分析评价。
     应用有限元数值模拟技术对二维轴对称分布和三维全空间分布的坑道环境下直流聚焦超前探测方案的可行性及效果进行数值模拟研究。分别采用8节点四边形双二次单元和20节点六面体双二次单元对二维和三维研究区域进行剖分。对二维区域电位及电导率分布进行线性插值。三维空间电位采用双二次插值,电导率采用三线性插值,进行异常电位的求解。以此提高坑道局部环境下数值模拟的稳定和精确性。采用行索引一维压缩存储格式,节省了大量的计算机内存,配合存储格式应用高效的分裂型预条件共轭梯度算法求解大型稀疏线性方程组,使三维数值模拟单点计算可以即时完成。在数值建模时考虑到坑道腔体的存在,直接将其所在单元节点信息引入到整体方程组的求解过程中。相同条件下数值计算结果与解析解和土槽物理实验结果吻合,满足数值模拟需要。
     用两章篇幅结合模型计算分别对掌子面垂向聚焦装置和坑道侧壁垂向聚焦剖面装置的场源分布特征、探测效果、适用性以及抗干扰能力进行了详细的讨论和分析。应用多个组合模型分别对比计算了掌子面三极聚焦装置、五极聚焦装置和九极聚焦装置对掘进前方聚焦场中异常体的响应,最后从勘探效果和实用性的角度选取掌子面五极聚焦装置为最佳方案。相对掌子面装置坑道剖面垂向聚焦方案电极排列方式要丰富许多。文中提及的剖面测量装置有聚焦双极装置、聚焦三极装置和聚焦五极装置,均可以进行电位和电位梯度测量。而且双极聚焦装置根据勘探目的的不同还可以通过改变电极排列万式延伸出中心测量方式、单边测量方式和双边测量方式。经过典型模型的计算,达到了预期的设计效果,说明上述垂向聚焦剖面装置设计方案正确可行。
     通过屏流比的概念将屏蔽电极和主探测电极中发射的电流联系到了一起,模型计算说明改变屏流比参数,可以改变聚焦场中屏蔽电流对主探测电流的约束作用。
     常规坑道直流探测方案经过多年发展和实践的检验已经被证明是可行的。文中通过类比坑道常规直流装置电极排列方式,应用同性源聚焦装置进行坑道剖面及剖面测深计算,结果显示能够达到相应坑道直流常规装置的勘探效能。但是也存在问题,采用异性点源装置等效得到的同性垂向聚焦装置视电阻率转换公式进行计算后得到的视电阻率参数出现负值,分析认为这与源场的分布特征及异常响应机理相关。建议今后在这方面进行深入研究。
     源场的分布特征直接关系到异常资料的解释和评判,文中针对各种模型设置及装置类型应用MATLAB二维有限元数值模拟工具对相应的异常场中电位及电流密度分布以图形方式进行了直观表示。
Tunnel DC resistivity methods are widely used in tunnel advanced exploration with the advantages of being simple, cheaper and easy to interpretation, compared with others. However, due to the restriction of the survey configuration and working environment, it is impossible to avoid the interferences of tunnel cavity and the heterogeneous accumulations behind the tunnel face, for the conventional tunnel direct-current advanced prospecting. To solve this problem, Bai-Yao Ruan proposed a new exploration technique for tunnel advanced detection, i.e., DC focusing resistivity advanced detection method. It is based on the principles of repulsion and focusing like point sources. Supported by the National Natural Science Foundation of China (Project Number:40774057), this thesis focuses on the advanced detection measurements with vertical focusing arrangement on the tunnel face and tunnel wall, based on the idea of electric current focusing effect. As a new method of direct current advanced detection in tunnel, it is necessary for us to develop appropriate techniques to analyze and appraise the working principle, application conditions and exploration capability of the measurements.
