电气化铁路受电弓/接触线摩擦磨损性能及电特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电气化铁路机车的驱动功率约为8000~10000 kW,通过一个受电弓与接触线的滑动接触将其传递到行驶的列车。受电弓/接触线系统由于工作条件恶劣,运行过程中的拉弧与温升导致受电弓滑板和接触线材料磨损严重。弓网系统的使用寿命主要由受电弓滑板和接触线材料的磨损寿命决定。我国电气化铁路机车的受电弓滑板基本依赖进口,消耗巨大。进口受电弓滑板材料的磨损寿命也很低,只有8-10万公里/根。因此,开展受电弓滑板/接触线摩擦磨损性能及电特性的研究能够对国产机车受电弓滑板材料的开发和选用提供重要的指导和理论依据。
     在交、直流载流摩擦磨损试验机上,以电气化铁路常用的受电弓滑板/接触线材料为摩擦副进行模拟试验。研究几种受电弓滑板/接触线材料在不同的支撑刚度、法向载荷、速度、电流下的滑动摩擦磨损性能;并探讨接触刚度和法向载荷对受电弓滑板/接触线电接触性能的影响。通过观测试验过程中温度变化及放电现象,探寻弓/网系统中拉弧现象的产生机理及放电强度的影响因数,并系统地研究了接触副温度和放电强度对受电弓滑板/接触线材料摩擦磨损性能的影响。采用显微硬度仪、温度测量仪、数码相机、表面轮廓仪、扫描电子显微镜、电子能谱仪等分析手段,有效地观测了接触副温度升高和离线电弧的发生,并系统地研究了受电弓滑板/接触线材料的滑动摩擦磨损性能。获得的主要结论如下:
     1.当接触刚度k=19000 N/m和法向载荷Fn=160 N时,接触副的放电强度和放电频率得到抑制。销试样磨损率、磨损表面粗糙度和表面损伤都明显减弱;且接触副的摩擦系数稳定。适当接触刚度和法向载荷减轻了受电弓滑板/接触线高速滑动过程中的振动和撞击,它们良好接触使得接触副的离线几率和放电强度减弱,从而减小电弧烧蚀对接触副材料的损伤。因此,适宜的接触压力和支撑刚度能使受电弓滑板/接触线保持良好的接触、延长受电弓滑板/接触线材料使用寿命,又能保证机车的稳定受流、保障列车的稳定运行。
     2.采用电弧照片来研究试验过程中的放电强度。采用电路中的平均电流和电流损耗率来评价接触电路受流质量的好坏。平均电流越大,电流损耗率越小,电路中受流质量越好,反之亦然。
     3.在电滑动摩擦过程中,出现火花放电和电弧放电两种现象。当接触副发生离线时,接触副间的气体被击穿形成放电,其极性、接触面积和材料特性是造成不同放电现象的主要原因。放电强度随着电流和滑动速度的增加而增大,随着法向载荷的增加而减弱,随着弹簧刚度的增加而先减弱后增强。摩擦热、电流热和电弧热导致了接触副温度升高。无电流时,摩擦副表面温升很低,仅为38℃,通入电流后摩擦副温升显著增加,电流为I=50 A时,接触副温度达到110℃。
     4.摩擦系数随着温度的升高先增加,后快速减小,最后趋向稳定;而随着放电强度的增加而稍微增大;温度比电弧放电对摩擦系数的影响更明显。碳滑板磨损量随着接触副温度的增加缓慢增大,而磨损量随着放电强度的增加而呈线性增大;电弧放电比温度对碳滑板磨损量的影响更为显著。无电弧放电时,接触副的主要磨损机制是温升引起的粘着磨损、氧化磨损和剥层磨损;有电弧放电时,接触副的主要磨损机制是电弧放电引起的电弧烧蚀、氧化磨损和粘着磨损;在电滑动摩擦磨损的过程中,也发生了磨粒磨损和材料的转移。在弓/网系统中,应采用降温措施来减小接触副材料的热磨损。尤其是尽量减少离线拉弧现象,避免电弧烧蚀对材料的损伤,延长接触副材料的使用寿命。
     5.纯碳滑板/铜接触线在交流高速下摩擦系数为0.24-0.35,有电流时的摩擦系数明显低于无电流时的摩擦系数。无电流时碳滑板磨损率很低,且磨损面积、磨痕深度及表面粗糙度很小;有电流时碳滑板磨损率为无电流时磨损率的10倍,磨损面积和磨痕深度显著增加,表面粗糙度为无电流时的2-3倍,且磨损表面渭动方向上出现电弧烧蚀的黑色流线。滑动速度、法向载荷对受电弓滑板材料磨损性能影响较小,电流作用引起的高温磨损和电弧烧蚀磨损是造成碳滑板磨损加剧的主要因素。纯碳滑板/铜接触线在交流高速下磨损机制呈现为磨粒磨损、电弧烧蚀和氧化磨损,并伴随着材料的转移。
     6.浸金属碳/不锈钢、纯碳/纯铜配副对磨时,接触副的摩擦系数稳定且较小,磨损量也较低,符合受电弓滑板/接触线配副的选择要求。而浸金属碳/纯铜接触副的摩擦系数较大,磨损量较高,且运行过程中发生粘着、并发出异常的噪声。对于弓网系统,受电弓滑板、接触线配对使用时要尽量避免电弧放电、尖叫和粘着现象,以免造成受电弓滑板/接触线材料磨损的加剧和影响周围的环境。
Nowadays, the driving power of the electric railway locomotive has been up to 8000~10000 kW, which is transmitted to the running train through the pantograph strip rubbing against the contact line. The pantograph strip/contact wire system works in such a poor condition that wear of the pantograph strip and contact wire materials is severe due to discharge and temperature. The service life of pantograph/catenary system mainly depends on the wear life of the pantograph strip and contact wire materials. In China, most of the pantograph strips of electrified railway locomotive need to be imported from foreign countries. Therefore, the running and maintenance costs are very expensive. The wear life of imported pantograph strips is also very short, only 8-10×104 km/piece. Therefore, the study on friction and wear properties and electrical characteristics of pantograph strip/contact wire couples can provide important guidance and theoretical basis for development and selection of pantograph strip materials in domestic electric locomotive.
