红透山铜矿隐伏矿体三维定量预测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为危机矿山寻找接替资源是当前矿产资源预测评价与找矿的热点问题。一方面,危机矿山具有矿山开发程度高、地质勘探原始资料积累充分、评价与找矿向深边部三维空间发展的特点。另一方面,矿产资源预测中许多重大基础问题的研究常常涉及到非线性问题,如矿床与各种控矿因素之间的关系问题。这些都要求建立起适应于危机矿山深边部及外围找矿的矿产资源评价新理论、新方法和找矿创新体系。
     辽宁红透山铜矿是我国东北最大的铜矿基地,随着表层矿与浅层矿体的开采与利用,矿山陷入了“硐老山空”的尴尬境地。围绕老矿山深部及外围开展找矿工作已势在必行。
     以“十一五”国家科技支撑计划“深采有色金属矿山资源增储与高效利用关键技术研究”项目为依托,通过对红透山铜矿区几十年来积累的地质找矿资料进行综合研究和二次开发利用,以矿区成矿规律为指导,在总结和吸纳现有矿产资源定量评价、三维地学建模与可视化技术、空间数据挖掘等技术与方法的基础上,研究和实现了符合矿产资源预测评价要求的多源三维地学空间数据库、地质体实体模型和块体模型、地质场数字化模型与控矿作用空间分析,并建立了适应于危机矿山可接替资源找矿特点的基于SDM的隐伏矿体三维定量预测理论和方法。主要研究成果如下:
     (1)在全面收集与整理红透山铜矿地质、勘探、物探等已有资料的基础上,分析矿区的地质数据现状与多源三维地学空间数据库特征,对其进行整合与统一化管理;利用三维地质建模软件Surpac建立了矿区地层、构造、已知矿体和地球物理等三维实体模型以及它们的块体模型,实现了多源地学空间数据在三维可视化层面上的统一建模、统一数字化表达与存储,并与隐伏矿体预测指标数据及预测成果一起,构成了多源三维地学空间数据库。
     (2)以多源三维地学空间数据为基础,从地质体控矿作用空间分布角度,提出了反映成矿物理化学作用在地质空间中的综合分布与控矿作用效果的地质场,给出了地质场的数字化建模方法和空间分析方法,建立了矿化分布场、断层控矿作用场、地层岩性控矿作用场、物探作用场等场模型,实现了场模型的数字化表达。利用空间分析和统计分析等手段,对断层控矿作用场、地层岩性控矿作用场、物探作用场与矿化分布场的空间关联关系进行了分析,提取出了可定量地度量地质控矿作用的成矿有利指标,得到了成矿有利指标与矿化指标之间的定量空间相关关系,最大限度地揭示了隐含在综合地质资料中的控矿地质因素、找矿标志到矿化分布的非线性映射关系;
     (3)在分析空间数据挖掘理论与方法的基础上,探讨了模糊综合评判法、层次分析法、灰色关联分析法以及回归预测方法等矿产资源预测中常用的空间预测方法,构建了基于空间数据挖掘的隐伏矿体三维定量成矿预测体系。并针对单一预测方法的不足,提出了将各类不同的预测方法进行优势互补进行矿产资源综合预测的组合预测方法。
     (4)综合运用灰色系统理论、模糊数学方法以及层次分析法,建立了灰色模糊层次综合评判(GFAHP)预测模型。为了更好地确定模型评判指标权重,将主观赋值法与客观赋值法相结合,使用灰色关联度分析方法对各控矿因素指标对矿化的重要性进行定量分析和比较。对层次分析法进行了改进,将原来的两两对比矩阵改造成模糊一致性矩阵,构建了模糊层次分析法的数学模型。利用改进后的模糊层次分析法确定权重值,弥补了主、客观赋值法的缺陷,使权重值的确定更为精确。并与模糊综合评价模型相结合,建立了适用于隐伏矿体三维定量预测的GFAHP模型。
     (5)利用回归预测方法,建立了反映矿化变量与控矿因素之间的矿化数学模型,并对红透山铜矿隐伏矿体进行预测;并与GFAHP预测模型一起,分别绘制了它们各自按标高水平的单元预测结果等值线图。通过对这两种预测结果对比分析,圈定了立体找矿靶区,并预测其资源量。
In order to ensure the sustainable development of the social economy of our country, it becomes presently an outstanding problem to explore replaceable resources for the crisis mines. On one hand, the crisis mines have the following characteristics:high intensity in mine exploration and development, sufficient accumulation in the firsthand information of geological exploration, development towards the deep and marginal three-dimensional space for evaluation and ore prospecting. On the other hand, many important and basic problems in mineralization and predictive research often involve non-linear problems such as the relationship between the deposits and control factors of mineralization. Therefore, it has become an urgent affair to establish the new methods and theories for evaluating mineral resources in new prospecting innovation systems that are suitable for the crisis mine prospecting in the deep, marginal and peripheral locations.
     Hongtoushan Copper Mine in Liaoning province is the biggest copper mine base in northeast of china and has become a resource crisis mine with the increasing ore body exploration and usage in surface and in shallow. It is imperative to carry out concealed ore body exploration in the deep, marginal and periphery locations of old mine.