     In this thesis, a numerical simulation method of finite element was used to evaluate the feasibility and effect of focus DC current advanced detection in tunnel for several models with2D axial-symmetric structure and3D full space structure. At first, the2D and3D target model is divided into finite rectangular elements and finite hexahedron elements with bilinear variation in conductivity respectively. Then linear interpolation was used to achieve the potential within each element for2D model. For3D model, we use bilinear interpolation for the conductivity and3-D linear interpolation for the potential as to get the anomalous potential, whereas it should improve the stability and accuracy in the numerical simulation. To save the computer memory, an iterative solver based on the splitting pre-conjugate gradient and row compressed storage scheme were employed to solve the linear system with less computation time. During the numerical modeling, the existence of cavities was considered, its information was directly included into the linear system during the process of solving the equation. Under the same conditions, the results gained with FEM are consistent with the result gained by the physic experiment.
     In the first two chapters, we give a detailed discussion and analysis of the field source distribution, exploration ability, applicability and anti-noise capability of tunnel face vertical focusing device and tunnel wall vertical focusing profile device. The response of anomalous body for three-electrode focus current array, five-electrode focus current array and night-electrode focus current array applied to tunnel face were modeled by multiple combination models. Finally, five-point focus current array is proved to be optimal in terms of exploration effects and practicability. Generally, tunnel wall focus current profile arrays are plentiful compared to tunnel face focus arrays.
     The measurement configuration mentioned in this paper, e.g., two-pole focus array, three-electrode focus array and five-electrode focus array, can be applied to potential and potential gradient measurement. Moreover, the bipole focus array can be extending to different survey configurations, e.g., center measurement method, unilateral measurement method and bilateral measurement method, according to different exploration purpose. The numerical results for several typical models, show that the vertical focus profile array design is effective and practical.
     Based on the concept of'PLB', we build the relationship of the current from the shielding electrodes and from the primary electrode. The model calculations show that we can control the restriction of shielding current on primary current in focusing field, by the parameter'PLB'
     After years'development and experiment in practice, conventional tunnel DC detection method has been proved to be effective. In this paper, focus current array, for the tunnel conventional DC electrodes arrangement device, was applied to profile prospecting and sounding in tunnel, and the numerical results show that the focus current array could achieve the corresponding exploration efficiency compared to conventional DC device. However, there are also some problems, e.g., the apparent resistivity appears negative, calculated form the resistivity calculation formulas for the homogeneous point-source device. This may result from the source distribution characteristics and anomaly response mechanism.
     Source distribution characteristics directly affect the interpretation of field data and the judgment of anomalous bodies.2D finite element numerical simulation tools based on MATLAB were used to modeling the distribution of abnormal potential and current density for different models and array types.
引文
[1]李金铭.地电场与电法勘探.北京:地质出版社,2005.
    [2]王齐仁.隧道地质灾害超前探测方法研究[D].长沙:中南大学信息物理工程学院,2008.
    [3]岳建华,刘树才.矿井直流电法勘探.徐州:中国矿业大学出版社,2000.
    [4]李玉宝.矿井电法超前探测技术.煤炭科学技术,2002,30(2):1-3.
    [5]中南矿冶学院物探教研室.金属矿电法勘探.北京:冶金工业出版社,1980.
    [6]葛德彪,闫玉波.电磁波时域有限差分法(第二版).西安:西安电子科技大学出版社,2005.
    [7]李宗元.电磁场边界元素法.北京:北京工业学院出版社,1987.
    [8]Yee K S. Numerical solution of initial boundary value problems invol-veing Maxwell equations in isotropic media. IEEE Trans. Antennas Propagat.,1966, AP-14 (3):302-307
    [9]金建铭.电磁场有限元方法.西安:西安电子科技大学出版社,1998.
    [10]江玉乐,雷宛.地球物理数据处理教程.北京:地质出版社,2006.
    [11]徐世浙.有限元法及其在物探中的应用简介.物探化探计算技术,1982,4(2),86-103.
    [12]徐世浙,赵生凯.二维各向异性地电剖面的大地电磁场的有限单元解法.地震学报,1985a,7(7),80-90.
    [13]徐世浙.电导率分层线性变化的水平层的点电源电场的数值解.地球物理学报,1986,29(1),84-90.