     The pantograph strip/contact wire materials as the contact couples, which is commonly used in the electrified railway, has been tested simulatively on AC and DC friction and wear testers. In this paper, sliding friction and wear properties of several pantograph strip/contact wire materials are studied under different support stiffness, normal load, sliding speed and electric current. And the effects of the support stiffness and the normal load on the electrical contact performance of pantograph strip/contact wire couples are discussed in the same conditions. By observing the temperature change and arc discharge during testing, the mechanism for arc discharge and the main factors affecting arc discharge intensity in the pantogragh/catenary system are explored in the paper. The effects of the temperature and the arc discharge intensity of the contact couple on the friction and wear performance of the pantograph strip/contact wire couple are systematically studied. By use of micro-hardness tester, temperature controller, digital cameras, surface profiler, scanning electron microscopy and energy dispersive X-ray apparatus, and so on, the temperature rise of contact couple and the occurrence of off-line arc discharge were observed effectively, and friction and wear behaviors of pantograph strip/contact wire materials were studied. The main conclusions obtained are as follows:
     1. When the support stiffness k=19 000 N/m and the normal load Fn=160 N, the intensity and the frequency of arc discharge between the contact couple are suppressed. The wear rate of pin sample, the worn surface roughness and the surface damage are significantly decreased. The friction coefficient is stable. The appropriate support stiffness and normal load reduce the vibration and shock of the pantograph strip/contact wire during the high-speed sliding process. Their good contact makes off-line probability and arc discharge intensity of contact couple be controlled. Therefore, materials damage of the contact couple due to arc ablation is reduced. Then the appropriate contact force and support stiffness can keep a good contact of pantograph strip/contact wire extend the service life of pantograph strip/contact wire contact material, ensure a stable current-receiving condition of the locomotive and the stable running for the train.
     2. The intensity of arc discharge is studied by arc picture during testing. The current-receiving quality of the pantograph strip/contact wire system is measured according to the average current and the current loss rate in the circuit. The greater average current, the smaller the electric current loss is and the better the current-receiving quality of the circuit is, and vice versa.
     3. Spark discharge and arc discharge occurred in the process of electric sliding friction. When the contact couple is off-line, arc and spark discharge appears because of the breakdown of gas between the contact couple. The different discharge phenomena are mainly caused by its polarity, the contact area and material properties. Discharge intensity increases with increasing electric current and sliding speed, decreases with increasing normal load. It increases firstly and then decreases with increasing spring stiffness. Frictional heat, Joule heat and arc heat lead to temperature rise of contact couple. The temperature rise of the friction surfaces is very low, only 38℃in the absence of electric current. After the electric current is added, the contact temperature increases rapidly. The temperature of the contact couple is up to about 110℃when the electric current is 50 A.