     Based on the eleventh five-year national science and technology supporting plan "key technology research on deep mining nonferrous metal mine resource reserves increase and efficient utilization", according to the comprehensive research and secondary development and utilization on geological prospecting data, guided by the metallogenic regularity of mining area, this research assimilates modern theories and methods of quantitative appraisal of mineral resources,3D geoscience modeling, spatial date mining, etc, studies and implements the multi-source3D geoscience spatial database, geological entity models and block models, the digital modeling of geological field and the spatial analysis of geological ore-controlling factors which are suitable for the requests of prospecting of replaceable resource. And then, the stereo quantitative3D prediction theory and method of concealed ore body base on SDM is set up. The main research results are as follows:
     (1) Based on completely collecting and sorting out of existing Hongtoushan Copper Mine geological data, exploration data and geophysical data, the paper analyses the present situation of geological mining data and the characteristics of multi-source3D geology spatial database, and makes integration and unification management on the database; uses3D geological modeling software Surpac to build3D solid and block model of the mining formation, tectonic, known ore body and geophysics, realizing the unified modeling, unified digital expression and storage of the multi-source geological spatial data in3D visualization level, which constitute multi-source3D geological spatial database along with concealed ore body prediction index data and result.
     (2) With the consideration of ore-controlling actions of geological conditions and based on the multi-source3D geological spatial database, the geological field, which can give a macro description or reflection of the metallogenic physicochemical process's synthetic distribution and ore-controlling effects in geological space, is put forward. The digital modeling method and the spatial analysis method of geological fields are given. Based on the geological field theory above, the distribution fields of mineralization and the ore-controlling effect fields of faults, strata, lithology and geophysical are analyzed, and the ore-formation favorable indexes, which can quantitatively characterize the geological ore-controlling effects, are extracted. Accordingly, the quantitative spatial correlation between the ore-formation favorable indexes and the mineralization indexes is reached, which can maximally reveal the nonlinear mapping relationship from ore-controlling geological factor, prospecting criteria hidden in the comprehensive geological data to mineralization distribution.
     (3) Through analyzing SDM theories and means, discussing some general SDM means in mineral resource prediction such as fuzzy comprehensive evaluation, analytic hierarchy precess (AHP), grey relational analysis and regression forecasting,3D quantitative metallogenic prediction system of concealed ore body is built based on SDM. In order to conquer the disadvantages of single prediction method, a combination predicting method is put forward according to use the advantages of different methods.
     (4) The paper comprehensively uses grey system theory, fuzzy mathematical method and analytic hierarchy process to build grey fuzzy hierarchy comprehensive evaluation prediction model (GFAHP). In order to make the factor's weight more effective and accurate, it combines subjective and objective valuation method together, and uses grey relational analysis to analyze the importance between ore-controlling effects. An Improved fuzzy hierarchy analyst method, which changes the comparison matrix to fuzzy consistent matrix, is used to determine the weights, which remedy the defects of subject and object valuation methods. In combination with fuzzy comprehensive evaluation model, GFAHP model is set up for concealed ore body3D quantitative prediction.
     (5) The mineralization mathematical model that reflects the functional relation between the mineralization variables and the ore-controlling variables is built by using multiple regression model to predict the concealed ore body of Hongtoushan Copper Mine. The predicting results of multiple regression model and GFAHP model are drawn in2D voxel prediction maps according to elevation levels. After comparing the results between predicting models, the three-dimensional prospecting target areas have been delineated and their resource amount have also been calculated.
引文
[1]傅雷,仲冰.中国矿产资源现状与思考[J].资源与产业,2008,(1):83-86
    [2]谢海燕,樊燕.矿产资源可持续发展思路研究[J].人民长江,2008,39(3):96-100
    [3]都沁军,郝英奇,王胜利.我国矿产资源可持续开发利用战略对策[J].中国人口·资源与环境,2001,11(2):132-133
    [4]刘清双,钟康惠.对老矿山二轮找矿的思考[J].中国地质,1999,(1):35-36
    [5]王京彬,周学禹,王静纯.我国有色金属矿山资源实况与建议[J].世界有色金属,2001,(12):32-35
    [6]刘红涛,杨秀瑛,刘建明,等.如何开展老矿山后备资源的寻找与定位预测—工作程序与实例分析[J].地球物理学进展,2004,19(3):573-582
    [7]韩海青.当前矿产资源的形势与对策建议[J].国土资源情报,2009,(8):2-5
    [8]曾绍金,常玉刚,郑大瑜,等.资源危机型矿山的研究现状、问题与对策[J].资源与产业,2004,6(4):16-19
    [9]1999~2003年地质大调查总体情况[OL].中国地质调查局网站http://www.cgs.gov.cn.2003
    [10]国土资源部.全国危机矿山可接替资源找矿计划纲要(2004-2010年)[OL].国土资源部网站http://www.mlr.gov.cn.2004
    [11]邹永生.全球矿产资源勘查形势及中国矿业的未来发展[J].中国矿业,2005,14(10):5-7
    [12]赵腊平.国家为什么要组织危机矿山找矿[OL].http://blog.sina.com.cn/s/blog_4cd7b0d70100ekj1.html
    [13]经济观察网.“危机矿山”成果卓越,矿业改制道路漫长[OL].http://www.eeo.com.cn/Politics/beijing_news/2010/11/26/187303.shtm
    [14]徐云和,程朋根,陈红华.地矿3维GIS模型的构建及可视化[J].工程勘察,2003,(2):48-50;
    [15]吴建生,朱谷昌,曾新平,等.三维GIS技术在固体矿产勘探和开发中的研究与应用[J].地质与勘探,2004,40(1):68-72.
    [16]赵鹏大,张寿庭,陈建平.危机矿山可接替资源预测评价若干问题探讨[J].成都理工大学学报(自然科学版),2004,31(2):111-117
    [17]包世泰,夏斌,崔学军,等.地质三维信息模型研究及其应用[J].大地构造与成矿学,2004,28(4):470-476.
    [18]Brodlie K, Brooke J, Chen M, et al. Visual super-computing:technologies, applications and challenges[J]. Computer Graphics Forum,2005,24(2):217-245
    [19]Houlding S W.3D geoscience modeling-computer techniques for geological characterization[M]. Berlin:Springer-Verlag,1994,2-78.