    [14]徐世浙.点源二维各向异性地电断面直流电场的有限元解法.山东海洋学院学报,1988a,18(1),81-90.
    [15]徐世浙.点源二维电场问题中傅氏反变换的波数的选择.物探化探计算技术,1988b,10(3),235-239.
    [16]徐世浙.地球物理中的边界单元法.北京:科学出版社,1994
    [17]田宪谟,黄兰珍.电法勘探用边界单元法.北京:地质出版社.1990
    [18]Dey A, Morrison H F. Resistivity modeling for arbitrarily shaped three-dimensional structures.Geophysics,1979,44 (,1):753-780
    [19]Scriba, H. Computation of the electrical potential in three-dimensional structures, Geophysical Prospecting:1981,29(5):790-802.
    [20]吴小平,徐果明,李时灿,利用不完全Cholesky共轭梯度法求解点源三维电场,地球物理学报,1998,41(6):848~855.
    [21]Spitzer K. The three-dimensional DC sensitivity for surface and sub-surface sources. Geophysical Journal International,1998,134: 736-746.
    [22]邓正栋,关洪军,万乐等.稳定点电流场三维有限差分正演模拟,解放军理工大学学报,2000,1(3)45~50.
    [23]Honmann G W. Three dimensional induced polarization and elec-tromagnetic modeling:Geophysics,1975,40,309-324.
    [24]Sanfil ipo W A, Hohman G W. Int egral equat ion solution of the transient electromagnetic response of a three dimensional body in a conduct ive half space. Geophysi cs,1985,50(5):798-809.
    [25]Wannamaker P E. Advances in three-dimensional magnetotelluric modeling using integral equations. Geophysics,1991,56(11):1716-1728
    [26]王志刚,何展翔,魏文博.积分方程法三维模拟井地电法并行算法研究.物探化探计算技术,2007,29(5):425~430;
    [27]田宪谟,黄兰珍,寸树仓.任意三维地电模型视电阻率异常的边界元法数值解.物探与化探,1989,13(2):136~143
    [28]徐世浙,倪逸,复杂地电条件下点源三维电阻率模拟的新方法.物探化探计算技术,1991,13(1):13~20.
    [29]Pridmore D. F., Hohmann G. W. and Ward, S. H. An investingation of finite element modeling for electrical and electromagnetic data in three dimensions, Geophsics,1981,46,1009-1024.
    [30]阮百尧,熊彬,徐世浙,三维地电断面电阻率测深有限元数值模拟,地球科学,2001,26(1),73-77.
    [31]阮百尧,熊彬,电导率连续变化的三维电阻率测深有限元模拟,地球物理学报,2002,45(1),131-138.
    [32]黄俊革,阮百尧,王家林.坑道内赤道偶极电阻率测深的可行性.中南大学学报(自然科学版),2006,37(4):796~803.
    [33]黄俊革,阮百尧,王家林.坑道直流电阻率法超前探测的快速反演.地球物理学报,2007,50(2):619~624.
    [34]刘天放,李志聃.矿井地球物理勘探[M].北京:煤炭工业出版社,1993.
    [35]冯玉静,王邦成,李玉宝等.点电源法在煤矿巷道超前探测中的应用及效 果.河北煤炭,1998,4:9~11.
    [36]程久龙,王玉和,于师建等.巷道掘进中电阻率法超前探测原理与应用.煤田地质与勘探,2000,28(4):60~62.
    [37]刘青雯.井下电法超前探测方法及其应用.煤田地质与勘探,2001,29(5):60-62.
    [38]韩德品,张天敏,石亚丁等.井下单极-偶极直流电透视原理及解释方法.煤田地质与勘探,1997,25(5):32~34.
    [39]刘青雯,刘艳玲,韩德品.矿井电穿透法二维正演数值模拟.煤田地质与勘探,2001,29(3):48~52.
    [40]时晗,窦文明.直流电法勘探在宋楼煤矿主斜井突水中的应用.中国煤田地质,2005,17(6):45~47.