     4. The friction coefficient firstly increases with increasing contact temperature, then decreases rapidly, and finally stabilizes. But the friction coefficient increases slightly with increasing arc discharge intensity. The effect of contact temperature on friction coefficient is more significant than that for the arc discharge. The wear volume of carbon strip increases slowly with increasing contact temperature, and increases linearly with increasing discharge intensity. The arc discharge has more significant effect on the friction coefficient than the temperature rise. The wear volume of carbon strip increases slowly with increasing contact temperature, and increases linearly with increasing discharge intensity. The arc discharge has more significant effect on the wear volume of carbon strip than the temperature rise. The main wear mechanisms without arc discharge include adhesive wear, oxidation wear, which is mainly caused by the temperature rise. The major wear mechanisms during arc discharge are arc erosion, oxidation wear and adhesive wear, which are caused by arc discharge. Abrasive wear and material transfer take place in the process of sliding friction and wear. Therefore, cooling measures should be applied in pantograph/catenary systems to reduce the thermal wear of contact couple materials. Especially, off-line arc discharge of the contact couple should be suppressed to the maximum extent to avoid the damage of material caused by arc erosion, so as to extend the service life of pantograph strip.
     5. The friction coefficient of the pure carbon strip rubbing against copper contact wire is kept at 0.24~0.35 under AC and high speed. The friction coefficient with electric current is much lower than that without electric current. In the case, the wear rate of carbon strip is characterized by a small area, a shallow depth of worn track and a minimum surface roughness. The wear rate of carbon strip with electric current is nearly 10 times as many as without electric current. The worn area and the depth of worn track significantly increase. In addition, the surface roughness under electric current is 2 to 3 times of the surface roughness without electric current. And in the sliding direction, the black stream-line due to arc ablation appears on the worn surface. The sliding velocity and the normal load have a slight influence on the wear volume of the pantograph strip material, and high temperature wear and arc erosion caused by electric current are the major factors affecting carbon strip wear. The wear mechanisms of pure carbon strip rubbing against copper contact wire are abrasive wear, arc erosion and oxidation wear, accompanied by material transfer.
     6. In the conditions of copper-impregnated metal carbon rubbing against stainless steel and the pure carbon rubbing against pure copper, the friction coefficient is stable and low. The wear volume is also small. These friction couples are appropriate for pantograph strip/contact wire couple. However, the friction coefficient and the wear volume of copper-impregnated metal carbon rubbing against copper couple are greater than those of former two couples. Adhesion and squeal noise occur in the process of sliding friction. For the pantogragh/catenary system, arc discharge, screaming and adhesion should be avoided in the process of pantograph strip rubbing against contact line to decrease wear volume of pantograph strip/contact wire materials and control surroundings noise.
引文
[1]H. Lee, G. Kim, S. Oh, G. Jang, S. Kwon. Fault analysis of Korean AC electric railways system. Electric power systems research,2006,76(5):317-326