    [20]Galera C, Bennis C, Morettib I, etc. Construction of coherent 3D geological blocks[J]. Computers & Geosciences,2003,29(8):971-984
    [21]Herbert M J, Jones C B. Contour correspondence for serial section reconstruction: complex scenarios in palaeontology [J]. Computers & Geosciences,2001,27(4): 427-440
    [22]Sirakova N M, Granado I, Muge F H. Interpolation approach for 3D smooth reconstruction of subsurface objects[J]. Computers & Geosciences,2002,280: 877-855
    [23]Kaltwasser P, Boschetti F, Hornby P. Measure of similarity between geological sections accounting for subjective criteria[J]. Computers & Geosciences,2005,31(3): 29-34
    [24]Arens C, Stoter J, Van Oosterom P. Modelling 3D spatial objects in a geo-DBMS using a 3D primitive[J]. Computers & Geosciences,2005,31(3):165-177
    [25]Marschallinger R, Johnson S E. Presenting 3-D models of geological materials on the World Wide Web[J]. Computers & Geosciences,2001,27(4):467-476
    [26]Marschallinger R. Three-dimensional reconstruction and visualization of geological materials with IDL-examples and source code[J]. Computers & Geosciences,2001, 27(4):419-426
    [27]Proussevitch A A, Sahagian D L. Recognition and separation of discrete objects within complex 3D voxelized structures [J]. Computers & Geosciences,2001,27(4):441-454
    [28]Amenta R V. Three-dimensional computer modeling off abric evolution in igneous rocks[J]. Computers & Geosciences,2001,27(4):477-483
    [29]Jessell Mark. Three-dimensional geological modelling of potential-field data[J]. Computers & Geosciences,2001,27(4):455-465
    [30]Moore R R, Johnson S E. Three-dimensional reconstruction and modelling of complexly folded surfaces using Mathematica[J]. Computers & Geosciences,2001, 27(4):401-418
    [31]丛威清,潘懋,吕才玉,等.三维地质建模及可视化系统在安庆铜矿勘查中的应用[J].北京大学学报(自然科学版),2009,45(4):633-638
    [32]朱大培.三维地质建模和带权曲面限定Delaunay三角化的研究与实现[博士学位论文].北京:北京航空航天大学,2002
    [33]齐安文,吴立新等.一种新的三维地学空间构模方法—类三棱柱法[J].煤炭学报, 2002,27(2):158-163
    [34]齐安文.基于类三棱柱的三维地质模拟与三维拓扑研究[博士学位论文].北京:中国矿业大学(北京校区),2002
    [35]Wu Lixin. Topological relations embodied in a generalized tri-prism (GTP) model for a 3D geoscience modeling system[J]. Computers & Geosciences,2004,30(4): 405-418
    [36]王纯祥,白世伟,贺怀建.三维地层可视化中地质建模研究[J].岩石力学与工程学报,2003,22(10):1722-1726
    [37]吴立新,张瑞欣,戚宜欣,等.三维地学模拟与虚拟矿山系统[J].测绘学报,2002,31(1):28-33
    [38]朱裕生,肖克炎,王全明,等.阿舍勒铜锌矿床及三维定位预测[M].北京:地质出版社,2002
    [39]吴健生,黄浩,杨兵,等.新疆阿舍勒铜锌矿床三维矿体模拟及资源评估[J].矿产与地质,2001,15(2):119-123
    [40]毛小平,吴冲龙,袁艳斌.三维构造模拟方法—体平衡技术研究[J].地球科学—中国地质大学学报,1999,24(5):506-508
    [41]曹代勇,李青元,朱小弟,等.地质构造三维可视化模型探讨[J].地质与勘探,2001,37(4):60-62
    [42]曹代勇,王占刚.三维地质模型可视化中直接三维交互的实现[J].中国矿业大学学报,2004,33(4):384-387
    [43]徐能雄,何满潮,景海河.岩体结构三维构模技术及其可视化系统研制[J].岩土工程学报,2004,26(3):373-377
    [44]胡金星,吴立新,高卫贞,等.三维地学模拟体视化技术的应用研究[J].煤炭学报,1999,24(4):345-349
    [45]陈春.矿床三维地质建模与成矿信息定量提取[D].长沙:中南大学,2010:1-72
    [46]胡彩平,秦小麟.空间数据挖掘研究综述[J].计算机科学,2007,34(5):14-19
    [47]Li D R, Cheng T. KDG-Knowledge Discovery from GIS. In:Proceedings of the Canadian Conference on GIS, Ottawa, Canada,1994:1001-1012
    [48]黄添强,王金栋,张磊.空间数据挖掘研究的进展[J].莆田学院学报,2006,13(5):44-49
    [49]冯弟飞,胡圣武.基于空间数据挖掘的煤矿安全管理的研究[J].测绘科学,2008,33(1):163-165.