    [41]张学道,任春辉,刘华.直流电法在近水体巷道施工中的应用.煤炭技术,2007,26(6):97~98.
    [42]雷贵生,韩德品.矿井电法勘探工作面底板潜在突水构造的应用.煤炭科学技术,2007,35(6):24~26.
    [43]李永军,朱丽,李小明.直流电法技术在矿井防治水中的应用.华北科技学院学报,2010,7(1):12~15.
    [44]高致宏,闫述,王秀臣等.巷道超前(电法)探测的应用现状与存在的问题.煤炭技术,2006,25(5):120~121.
    [45]李文军,郭纯.井下直流电法技术应用中的问题.中州煤炭,2006,(3):63~65.
    [46]张松平,刘盛东,曹煜等.坑道掘进立体电法超前预报技术研究.中国煤炭地质,2009,21(2):50~53.
    [47]刘煜洲,陈福集,寇绳武等.全空间中内壁点电源场电位的边界元算法及其应用.物探化探计算技术,1997,19(4):317~322.
    [48]岳建华,李志聃.矿井直流电法勘探中的巷道影响.煤炭学报,1999,24(1):7~10.
    [49]刘志新,许新刚,岳建华.矿井电法三维有限元正演模拟-直流电透视方法技术研究.物探化探计算技术,2003,25(4):302~307.
    [50]刘树才,刘志新,姜志海等.矿井直流电法三维正演计算的若干问题.物探与化探,2004,28(2):170~176.
    [51]黄俊革,沈云发,阮百尧.坑道内金属管道对电阻率测深影响.石油地球物理勘探,2004,39(增刊):52~56.
    [52]黄俊革,鲍光淑,阮百尧.坑道直流电阻率测深异常研究.地球物理学报, 2005,48(1):222~228.
    [53]黄俊革,王家林,阮百尧.坑道直流电阻率法超前探测研究.地球物理学报,2006,49(5):1529~1538.
    [54]DOLL H. G. The Laterolog:A new resistivity logging method with electrodes using an automatic focussing system, Transactions American Institute of Mining and Metallurgical Engeerings192, 1951,305-316.
    [55]Archie G. E. The electrical resistivity log as an aid in determining some reservoir characteristics. Transactions American Institute of Mining and Metallurgical Engineers,1942,146:54-62.
    [56]Archie G. E. Introduction to petrophysics of reservoir rocks, Bulletin American Association Petrologists and Geologists,1950,34 (5):943-961.
    [57]Schlumberger X. X. Log Interpretation Principles. Schlumberger Ltd, New York 10017,1969.
    [58]Keller G. V. An improved electrode system for use in electric logging: Producers Monthhy,1949,13:12-15.
    [59]Doll H. G., Sauvage R. and Martin M. Application of Micrologging to determination of porosity, Oil and Gas Journal.1952,51 (17),90-93, and (Part II),51 (18):86-94.
    [60]Doll H. G. The Microlaterolog:Transactions American Institute of Mining and Metallurgical Engineers.1953,198:17-32.
    [61]Suau J., Grimaldi p., Poupon A. et al. The Dual:Laterolog-RXo tool, paper SPE 4018, presented at 47th Annual Fall Meething:Society of Petroleum Engineers, Richardson, Texas USA.1972.
    [62]Moran J. H. and Chemali R. E. More on the Laterolog device. Geophysical Prospecting,1979,27:902-930
    [63]Jackson P. D. Comments on "New results in resistivity well logging" Geophysical Prospecting,1976,24:407-408.
    [64]Jackson P.D. Focussed Electrical Resistivity Arrays:Some Theoretical and Practical Experiments. Geophysical Prospecting,1981, 29:601-626.
    [65]N. N. Introduction to Schlumberger well logging. Schlumberger Document No.8,Schlumberger Well Surveying Corporation,1958.
    [66]N. N. Log interpretation principles. Schlumberger Document, Schlu-mberger Limited,1972.
    [67]Roy A. New results in resistivity well-logging. Geophysical Prospecting,1975,23:401-402.