    [2]D. Nakagava, M. Hatoko. Reevaluation of Japanese high-speed rail construction recent situation of the north corridor shinkansen and its way to completion. Transportpolicy, 2007,14:150-164
    [3]L. Dong, G.X. Chen, M.H. Zhu, Z.R. Zhou. Wear mechanism of aluminum-stainless steel composite conductor rail sliding against collector shoe with electric current. Wear,2007, 263(1-6):598-603
    [4]李世珷.我国电气化铁路发展的历程和前景.郑州科技通讯,2006:1-5
    [5]冯金柱.中国电气化铁路50年.铁道知识,2009:7-11
    [6]李之乐.世界电气化铁道发展概况.电气化铁道,2004,(3):37-39
    [7]张聪.我国高速铁路发展若干问题探析.科技研发,2010,(4):170-171
    [8]周仲荣等.摩擦学发展前言.北京:科学出版社,2006
    [9]金学松,刘启跃.轮轨摩擦学.北京:中国铁道出版社,2001
    [10]邹稳根.铁道接触车辆轮轨的摩擦磨损与节能降耗.内燃机车,2009,(6):1-6
    [11]曹利硕士论文.简支梁桥上博格板式无碴轨道纵向力分析.西南交通大学,2005
    [12]刘向阳,郁鼎文,冯平法,等.竖直运动平台气动配重的研究.机械科学与技术,2006,25(3):352-354
    [13]刘伟.静压轴承自控系统的动态特性.清华大学学报:自然科学版,2000,40(5):80-83
    [14]林修洲,朱旻昊,陈光雄,张卫华,周仲荣.高速电气化铁路弓/网系统的确摩擦磨损研究进展润滑与密封,2007,32(2):180-183
    [15]王贵青,陈敬超,孙加林.电力机车受电弓滑板的研究状况及发展趋势.材料导报,2003,17(1):18-20
    [16]黄汉中,李木林.固体润滑剂材料在受电弓滑板上的应用.粉末冶金技术,1997,(1):43-50
    [17]王绍复.电力机车铝包碳滑板失效原因分析.机车电传动,1995,(5):46-47
    [18]华公平,丁春华.铁路机车受电弓滑板材料的研究,金属热处理,2008,33(2):81-86
    [19]李娜,张弘,于正平.受电弓滑板-接触导线摩擦磨损机理与特性分析.中国铁道科学,1995,17(4):63-68
    [20]陈忠华,郭凤仪,董讷.新型受电弓滑板的设计与实现.煤炭科学技术,2005,33(3):30-31
    [21]邵利峰,韦强,徐立新,石宗利.电力接触受电弓滑板研究进展.材料开发与应用,2008,23(5):94-96
    [22]黄崇祺,轮轨高速电气化铁路接触网用接触线的研究.中国铁道科学,2001,(2):125.
    [23]黄崇祺,我国电力牵引用接触线的发展与展望.电线电缆,2003,(2):1-6.
    [24]丁雨田,李来军,许广济,寇生中,丁宗富.接触线材料的现状及研究热点.电线电缆,2004,(2):3-9
    [25]温宏权.铜电车线材料的研究进展.材料导报,1998,12(1):25-28
    [26]H. Nagasawa,于慧娟.将沉淀硬化铜合金应用于接触导线.国外机车车辆工艺,1999,(3):11-15
    [27]青木久纯.析出强化铜合金(PHC)在接触导线上的应用.国外机车车辆工艺,2000,(7):9-12
    [28]张家涛.高性能Cu-Cr(Zr-Mg)自生复合材料研究及其应用.昆明理工大学博士论文,2001
    [29]彭立明.自生复合Cu2Cr合金综合性能的热稳定.中国有色金属学报,2002,12(2):309-314
    [30]吴成三.铜镁合金的高强接触线.铁道工程学报,1996,(4):99-104
    [31]刘来宁.电力牵引接触线的沿革及部分特性.电线电缆,1997,(1):2-9
    [32]赵大军,唐丽,管桂生.我国电气化铁道用接触线的现状和发展趋势.铁道机车车辆,2008,28(5):74-77
    [33]张晓娟,孙乐民.受电弓滑板和接触网导线材料的现状及展望.河南科技大学自然科学版,2006,27(6):4-8
    [34]王贵青,陈敬超,孙加林.电力机车受电弓滑板的研究状况及发展趋势.材料导报,2003,17(1):18-20
    [35]侯明,孙乐民,李爱娜.电力机车受电弓滑板的现状.粉末冶金技术,2006,24(3):221-224
    [36]冀盛亚,孙乐民,上官保,张永振.受电弓滑板材料的研究现状及发展.材料热处理,2009,38(6):80-83
    [37]钱中良,盛伟,张枝苗,顾升兴等.碳滑板发展概况及我国的研究进展.机车电传动,2003,(S1):5-6
    [38]陈绚,吴柏秋.高速受流质量标准的讨论.机车电传动,2000,(1):40-43
    [39]潘连明,张国荣,钱中良,等.电力机车受电弓滑板.机车车辆工艺,2001,(3):1-4
    [40]严石,梅炳初,周卫兵.新型受电弓滑板材料的研究,机车电传动,2009,(6):21-23
    [41]I. Yasar, A. Canakci, F. Arshan. The effect of brush spring pressure on the wear behaviour of copper-graphite brushes with electrical current. Tribology International, 2007,40(9):1381-1386
    [42]孙乐民,沈向前,张永振.载流摩擦磨损规律研究.材料保护,2004,37(7):131-133
    [43]M. Milkovic, D. Ban. Influence of the pulsating current amplitude on the dynamic friction coefficient of electro-graphite brushes. Carbon,1996,34(10):1207-1217
    [44]D.H. He, R.R. Manoy, N. Grady. Wear of railway contact wires against current collector materials. Wear,1998,215(1-2):146-155
    [45]S. Kubo, K. Kato. Effect of arc discharge on wear rate of Cu-impregnated carbon strip in unlubricated sliding against Cu trolley under electric current. Wear,1998,216(1): 172-178
    [46]I. Yasar, A. Ccanakci, F. Arslan. The effect of brush spring pressure on the wear behaviour of Copper-graphite brushes with electrical current. Tribology Internation, 2007,40(9):1381-1386
    [47]S.F. Moustafa, S.A. El-Badry, A.M. Sanad, B. Kieback. Friction and wear of copper-graphite composites made with Cu-coated and uncoated graphite powders. Wear, 2002,253(7-8):699-710
    [48]李鹏,杜三明,孙乐民,张永振.载电条件下铬青铜/纯铜摩擦副磨损性能研究.摩 擦学学报,2003,23(3):250-252
    [49]李占君,孙乐民,张永振.载流摩擦磨损研究现状及前景.铁道运输与经济,2005,(1):82-84.