    [50]周海燕.空间数据挖掘的研究[博士学位论文].郑州:解放军信息工程大学,2003
    [51]贾泽露,刘耀林.可视化空间数据挖掘综述[J].地理空间信息,2009,7(6):10-14
    [52]Koperski K, Han J. Discovery of spatial association rules in geographic information databases. In:Proceedings of the 4th International Symposium on Large Spatial Databases(SSD95).Maine,1995:47-66
    [53]Koperski K, Adhikary J, Han J. Spatial data mining:Progress and challenges. In:SIGMOD.96 Workshop on Research Issues on Data Mining and Knowledge Discovery(DMKD.96).Montreal,Canada,1996
    [54]Koperski K, Han J. An efficient two step method for classification of spatialdata. In:Proc.Int.l Sympon Spatial Data Handling SDH 98 Vancouver, BC, Canada,1998
    [55]TungAK H, Hou J, Han J.Spatial clustering in the presence of obstacles[J]. IEEE Transactions on Data Engineering,2001,11:359-369
    [56]Ester M, Kriegel H P. Knowledge discovery in large spatial databases:Focusing techniques for efficient class identification. In:Advancesin Spatial Databases,Proc. Of 4th sympon SSD.95.Berlin,Springer Verlag,1995:67-82
    [57]Ester M, Frommelt A, Kriegel H P, etal. Spatial data mining:databases primitives,algorithms and efficient DBMS support[J]. Data Mining and Knowledge Discovery,2000,4:193-216
    [58]Breunig M, Kriegel H P, Ng R T,et al. LOF:Identifying density-based local outliers. In:The ACM SIGMOD International Conference on Management of Data Dallas.Texas,2000:427-438
    [59]Kriegel H P, Pfeifle M, Sch nauer S. Similarity search in biological and engineering databases[J]. IEEE Data Engineering Bulletin,2004,27(4):37-44
    [60]Hm B C, Kailing K, Krigel H P, et al. Density connected clustering with local subspace preferences[J]. In:The 4th IEEE Int.Conf. on Data Mining (ICDM'04). Brighton, UK,2004:27-34
    [61]Kazar B M, Shekhar S, Lilja D J, et al.A parallel formulation of the spatial auto-regression model. In:The International Conference on Geographic Information GIS Planet.Lisbon, Portugal,2005
    [62]Shekhar S, Lu C T, Zhang P. A unified approach to detecting spatial outliers[J]. Geoinformatica,2003,7(2):139-166
    [63]Yoo J S, Shekhar S. A partial Join approach for mining co-location patterns. In:IFC ieter Pfoser, Marc Ronthaler,eds.12th ACM International Workshop on Geographic Information Systems.Washington,DC,USA,2004:241-249
    [64]Ng R, Han J. CLARANS:A method for clustering objects for spatial data mining[J]. IEEE Trans Knowledge & Data Engineering,2002,14(5):1003-1016
    [65]Ozsu T, Lin S, V Oria,et al. Multi-precision similarity querying of image satabases. In: Proceedings of 27th International Conference on Very Large DataBases, 2001:221-230
    [66]Pfitzner D, Hobbs V, Powers D I. A Unified taxomic framework for information visualizatin. In:T Pattison,B Thomas,eds.Proc Australian symposium on information visualisation,(invis.au'03).Adelaide,Australia,2003:57-66
    [67]Chu S C, Roddick J F, Chen T Y. A genetic clustering algorithm for mean-residual vector quantization. In:Chang P,Chao S C, Chen T Y, eds.Proc.18th International Conference on Advanced Science and Technology (ICAST 2002).Chicago, USA, 2002:91-98
    [68]Clementini E, Felice P D, Koperski K.Mining multiple level spatial association rules for Objects with a Broad Boundary[J]. Data and Knowledge Engineering,2000,34: 251-270
    [69]Murray A T, Estivill-castrov.Clusterdiscover techniques for exploratory spatial data analysis[J]. International Journal of Geographical Information Science,1998,12(5): 431-443
    [70]Keim D A, Pans C, Sip S M, et al. Pixel based visual data mining of geo-spatialdata[J]. Computers & Graphics,2004,28(3):327-344
    [71]Kacar E, Cicekli N K. Discovery fuzzy spatial association rules,data mining and knowledge discovery:Theory,Tools and Technology IV. In:Dasarathy B V, eds. Proceedings of SPIE.2002:94-102
    [72]Ester M, Kriegel H P, Sander J. Spatial data mining:a database approach. In:Scholl M V,eds. Proceedings of the 5th International Symposium on Spatial Databases. Berlin,Springer,Verlag,1997
    [73]邸凯昌,李德仁,李德毅.空间数据挖掘和知识发现的框架[J].武汉测绘科技大学学报,1997,22(4):328-332
    [74]李德仁,王树良,史文中等.论空间数据挖掘和知识发现[J].武汉大学学报(信息科学版),2001,26(6):491-499
    [75]李德仁,王树良,李德毅.空间数据挖掘理论与应用[M].北京:科学出版社,2006.4-27
    [76]宋国杰,唐世渭,杨冬青等.基于最大熵原理的空间特征选择方法[J].软件学报,2003,14(19):1544-1550
    [77]陈冠华.基于空间数据库的空间数据挖掘语言[J].北京大学学报,2004,40(3):465-472
    [78]刘大有,王生生,虞强源等.基于定性空间推理的多层空间关联规则挖掘算法[J].计算机研究与发展,2004,41(4):565-570
    [79]周成虎,张健挺.基于信息熵的地学空间数据挖掘模型[J].中国图象图形学报, 1994,(4):621-625
    [80]邸凯昌.空间数据发掘和知识发现[M].武汉:武汉大学出版社,2001.68-73
    [81]石云,孙玉芳,左春.基于RoughSet的空间数据分类方法[J].软件学报,2000,11(5):673-678
    [82]孙连英,彭苏萍,张德政.基于超图模型的空间数据挖掘[J].计算机工程与应用,2002,11(11):30-32
    [83]黄添强,王金栋,张磊.空间数据挖掘研究的进展[J].莆田学院学报,2006,13(5):44-49
    [84]何彬彬,方涛,郭达志.空间数据挖掘不确定性及其传播[J].数据采集与处理,2004,19(4):475-480
    [85]陈国旭,李忠,陈秋成,等.多源地质空间数据挖掘方法研究[J].有色金属(矿山部分),2006,60(3):19-23
    [86]Liu S X, Xue L F, He J X, et al. The application of spatial data mining in mineral resources evaluation. In:Proceedings of the IAMG'07:Geomathematics and GIS Analysis of Resources, Environment and Hazards,2007:127-130
    [87]潘军.多元地学空间数据融合及可视化研究[博士学位论文].长春:吉林大学,2005
    [88]琚锋.基于成矿区带基础数据库的空间数据挖掘技术研究[硕士学位论文].武汉:中国地质大学,2007
    [89]安德智.空间数据挖掘技术[J].河北理工学院学报,2006,(1):50-57
    [90]胡圣武,李鲲鹏.空间数据挖掘的方法进展及其问题分析[J].地球科学与环境学报,2008,30(3):311-318
    [91]陈勇.云南个旧锡矿东区隐伏矿体定位于定量预测研究[博士学位论文].北京:中国地质大学,2009