    [68]Roy A. The concept of Apparent Resistivity in Laterolog 7. Geophysical Prospecting,1977,25:730-737.
    [69]Roy A. and Apparao A. Laboratory results in resistivity logging. Geophysical Prospecting,1976,24:123-140.
    [70]Moran J. H. Comments on "Newresults in resistivity well-logging" Geophysical Prospecting,1976,24:401-402.
    [71]Chemali R., Gianzero S. and Stickland R. et al. The schoulder bed effect on the dual laterolog and its variation with resistivity of the borehole fluid:Presented at the Soc. Prof. Well log Anal.24th Annual Logging Symp.1983,27-30.
    [72]Bouma A. H., Sweet W. E. and Chmelik F. B. et al. Shipboard and in situ electrical resistivity logging of unconsolidated marine sediments, Offshore Technology Conference, Houston, Texas.1971,1:253-268.
    [73]Kermabon A. J. Recent developments in deep sea electrical probings-its application to the sedimentary study of the Red Sea hot brines, Oceanology International 72 Confer-ence Papers,19/24, March 1972, Brighton, U.K.1972:385-391.
    [74]Erchul R. A. and Nacci V. A. Electrical resistivity measuring system for porosity determination of marine sediments. Marine Technical Society Journal,1972,6(4):47-53.
    [75]Jackson P. D. An electrical resistivity method for evaluating the in situ porosity of clean marine sands. Marine Geotechnology,1975,1 (2): 91-115.
    [76]Jackson P. D., Taylor Smith D. and Stanford P. N. Resistivity porosity particle shape relationships for marine sands. Geophysics,1978, 43(6):1250-1268.
    [77]Beckman H. and Deminary G. The Nanolog, a new way to log the resistivity of the seafloor. Geophysical Prospecting,1976,24: 309-316.
    [78]陈东升,沈志成.七电极侧向测井的影响因素.地球物理学报,1965,14 (4):307~327.
    [79]张庚骥.非均匀介质电场的逐次逼近解法和直流电测井的几何因子.地球物理学报,1980,23(2):183~196.
    [80]张庚骥.电法测井(上册).北京:石油工业出版社,1984.
    [81]梁(汲金)廷.三电极系侧向测井的径向几何因子.地球物理学报,1975,18(4):184~296.
    [82]梁(汲金)廷.三侧向测井视电阻率的负差异.地球物理学报,1983,4(2):31~35.
    [83]尚作源.电法测井的新进展.国外测井技术,1995,10(增刊):46~50.
    [84]李善军,肖承文,汪涵明等.裂缝的双侧向测井响应的数学模型及裂隙孔隙度的定量解释.地球物理学报,1996,39(6):845~852.
    [85]陈国庆.三侧向电流曲线贵州矿区煤层解释效果.中国煤田地质,2003,15(5):59~60.
    [86]潘保芝,房德斌.侧向测井曲线分辨率匹配方法及其在松辽盆地的应用.石油物探,2004,43(3):306~312.
    [87]胡辉.普通电阻率与侧向电阻率测井曲线转换方法分析.江汉石油学院学报,2005,27(1):65~67.
    [88]谭耀红,付晨东.高分辨率阵列感应测井在大庆东部油田的应用.测井技术,2006,30(4):347~356.
    [89]邓少贵,李智强.裂缝性储层裂缝的阵列侧向测井响应数值模拟.地球科学-中国地质大学学报,2009,34(5):841~847.
    [90]李智强,范宜仁,邓少贵等.基于改进差分进化算法的阵列侧向测井反演.地球科学-吉林大学学报.地球科学版,2010,40(5):1199~1204.
    [91]Guyod H. Factors affecting the responses of Laterolog-type logging systems(LL3 and LL7). Jour. Petroleum Technology,1964,16:211-219.
    [92]Guyod H. Examples of current distribution about laterolog sondes. The Log Analyst,1966,7:27-34.
    [93]Mufti I. R. Finite-difference resistivity modeling for arbitrarily shaped two-dimensional structures. Geophysics,1976,41(1):62-78.