    [50]董霖.载流摩擦磨损机理研究.西南交通大学博士论文,2008
    [51]I.T. Landly. Contact wire wear on electric railroad. AIEE,1929, (10):756-759
    [52]Y.C. Chiou, Y. P. Chang, R. T. Lee. Tribo-electrification mechanism for self-mated metals in dry severe wear process, Part 2:pure soft metals. Wear,2003,254(7-8): 616-624
    [53]J. Wang, Y. Feng, S. Li, S. Lin. Influence of graphite content on sliding wear characteristics of CNTs-Ag-G electrical contact materials. Transactions of Nonferrous Metals Society of China,2009,19(1):113-118
    [54]H. Nagasawa, K. Kato. Wear mechanism of copper alloy wire sliding against iron-base strip under electric current. Wear,1998,216(2):179-183
    [55]D.H. He, R. Manory. A novel electrical contact material with improved self-lubrication for railway current collectors. Wear,2001,249(7):626-636
    [56]董霖,李丰学,陈光雄等.有无电流工况下钢铝复合轨/受电靴的摩擦磨损特性.润渭与密封,2006,(6):36-38
    [57]P.J. Blau. Mechanism for transitional friction and wear behavior of sliding metals. Wear, 1981,72(1):55-56
    [58]H. Zaidi, K.J. Chin, J. Frene. Analysis of surface and subsurface of sliding electrical contact steel/steel in magnetic field. Surface and Coatings Technology,2001,148(2-3): 241-250
    [59]R.G. Zheng, Z.J. Zhan, W.K. Wang. Wear behavior of Cu-La2O3 composite with or without electrical current. Wear,2010,268(1-2):72-76
    [60]P. Liu, S. Bahadur, J.D. Verhoeven. Electrical sliding friction and wear behavior of Cu-Nb in situ composites. IEEE,1994,17(4):616-624
    [61]M. Milkovic, D. Ban. Influence of the pulsating current amplitude on the dynamic friction coefficient of electrographite brushes. Carbon,1996,34(10):1207-1213
    [62]Z. Chen, P. Liu, J. D. Verhoeven, et al. Electrotribological behavior of Cu-15 vol.% Cr in situ composites under dry sliding. Wear,1997,203/204:28-35
    [63]A. Senouci, J. Frene, H. Zaidi. Wear mechanism in graphite-copper electrical sliding contact. Wear,1999,225-229:949-953
    [64]李鹏,杜三明,孙乐民,张永振.载流条件下铬青铜/纯铜摩擦副摩擦磨损性能研究.摩擦学学报,2003,23(3):250-252
    [65]Y. Feng, M. Zhang, Y. Xu. Effect of the electric current on the friction and wear properties of the CNT-Ag-G composites. Carbon,2005,43(13):2685-2692
    [66]S.G. Jia, P. Liu, F.Z. Ren, et al. Sliding wear behavior of copper alloy contact wire against copper-based strip for high-speed electrified railways. Wear,2007,262(7-8): 772-777
    [67]刘敬超,王旭,赵培峰等.铜基粉末冶金载流摩擦磨损微观型貌分析.润滑与密封,2009,34(7):14-17