    [92]Allais M, Chung C F. Methods of appraising economic prospects of mining exploration over large territories:Algerian Sahara case study[J]. Management Science.1957, (3): 285-345
    [93]Slicher L B. The need for a new philosophy of prospecting [J]. Mining Engineering, 1960,12 (6):570-576
    [94]Harris D P. Quantitative methods, computers, reconnaissance geology and economics in the appraisal of mineral potential [J]. AIME, Int Comput Appl and Operations Res in Mineral Ind, Salt Lake City, Utah.1969:83-117
    [95]Harris D P, Freyman A J, Barry G S. Methodology employed to estimate potential mineral supply of the Canadian Northwest[J]. Dep Energy, Can, Mines Resour, Miner Resour Div, Miner Inform Bull.1970,105:1-56
    [96]Harris D P. A subjective probability appraisal of metal endowment of North Sonora, Mexico [J]. Economic Geology and the Bulletin of the Society of Economic Geologists, 1973,68:222-242
    [97]Agterberg F P, Kelly A M. Geomathematical methods for use in prospecting[J]. Canadian Mining Journal.1971,92 (5):61-72
    [98]Agterberg F P, Chung C F. Geomathematical prediction of sulphur in coal, New Lingan Mine Area, Sydney Coalfield[J]. Canadian Mining and Metallurgical Bulletin. 1973,66 (738):85-96
    [99]Agterberg F P. Automatic contouring of Geological Map to Detect target Area of Mineral Exploration[J]. Journal of Mathematical Geology.1974,6 (4):669-682
    [100]阿伯特伯格F P.地质数学.张中民译[M].北京:科学出版社,1980.1-418
    [101]Agterberg F P. Statistical methods for regional resource appraisal[J]. Canadian Mining and Metallurgical Bulletin.1977,70 (778):96-98
    [102]Agterberg F P, Divi S R. Statistical Model for the Distribution of Copper, Lead, and Zinc in the Canadian Appalachin Region[J]. Economic Geology and the Bulletin of the Society of Economic Geologists,1978,73 (2):230-245
    [103]Griffiths J C, Singer D A. Size, Shape and Arrangement of Some Uranium Ore Bodies[J]. American Society of Mechanical Engineers.1973:82-112
    [104]Griffiths J C, Menzie D W, Labovitz M L. Exploration for and Evaluation of Natural Resources [J]. American Society of Mechanical Engineers,1975:21-25
    [105]Singer D A. Relative Efficiencies of Square and Triangular Grids in the Search for Elliptically Shaped Resource Targets[J]. Journal of Research of the United States Geological Survey,1975,3(2):163-167
    [106]Singer D A. RESIN, a FORTRAN IV program for determining the area of influence of samples or drill holes in resource target search[J]. Computers & Geosciences,1976, 2 (2):249-60
    [107]Singer D A, Drew L J. Area of Influence of an Exploratory Hole[J]. Economic Geology and the Bulletin of the Society of Economic Geologists,1976,71 (3): 642-647
    [108]Clark, I. ROKE, a computer program for nonlinear least-squares decomposition of mixtures of distributions [J]. Computers & Geosciences,1977,3 (2):245-256
    [109]Phillips W G B. Statistical Estimation of Global Mineral Resources[J]. Resources Policy,1977,3 (4):268-280
    [110]Prelat A E. Discriminant analysis as a method of predicting mineral occurrence potentials in central Norway. Journal of Mathematical Geology.1977,9:343-368
    [111]Bridges N J, McCammon R B. DISCRIM:a computer program using an interactive approach to dissect a mixture of normal or lognormal distributions [J]. Computers & Geosciences,1980,6 (4):361-396
    [112]Singer D A, Mosier D L. A review of regional mineral resources assessment methods[J]. Economic Geology and the Bulletin of the Society of Economic Geologists.1981,76(5):1006-1015
    [113]Agterberg F P. Application of image analysis and multivariate analysis to mineral resource appraisal[J]. Economic Geology and the Bulletin of the Society of Economic Geologists.1981,76 (5):1016-1031
    [114]Koch G S J, Howarth R J, Schuenemeyer J H, et al. Uranium resources assessment through statistical analysis of exploration geochemical and other data[J]. Economic Geology and the Bulletin of the Society of Economic Geologists.1981,76 (5): 1056-1066
    [115]Labovitz M L, Griffiths J C. Inventory of undiscovered Canadian mineral resources[J]. Economic Geology and the Bulletin of the Society of Economic Geologists.1982,77 (7):1642-1654
    [116]Fedikow M A F, Turek A. Application of stepwise discriminant analysis to geochemical data from the host rocks of the Sullivan Pb-Zn-Ag[J]. Journal of Geochemical Exploration.1983,18 (3):231-244
    [117]Gill D, Griffiths J C. Areal value assessment of mineral resources endowment of Israel[J]. Journal of Mathematical Geology,1984,16 (1):37-91
    [118]Jenson S K, Trautwein C M. Definition of multivariate geochemical with polymetallic mineral occurrences using a spatially dependent clustering technique and rastetized stream sediment data-an Alaskan example[J]. Journal of Geochemical Exploration.1984,25 (1-2):242-256
    [119]Rehder S, Muller A. MAX, a program system for multivariate data analysis of geochemical exploration data[J]. Journal of Geochemical Exploration.1985,29 (1-3): 429-445
    [120]Bridges N J, Hanley J T, McCammon R B. PREPRO:a computer program for encoding regional exploration data for use in characteristic analysis[J]. Computers & Geosciences,1985,11 (5):513-519
    [121]Agterberg F P. LOGDIA-FORTRAN 77 program for logistic regression with diagnostics [J]. Computers & Geosciences,1989,15 (4):599-614.