    [94]Mufti I. R. A practical approach to finite-difference resistivity modeling. Geophysics,1978,43(5):930-942.
    [95]Mufti I. R. Finite-difference evaluation of apparent resistivity logging. Geophysical Prospecting,1980,1(28):146-166.
    [96]Anderson B. and Chang, S. K. Synthetic induction logs by the finite element method, in 23rd Annual LoggingSymposium Transactions: Society of Professional WellLog Analysts,1982:M1-M14.
    [97]Gianzero S. and Anderson B. An integral transform solution to the fundamental problem in resistivity logging. Geophysics,1982,47(6): 946-956.
    [98]李大潜.有限元素法在电法测井中的应用.北京:石油工业出版社,1980.
    [99]张庚冀.电法测井(下册).北京:石油工业出版社,1984.
    [100]Tsang L., Chan A. K., and Gianzcro S. Solution of the fundamental problem in resistivity logging with a hybrid method. Geophysics,1984, 49(10):1596-1604.
    [101]李乃华,唐永福.微侧向测井边界有限元解法.计算物理,1988,5(2):169-179.
    [102]Shattuck D. P., Bittar M.S. and Shen, L. C. Scale modelling of the laterolog using synthetic focusing methods. The Log Analyst,1987, 28(4):357-369.
    [103]Towle G. H., Whitman W. W. and Kim J. H. Electric log modeling with a finite difference method. The Log Analyst,1988,29(3):184-195.
    [104]Li J. and Shen L. C. Numerical simulation of spherically focused logs. The Log Analyst,1992,33(6):495-499.
    [105]Roy K. K. and Dutra D. J. Analysis of a laterolog tool with variable geometric factor. The Log Analysts,1993,34:24-32.
    [106]Roy K. K. and Dutta D. J. Borehole dc resistivity response for transitional invaded zone. Geophysics,1994,59:1796-1805.
    [107]Roy K. K. and Dutta D. J. Relative performance of focussed and unfocussed devices in a two-dimensional borehole environment. Journal of Applied Geophysics,1997,36:181-194.
    [108]Chen Y. H. and Chew W. C. A novel array laterolog method. The Log Analyst,1998,39(5a1):22-33.
    [109]Liu, Z., Oyang, J., Zhang, J.1999. Dynamic dual-laterolog responses: model and field applications in the Bohai Gulf of China. PetroleumScience and Engineering 23 (1),1-11
    [110]曾花秀,王敬农,陆文端.聚焦型激发极化电场的数值模拟方法.江汉石油学院学报,1999,21(4):11~14
    [111]高杰,谢然红.大斜度井侧向测井三维正演数值模拟及曲线快速校正方法 研究.石油勘探与开发,2000,27(2):69~71
    [112]刘振华,胡启.阵列侧向测井响应的计算及其特征.西安石油学院学报:自然科学版,2002,17(1):53~57
    [113]Avdeev D. B., Kuvshino A. V. and Pankratov O. V. Three-dimensional induction logging problems, Part 1:An integral equation solution and model comparisons. Geophysics,2002,67:413-426.
    [114]Cozzolino, K., and Silva J. C. Synthetic focusing and simulation of dual laterolog tool in axisymmetric subsurface models. Journal of Applied Geophysics,2007,61:102-110.
    [115]Nam M. J., Pardo D. and Torres-Verdin C. Simulation of DC dual-laterolog measurements in complex formations:A Fourier-series approach with nonorthogonal coordinates and self-adaptive finite elements. Geophysics,2009,74(1):E31-E43
    [116]邓少贵,仝兆岐,范宜仁.各向异性倾斜地层双侧向测井响应数值模拟.石油学报,2006,27(3):61~64
    [117]邓少贵,李竹强,李智强.水平井双侧向测井响应及层厚/围岩影响快速校正.石油勘探与开发,2009,36(6):725~729
    [118]H.Л.格里果里也娃.直流电的各种安排法在导电球体上的ρk异常比较.北京:地质出版社,1954
    [119]Ravindra N.Gupta, Hattacharya P K. Unipole method of electrical profiling. Geophysics,1963,28(4):608-616.