    [68]刘芳,王黎,高晓蓉,王泽勇,赵全柯.受电弓与接触网间的接触压力检测研究.机车车辆与城轨车辆,2006,29(6):19-23
    [69]凤仪,张敏,徐屹.外加载荷对碳纳米管-银-石墨复合材料电磨损性能的影响.中国有色金属学报,2005,15(10):1483-1488
    [70]凤仪,张敏,徐屹.压力对碳纳米管-银-石墨复合材料接触电压降的影响.金属功能,2005,12(4):11-14
    [71]葛毅成,易茂中.载荷、时间、速度对C/C复合材料摩擦磨损行为的影响.中国有色金属学报,2006,16(2):241-246
    [72]G.X. Chen, F.X. Li, L. Dong, M.H. Zhu, Z. R. Zhou. Friction and wear behaviour of stainless steel rubbing against copper-impregnated metalized carbon. Tribology International,2009,42:934-939
    [73]徐晓峰,宋克兴,杜三明.载流条件下铜基粉末冶金材料的摩擦磨损行为.材料保护,2008,41(7):66-69
    [74]沈志云.关于高速铁路及高速列车的研究.振动测试与诊断,1998,18(1):1-8
    [75]赵印军.京沪高速接触网悬挂类型的选择分析.铁道工程学报,2003,2:100-103
    [76]Y. Watanabe. High-speed sliding characteristics of Cu-Sn-based composite materials containing lamellar solid lubricants by contact resistance studies, Wear,2008,264(7-8): 624-631
    [77]A. Matsuura, T. Nagafuji, T. Shimada. Maintenance practices in over sea's railways, RTRI Rep.6,1993:49-60
    [78]E. Csapo, H.Zaidi, D.Paulmier. Friction behavior of a graphite-graphite dynamic electric contact in the presence of argon. Wear,1996,192(1-2):151-156
    [79]A. Senouci, H. Zaidi, J. Frene, A. Bouchoucha, D. Paulmier. Damage of surfaces in sliding electrical contact copper/steel. Applied surface science,1999,144-145:287-291
    [80]A. Bouchoucha, S. Chekroud, D. Paulmier. Influence of the electrical sliding speed on friction and wear processes in an electrical contact copper-stainless steel. Applied Surface Science,2004,223(4):330-342
    [81]李庶,凤仪,陈淑娴.滑动速度对CNTs-Ag-MoS2-Cgraphite复合材料电磨损性能.中国机械工程,2009,20(10):1230-1234
    [82]A. Bouchoucha, H. Zaidi, E.K. Kadiri, et al. Influence of electric fields on the tribological behavior of electrodynamical copper/steel contacts. Wear,1997,203/204: 434-441
    [83]朱润生,池长青,张建斌.电摩擦效应的机理研究.北京航空航天大学学报,2001,27(2):206-208
    [84]徐屹,凤仪,王松林,张学斌,沈剑.碳纳米管-银-石墨复合材料的电磨损性能.机械工程学报,2006,42(12):206-211
    [85]董霖,陈光雄,周仲荣.电极性对地铁第三轨摩擦磨损行为的影响.中国铁道科学,2009,30(4):86-90
    [86]H.S. Hong. The role of atmospheres and lubricants in the oxidational wear of metals. Tribology international,2002,35(11):725-729
    [87]D. Paulmier, M.E1. Mansori, H. Zaidi. Study of magnetized or electrical sliding contact of a steel XC48/graphite couple. Wear,1997,203-204:148-154
    [88]王观民,张永振,杜三明.两种不同气氛下钢铜摩擦副摩擦磨损特性研究.材料热处理,2006,35(24):8-11.
    [89]杨晓伟,张永振,邱明,杜三明.氮气气氛条件下钢/铜摩擦副的摩擦磨损特性研究.摩擦学学报,2007,27(1):25-28.