    [122]Cargill S M, Meyer R F, Picklyk D D, et al. Summary of resource assessment methods resulting from the international geological correlation program project 98[J]. Journal of Mathematical Geology.1977,9(12):489-522
    [123]赵鹏大,胡旺亮,李紫金.矿床统计预测的理论与实践[J].地球科学—武汉地质学院学报.1983,(4):107-121
    [124]陈毓川.当代矿产资源勘察评价的理论与方法[M].北京:地震出版社,1999.3-65
    [125]朱裕生.矿产资源潜力评价在我国的发展[J].中国地质.1999,(11):31-33
    [126]王世称.大型、超大型金矿床密集区综合信息预测[M].北京:地质出版社,2001.1-163
    [127]王世称.山东省金矿床及金矿床密集区综合信息成矿预测[M].北京:地质出版社,2003.1-245
    [128]孟宪国,赵鹏大.地质数据的分形结构[J].地球科学,1991,16(2):207-211
    [129]吕新彪,赵鹏大.定量成矿预测的人工神经网络模型[J].地球科学—中国地质大学学报,1998,23(6):620-623
    [130]胡惠民.大比例尺成矿预测方法[M].北京:地质出版社,1995.1-175
    [131]周宏坤.金属矿床大比例尺定量预测[M].北京:地质出版社,1996.1-226
    [132]陈永良,刘大有,王世称.定向独立权模型及其在矿产资源预测中的应用[J].地球科学—中国地质大学学报,1999,24(4):405-408
    [133]郭光裕,林卓虹.脉状金矿床深部大比例尺统计预测理论与应用[M].北京:冶金工业出版社,2002.1-205
    [134]邓聚龙.灰色预测与决策[M].武汉:华中工学院出版社,1986.1-325
    [135]Zhao P D. Theories, principles, and methods for statistical prediction of mineral deosits[J]. Journal of Mathematical Geology,1992, (6):589-595
    [136]Bonham-Carter G.F. Geographic Information Systems for Geoscientists:Modeling with GIS[M]. Oxford,1994.1-398
    [137]赵鹏大.“三联式”资源定量预测与评价[J].地球科学-中国地质大学学报,2002,27(5):482-489
    [138]赵鹏大,陈建平,张寿庭.“三联式”成矿预测新进展[J].地学前缘,2003,10(02):455-463
    [139]赵鹏大,池顺都.初论地质异常[J].地球科学-中国地质大学学报,1991,16(3):241-248
    [140]翟裕生.论成矿系统[J].地学前缘,1999,6(1):13-27
    [141]王世称,陈永清.成矿系列预测的基本原则及特点[J].地质找矿论丛,1994,9(4):79-85
    [142]毛先成.三维数字矿床与隐伏矿体立体定量预测研究[博士学位论文].长沙:中南大学,2006
    [143]刘星,胡光道.应用MORPAS系统证据权重法进行多源信息成矿预测—以澜沧江南段地区为例[J].地质与勘探,2003,39(4):65-68
    [144]肖克炎,张晓华,宋国耀,等.应用GIS技术研制矿产资源评价系统[J]. 地球科学—中国地质大学学报,1999,24(5):525-528
    [145]侯翠霞,刘向冲,张文斌,等.成矿预测理论与方法新进展[J].地质通报,2010,29(6):953-960
    [146]陈毓川.中国主要成矿带矿产资源远景评价[M].北京:地质出版社,1991.16-46
    [147]杨福田,张永红,杨铁军.辽宁清原红透山式铜、金多金属矿集区资源潜力预测与勘查思路[J].矿产与地质,2003,17(增刊):325-327
    [148]于凤金.红透山式矿床成矿模式与找矿模型研究[博士学位论文].沈阳:东北大学,2006
    [149]毛德宝,沈宝丰,李俊建,等.辽北清原地区太古宙地质演化及其对成矿的控制作用[J].前寒武纪研究进展,1997,20(3):1-9
    [150]于凤金,王恩德.红透山式块状硫化物铜锌矿床古火山环境及与成矿关系研究[J].矿产与地质,2005,19(1):12-15
    [151]裴荣富.中国矿床模式[M].北京:地质出版社,1995.39-42
    [152]沙德铭,赵东芳,张森,等.辽宁“红透山式”铜矿构造变形特点及其控矿作用属性[J].地质与资源,2007,16(3):167-172
    [153]顾连兴,汤晓茜,吴昌志,等.辽宁红透山块状硫化物矿床矿石糜棱岩铜-金富集机制[J].地学前缘,2004,11(2):339-351
    [154]陈毓川,朱裕生,等.中国矿床成矿模式[M].北京:地质出版社,1993.17-23
    [155]于凤金,王恩德,宋晓军,等.辽宁清原地区铜锌矿床找矿标志及找矿方向[J].地质与资源,2004,13(4):229-232
    [156]阎鹏仁.辽宁红透山式铜锌矿床地球化学异常特征及找矿评价指标[J].物探与化探,1990,14(5):365-373
    [157]沈宝峰,骆辉.辽北-吉南太古宙地质及成矿[M].北京:地质出版社,1994.1-231
    [158]顾连兴,汤晓茜,郑远川,等.辽宁红透山铜矿硫化物矿床的变质变形和成矿组分再活化[J].岩石学报,2004,20(4):923-934
    [159]张宝一,毛先成,周尚国,等.矿产资源预测评价数据库的设计与实现一以桂西-滇东南锰矿为例[J].地质与勘探,2009,45(6):697-703
    [160]邹艳红,毛先成.地测数据库的建立与应用[J].中南大学学报(自然科学版),2004,35(3):463-467.