    [120]Roy A, Apparao A. Depth of investigation in direct current methods. Geophysics,1971,36(5):943-959.
    [121]Abhijit Dey, Wallace H.Meyer and H.Frank Morrisonetl. Electric field response of Two-Dimensional inhomogeneities to unipolar and bipolar electriode configurations. Geophysics,1975,40(4):630-640.
    [122]Brizzolari E., Bernabini M. Comparison between Schlumberger electr-ode arrangement and some focused electrode arrangements in resistivity profiles. Geophys. Prospect.1979,27:223-244.
    [123]Panissod C., Lajarthe M., Tabbagh A. Potential focusing:a new multi-electrode array concept, simulation study and field tests in archaeological prospecting. J. Appl. Geophys.1997,38:1-23.
    [124]黄启声.垂向屏障等位电测法.物探与化探.1981,(3):164~171.
    [125]费锡铨.聚焦垂直极化法.地质与勘探.1983,(10):46~50.
    [126]潘进生,俞日洲.直流电法中五极中心排列的理论和实验.物探与化探.1986,(4):282~291.
    [127]张道清,冯利军,胡书志.聚焦垂直极化法普查地下水初试.水文地质工程地质.1993,(6):55-59.
    [128]黄启声,陈进宝.屏障过渡激发极化法在深部找矿中的应用.江苏地质,1994,18(2):97~102.
    [129]朱劲,李天斌,李永林等.Beam超前地质预报技术在铜锣山隧道中的应用.工程地质学报,2007,15(2):258~262.
    [130]罗玉虎.激发极化法在隧道超前地质预报中的应用.铁道建筑,2009,11:37~39.
    [131]阮百尧,邓小康,刘海飞等.坑道直流电阻率超前聚焦探测新方法研究.地球物理学报,2009,52(1):289~296.
    [132]周丽,阮百尧,宁绍球等.聚焦电流法隧道超前探测模型实验.桂林工学院学报,2009,(1):40-43.
    [133]杨庭伟,阮百尧,周丽等.聚焦电流法隧道超前探测导电纸模拟.矿产与地质,2009,23(4):362~366.
    [134]强建科,阮百尧,周俊杰.三维坑道直流聚焦法超前探测的电极组合研究.地球物理学报,2010,53(3):695~699.
    [135]张力,阮百尧,吕玉增等.坑道全空间直流聚焦超前探测模拟研究.地球物理学报,2010,54(4):1130~1139.
    [136]陆君安,尚涛,谢进等.偏微分方程的MATLAB解法.武汉:武汉大学出版社,2001.
    [137]Kattan P. I. MATLAB有限元分析与应用(韩来彬译).北京:清华大学出版社,2004.
    [138]欧东新,阮百尧.电性轴对称分布电阻率测井的有限元法模拟.桂林工学院学报,2002,22(2):123~128.
    [139]徐世浙.地球物理中的有限单元法.北京:科学出版社,1994.
    [140]薛琴访.场论.北京:地质出版社,1978.
    [141]《数学手册》编写组.数学手册.北京:高等教育出版社,1979.
    [142]Yousef Saad. Iterative methods for sparse linear systems. Bei-jing:Science Press,2009.
    [143]龙建辉.解线性方程组的一种新的迭代法.福建工程学院学报,2010,8(4):352~254.
    [144]林绍忠.用预处理共轭梯度法求解有限元方程组及程序设计.河海大学 学报,1998,26(3):112~115.
    [145]O'Neill D. J and Merrick N P. A digital linear filter for resi-stivity sounding with a generalized electrode array. Geophys. P-rospect.1984,32:105-123.
    [146]傅良魁.电法勘探教程.地质出版社,1983.
    [147]武汉地质学院金属物探教研室编.电法勘探教程.北京:地质出版社,1991.
    [148]李金铭.激发极化法方法技术指南.北京:地质出版社,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700