    [90]牛永平,蔡利华,张永振.不同气氛环境中纳米Al2O3/PTFE复合材料摩擦磨损特性研究.润滑与密封,2009,24(4):24-27
    [91]A. Bouchoucha, E. K. Kadiri, F.Robert, H. Zaidi, D. Paulmier. Metals transfer and oxidation of copper-steel surfaces in electrical sliding contact. Surface and coatings technology,1995,76-77:521-527
    [92]J. F. Archard. Wear,1958,2:438
    [93]戴利民,林吉忠,丁新华.滑板材料受流摩擦时接触点瞬态温升对磨损性能的影响.中国铁道科学,2002,23(2):111-117
    [94]刘建秀,郭炎强,韩长生,李蔚.不同温度下铜基粉末冶金摩擦材料往复滑动磨损规律.机械强度,2004,26(2):207-212
    [95]葛毅成,易茂中.载荷、时间、速度对C/C复合材料摩擦磨损行为的影响.中国有色金属,2006,16(2):241-246
    [96]马少波,俞建卫,李卫蓉等.温度对Cu-Sn10-Pb10减摩复合材料摩擦磨损性能的影响.轴承,2008,12:33-36
    [97]S. Kubo, K. Kato. Effect of arc discharge on the wear rate and wear mode transition of a copper-impregnated metalized carbon contact strip sliding against a copper disk. Tribology International,1999,32(7):367-378
    [98]S. Kubo, K. Kato. Effect of arc discharge on wear rate of Cu-impregnated strip in unlubricated sliding against Cu trolley under electric current. Wear,1998,216(2): 172-178
    [99]C.R.F. Azevedo, A. Sinatora. Failure analysis of a railway copper contact strip. Engineering Failure Analysis,11,2004:829-841
    [100]冀盛亚,孙乐民,上官宝,张永振.铜基粉末冶金/铬青铜摩擦副载流摩擦磨损的电弧侵蚀特性研究.润滑与密封,2009,34(2):5-7
    [101]程礼椿.电接触理论及应用,北京:机械工业出版社,1988
    [102]贾步超.载流条件下的1Cr18Ni9Ti/浸金属碳摩擦磨损性能研究.西南交通大学硕士论文,2008
    [103]全永昕,施高义.摩擦磨损原理(第2版).杭州:浙江大学出版社,1992
    [104]吴积钦,钱清泉.受电弓与接触网系统电接触特性.中国铁道科学,29(3),2008:106-109
    [105]R. Holm. Electric contacts theory and application. Berlin:Springer,1967
    [106]王其平,电器电弧理论.西安:西安交通大学出版社,1991
    [107]董霖,陈光雄,朱旻昊,周仲荣.地铁钢铝复合式第三轨/受电靴载流摩擦磨损特性研究.摩擦学学报,2007,27(3):274-278
    [108]卜俊.温度对弓网系统载流磨损性能的影响.西南交通大学硕士论文,2010
    [109]王季梅.真空电弧理论研究及其测试.西安:西安交通大学出版社,1993
    [110]Zhuan-Ke Chen, Sawa.K. Effect of arc behavior on material transfer. A Review, IEEE TRANS,1998,21(2):310-321
    [111]濮良贵,纪名刚.机械设计第八版.北京:高等教育出版社,2005
    [112]B.Bhushan,葛世荣译.摩擦学导论.北京:机械工业出版社,2006
    [113]籍国宝.摩擦磨损原理.北京:中国农业出版社,1992
    [114]刘家浚.材料磨损原理及其耐磨性.北京:清华大学出版社,1993
    [115]L.H. Chen, D.A. Rigney. Adhesion theories of transfer and wear during sliding of metals. Wear,1990,136(2):223-235
    [116]G. Beckmann. A theory of abrasive wear based on shear effects in metal surfaces. Wear, 1980,59(2):421-432
    [117]G.W. Stachowiak, A.W. Batchelor. Fatigue wear. Engineering Tribology (third edition). 2006:595-619
    [118]林福严,曲敬信,陈华辉.磨损理论与抗磨技术.北京:科学出版社,1993
    [119]江晓霞,李诗卓,李曙.金属的腐蚀理论.北京:化学工业出版社,2002
    [120]周仲荣,Leo Vincent.微动磨损.北京:科学出版社,2002
    [121]P.G. Hegda, G.J. Thackray. Computer evaluation of electric railway catenary equipment by the method of normal modes. IEEE Transaction on Industry,17(3),1981
    [122]于涤.高速接触网受流的理论分析.铁道学报,1998,20(5):58-64
    [123]于万聚.高速接触网-受电弓系统动态受流特性研究.铁道学报,1993,15(2):16-27
    [124]T. Vinayagalingam. Computer evaluation of controlled pantographs for current collection from simoke catenary overhead equipment at high speed. Journal of dynamic systems, Measurment and control,1983
    [125]Wormley, D. Seering, et.al. Dynamic performance characteristics of new configuration pantograph-catenary systems. Final report,1984,23(85):34
    [126]张卫华,沈志云.接触网动态研究.铁道学报,1991,13:26-33
    [127]P. Liu, S. Bahadur, J.D. Verhoeven, E.D. Gibson, M. Kristiansen, A. Donaldson. Arc erosion behavior of Cu-15%Nb and Cu-15%Cr in situ composites. Wear,1997, 203-204:36-45