    [161]毛先成,戴塔根,邹艳红,等.广西大厂矿田地质矿床数据库的研究与系统开发 [J].地质与勘探,2003,39(5):72-76
    [162]Marcus Apel. From 3d geomodeling systems towards 3d geoscience information systems:data model, query functionality and data management[C]. In GIS and Spatical Analysis-Proceedings of IAMG'05,2005, Toronto, Canada
    [163]彭仪普,刘文熙.数字地球与三维空间数据模型研究[J].铁路航测,2002,(4):1-4
    [164]杨树强,陈火旺,王峰.矢量和栅格一体化的数据模型[J].软件学报,1998,9(2):91-96
    [165]龚健雅.整体GIS的数据组织与处理方法[M].武汉:武汉测绘科技大学出版社,1993.6-78
    [166]陈云浩.一种三维GIS矢量数据结构的研究[J].测绘学报,1999,28(1):41-44
    [167]SHI W. An hybrid data model for three dimensional GIS [A]. Proceedings of Geoinformatics 96Wuhan-International symposium 1996.400-409
    [168]Li R. Generation of object representations of 3D object in CAD/CAM by digital photogrammetry[A]. Internation Archives of Photogrammetry and Remote Sensing[C], 1992:508-513
    [169]程朋根.地矿三维空间数据模型及相关算法研究[博士学位论文].武汉:武汉大学,2005
    [170]曾新平.地质体三维可视化建模系统GeoModel的总体设计与实现技术[博士学位论文].北京:中国地质大学,2005
    [171]熊书敏,郑坤,吴信才.基于实体模型的三维GIS矢量数据管理[J].地理空间信息,2006,4(1):18-20
    [172]Theodoridis Y, et al.Efficient costmodels for spatial queries u-singR-tree [J].IEEE Transactions on Knowledge and Data En-gineering,2000,12(1):19-30
    [173]戴婉薇,潘懋,李军,等.三维城市地质空间数据库数据组织及模式设计[J].测绘科学,2009,34(3):203-205
    [174]李德仁,李清泉.一种三维GIS混合数据结构研究[J].测绘学报,1997,26(2):128-133.
    [175]李青元,朱小弟,曹代勇.三维地质模型的数据模型研究[J].中国煤田地质,2000,12(3):57-61.
    [176]龚健雅,夏宗国.矢量与栅格集成的三维数据模型[J].武汉测绘科技大学学报,1997,22(1):7-15.
    [177]边馥苓,傅仲良,胡自锋.面向目标的栅格矢量一体化三维数据模型[J].武汉测绘科技大学学报,2000,25(4):294-298
    [178]Simon W Houlding. Practical geostatistics, modeling and spatial analysis[M]. New York and Heidelburg, Springer-Verlag,2000.2-48
    [179]Zlatanova S, Rahman A,Pilout M.3D GIS:Current Status and Perspective. Proceeding of Joint International Symposium on Geospatial Theory [A]. Processing and Application,2002, July 8-12, Ottawa,Canada.
    [180]Chen X Y, Kozo I. Three Dimensional Modeling of GIS Based on Delaunay Tetradral Tessellations. In:International Archives of Photogrammetry and Remote Sensing, Munich, Germany,1994,30:132-139.
    [181]Zlatanova S, Rahman A, Shi W. Topological models and frameworks for 3D spatial objects[J]. Computers&Geosciences,2004,30(4):419-428
    [182]Lee D T, Schachter B J. Tow algorithms for constructing a Delaunay Triangulation[J]. International Journal of Computer and Information Science,1980,9(3):219-242
    [183]邓浩.面向隐伏矿体预测的三维地质建模与空间分析若干技术研究[硕士学位论文].长沙:中南大学,2008
    [184]Lawson C.L. Software for C' Surface Interpolation. Mathematical Software III[M]. New York, Academic press,1977.61-194
    [185]Meyers D., Skinner S., Sloan K. Surfaces from Contours[J]. ACM Transactions on Graphics,1992,11(3):228-258.