    [128]M. Mansori, D. Paulmier, J. Ginsztler, M. Horvath. Lubrication mechanisms of a sliding contact by simultaneous action of electric current and magnetic field. Wear, 1999,225-229:1011-1016
    [129]W.J. Spry, P.M. Scherer. Copper oxide film formation at a sliding carbon-copper interface. Wear,1961,4:137-149
    [130]J.A. Bares, N. Argibay, P.L. Dickrell, G.R. Bourne, D.L. Burris, et al. In situ graphite lubrication of metallic sliding electrical contacts. Wear,2009,267(9-10):1462-1469
    [131]H.J. Kim, S. Karthikeyan, D. Rigney. The structure and composition of aluminum wear debris generated by unlubricated sliding in different environments. Wear,263. 2007:849-857
    [132]J.K. Lancaster. The influence of arcing on the wear of carbon brushes on copper. Wear, 1963, (6):341-352
    [133]V.V. Konchites. C.K. Kim. Electric current passage and interface heating. Wear,1999, 232(1):31-40
    [134]G. Poetsch, J. Wallaschek. Pantograph/catenary dynamics and control. Vehicle System Dynamics,1997,28:159-195
    [135]A. Alberto, J. Benet, E. Arias, D. Cebrian, T. Rojo, et al. A high performance tool for the simulation of the dynamic pantograph-catenary interaction. Mathematics and Computers in Simulation,2008,79(3):652-667
    [136]Y.H. Cho, K. Lee, Y. Park, B. Kang, K.N. Kim. Influence of contact wire per-sag on the dynamics of pantograph-railway catenary. International Journal of Mechanical Sciences,2010,52(11):1471-1490
    [137]T.X. Wu, M.J. Brennan. Basic analytical study of pantograph-catenary system dynamics. Vehicle System Dynamics,1998,30:443-456
    [138]郭京波,杨绍普,高国生.高速铁路接触网-受电弓系统受流稳定性.动力学与控制学报,2004,2(3):60-63
    [139]于万聚.高速接触网的收留稳定性分析.西铁科技,1996,(2):38-44
    [140]高宗宝,吴广宁,吕玮,何常红,周利军.高速电气化铁路中的弓网电弧现象研究综述.高压电器,2009,45(3):104-110
    [141]李灵敏.接触网系统受流质量及浸金属碳载流摩擦磨损特性试验研究.西南交通大学硕士论文,2008
    [142]雷世明.焊接方法与设备.北京:机械工业出版社,2004
    [143]徐学基,诸定昌.气体放电物理.上海:复旦大学出版社,1996
    [144]D. Srdoc. Gas discharge mechanism and properties of halogen-quenched counters. Nuclear Instruments and Methods,1972,99(2):321-332
    [145]T. Ding, G.X. Chen, M.H. Zhu, et al. Influence of the spring stiffness on friction and wear behaviors of stainless steel/copper-impregnated metallized carbon couple with electrical current. Wear,2009,267(5-8):1080-1086
    [146]CJ. Tu, Z.H. Chen, D. Chen, et al. Tribhological behavior and wear mechanism of resin-matrix contact strip against copper with electrical current. Transactions of Nonferrous Metals Society of China,2008,18(5):1157-1163
    [147]X.X. Wu, Z.B. Li. Model on sputter erosion of electrical contact material. Proceeding of 48th IEEE Holm Conference on Electric Contact, Florida, USA,2002:29-34
    [148]贾利晓,张永振,孙乐民,上官宝.受流条件下碳碳复合材料的摩擦学特性研究.润滑与密封,2008,33(4):12-14
    [149]B.K. Yen. On temperature-dependent tribological regimes and oxidation of carbon-carbon composites up to 1800℃. Wear,1996,96(2):254-262
    [150]黄莹.交直流电力系统动态特性分析方法研究.浙江大学博士论文,2005
    [151]高道行.略论牵引动力交流传动对电气化铁路供电系统的影响.铁道机车车辆,2007,27(2):65-70
    [152]贾颖绚.城市轨道交通直流牵引网供电制度式技术研讨会纪实.都市快轨交通,2010,23(1):1-4
    [153]N.P. Suh, H.C. Sin. The genesis of friction. Wear,1981,69(1):91-114

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700