    [186]左仁广.基于地质异常的矿床资源定量化预测与不确定性评价[博士学位论文].武汉:中国地质大学,2009
    [187]Gemcom Software International Inc. Surpac vision soft-ware user manual[M]. Beijing:Surpac Software International,2004
    [188]董辉.地质体三维可视化原理与方法研究[硕士学位论文].长沙:中南大学,2003
    [189]侯景儒,黄竞先.地质统计学的理论与方法[M].北京:地质出版社,1990.3-78
    [190]董泽义,汤吉,周志明.可控源音频大地电磁法在隐伏矿体断裂探测中的应用[J].地震地质,2010,32(3):442-452
    [191]张志强.瞬变电磁法在凤凰山矿采空区防治水中的应用[J].山西焦煤科技,2010,(10):11-14
    [192]王颖.基于Meta分析与多属性模糊优选决策模型的多元信息成矿预测研究[博士学位论文].长沙:中南大学,2009
    [193]胡侃,夏绍玮.基于大型数据仓库的数据采掘:研究综述[J].软件学报,1998,9(1):53-63
    [194]樊明辉.空间数据挖掘及其可视化系统若干关键技术研究[博士学位论文].北京:中科院遥感所,2006
    [195]徐胜华,刘纪平,胡明远.空间数据挖掘与发展趋势探讨[J].地理与地理信息科学,2008,24(3):24-27
    [196]李德毅.发现状态空间理论[J].小型微型计算机系统,1994,10(11):1-6
    [197]CHEN Y L, CHEN J M, TUNG C W. A data approach for retail know discovery with consideration of the effect of shelf-space adjacency on sales [J]. Decision Support Systems,2006,42(3):1503-1608
    [198]LEE A J T, HONG R W.KO W M, et al. Mining spatial association rules in image databases[J]. Information Sciences,2007,177(7):1593-1608
    [199]邵雯,胡斌.空间数据挖掘技术探讨[J].软件导刊,2008,7(1):148-149
    [200]Li D R, Wang S L, Shi W Z, et al. On Spatial data mining and knowledge discovery(SDMKD) [J]. Geomatics and Information Science of Wuhan University, 2001,26(6):491-499
    [201]刘彦花.基于SDM的梧州市地质灾害成灾机制与风险评估[博士学位论文].长沙:中南大学,2009
    [202]李龙澍,倪志伟,凌成.基于Rough集的空间属性数据挖掘的研究与实践[J].系统仿真学报,2002,14(12):1702-1705
    [203]胡晋山,何宗宜,康建荣,等.空间数据挖掘技术及其在数据矿山中的应用[J].测绘科学,2008,33(1):153-155
    [204]吴为英.基于GIS的空间挖掘技术[J].山东科技大学学报(自然科学版),2004,23(3):15-17
    [205]刘君强,潘云鹤.挖掘空间关联规则的前缀树算法设计与实现[J].中国图象图形学报,2003,8(A):476-480
    [206]边馥苓,沙宗尧,陈江平.基于粗规则对象空间信息表的最小规则集生成[J].武汉大学学报·信息科学版,2001,26(5):399-404
    [207]吴冲龙,刘刚,田宜平,等.地矿勘查工作信息化的理论和方法问题[J].地球科学,2005,30(3):359-364
    [208]Wang Y, Civco D L. Artificial neural networks in high dimensional spatial data classification. In:Proceedings of 1995 ASPRS/ACSM Annual Conortion and ExPOSITION 1995, Vol.3, Charlotte, N.C.,662-671
    [209]付云发SOFMANN与FCA模型及其在隐伏矿定位预测中的应用[硕士学位论文].昆明:昆明理工大学,2003
    [210]胡继才,万福钧,吴珍权,等.应用模糊数学[M].武汉:武汉测绘科技大学出版社.4-89
    [211]Reza Banai. Fuzziness in Geographical Information System:Comtribution from the Analytic Hierarch Process[J]. International Journal of Geographical Information Systems,1993,7(4):315-329
    [212]刘名龙,黄德镛,李勃,等.模糊综合评判模型在会泽铅锌矿隐伏矿体定位预测 中的应用[J].地质找矿论丛,2005,20(1):57-60
    [213]张丽.区域地质灾害危险性评价的定量化研究[硕士学位论文].吉林:吉林大学,2006
    [214]王连芬,许树柏.层次分析法引论[M].北京:中国人民大学出版社,1990.3-51
    [215]崔明杰,李远富.城市轨道交通线网规划方案的层次-模糊综合评价法[J].四川建筑,2009,29(1):56-58
    [216]尹建海.企业管理人员人力资本投资难货币化收益评价研究一基于网络层次分析法(ANP)的评价研究[J].山东社会科学,2008,(3):129-135
    [217]刘磊,王慧强,梁颖.基于模糊层次分析的网络服务级安全态势评价方法[J].计算机应用,2009,29(9):2327-2331
    [218]李志民,张群,邵球军.AHP模糊综合评价法在金属矿业投资分析中的应用[J].金属矿山,2008,379(1):19-25
    [219]邓聚龙.灰色控制系统[M].武汉:华中理工大学出版社,1997.35
    [220]常城.国家级高新技术开发区经济发展灰色预测模型研究[博士学位论文].哈尔滨:哈尔滨工程大学,2005
    [221]罗一忠.大面积采空区失稳的重大危险源辨识[博士学位论文].长沙:中南大学,2005
    [222]滕冲.金属矿山地质灾害评估系统及综合预测模型研究[博士学位论文].长沙:中南大学,2007
    [223]程小久.金矿体深部含矿性预测方法[J].地质与勘探,1990,26(1):28-32
    [224]王国富,刘明,刘石年,等.灰色关联法在白银矿田矿床预测中的应用[J].桂林工学院学报,2001,21(1):73-76
    [225]魏俊浩.金矿床深部预测方法[J].黄金地质科技,1993,(3):56-59
    [226]马田生.灰色GM(1,1)模型在山东焦家金矿床深部含矿性预测中的应用[J].地质找矿论丛,2007,22(4):314-320
    [227]徐忠祥,吴国平,彭放,等.油气物探异常灰色灰色定位预测[J].地球科学,1998,23(2):158-162
    [228]徐忠祥,吴国平,陈守余.隐伏铜镍矿异常灰色关联滤波圈定法[J].地球科学,1997,6(22):614-618
    [229]杜栋,庞庆华,吴炎.现代综合评价方法与案例精选[M].北京:清华大学出版社,2008.10-179
    [230]佘彩艳.中部地区物流需求的实证分析[硕士学位论文].南昌:南昌大学,2008
    [231]戴华娟.组合预测模型及其应用研究[硕士学位论文].长沙:中南大学,2007
    [232]李兴德.模糊数学在东升庙铅锌矿采矿方法选择中的应用[J].甘肃冶金,2007,29(4):4-6

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700