GNSS掩星大气参数反演中电离层残差模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
GNSS掩星大气探测技术已广泛应用于数值天气预报和全球气候监测中。电离层是掩星大气探测的主要误差源之一,双频弯曲角线性组合法是目前应用最广泛的电离层误差改正方法。由于GNSS信号传播路径的弯曲分离和电离层高阶项的影响,经该方法改正后,反演大气参数中仍含有电离层残余误差。电离层残余误差是GNSS掩星反演中高层大气参数的主要误差。最大限度地降低电离层残余误差有利于实现GNSS掩星中高层大气高精度观测。弯曲角电离层残余误差的定性和定量研究对发展新的电离层误差改正方法意义重大。
     用ECMWF大气模式和COSMIC数据,对比分析了太阳活动“宁静”期和太阳活动“活跃”期弯曲角误差特性。结果表明,太阳活动“活跃”期弯曲角标准偏差较大;平均偏差与“宁静”期相比具有明显的“负值趋向性”;电离层残余误差对平流层顶部(35~50km)和中间层底部(50~65km)弯曲角影响显著。
     以MSIS90大气模式和3D NeUoG电离层模式为大气背景,模拟分析了不同电离层条件下掩星事件的弯曲角电离层残差。结果表明:弯曲角电离层残差是中间层和平流层顶部掩星大气反演参数的主要误差,其大小与太阳活动强度、地方时、掩星平面方位角密切相关。电离干扰会使弯曲角电离层残余误差增大数倍至二十多倍。
     量化研究了平流层底部(15~35km)、平流层顶部(35~50km)、中间层底部(50~65km)和中间层顶部(65~80km)的区域日平均弯曲角电离层残余误差。以MSIS90大气模式和3D NeUoG电离层模式为大气背景,用GPS/MetOp-A真实轨道数据仿真模拟了2008年7月15日全天的掩星事件。弯曲角电离层残余误差分析过程中,全球被划分为GLO (global)、NHH (north hemisphere high latitude)、NHM (north hemisphere middle latitude)、EDT (equatorial day time)、SHM (southhemisphere middle latitude)和SHH (south hemisphere high latitude)六个统计区域。分析了太阳活动强度、纬度带和电离层局部球对称对弯曲角电离层残差的影响。结果表明:弯曲角电离层平均偏差是一种负的系统性偏差,且随太阳活动强度的增强而增大。六个统计区域中,EDT的弯曲角电离层偏差最大,中间层顶部、中间层底部和平流层顶部的弯曲角电离层残差平均偏差分别可达0.048μrad、0.041μrad和0.032μrad;SHH的弯曲角电离层残差平均偏差最小,其大小几乎为零。弯曲角电离层残余误差的量化研究对中高层大气弯曲角电离层残余误差的建模和修正有一定的参考价值。
     用三维射线追踪法模拟分析了弯曲角电离层残差的产生机理,并对印度洋区域的电离层残差异常现象进行了初步分析。结果表明,“入射线”和“出射线”的电子密度分布不对称是弯曲角电离层误差异常的主要原因。
The global navigation satellite systems (GNSS) radio occultation (RO) techniquehas been widely used to observe the atmosphere for applications of numerical weatherprediction and global climate monitoring. The ionosphere is a major error source inGNSS RO measurements and an ionosphere-free linear combination ofdual-frequency bending angles derived from RO is commonly used to mainly removethe first-order ionospheric effect. However, the residual ionopheric error (RIE) is stillconsiderable, thus it needs to be further mitigated for high accuracy applications,especially in upper air where the RIE is more severe. To effectively mitigate the RIEeffect, characterization and quantification of the bending angle RIEs are important forobtaining benchmark-quality upper-air RO retrievals.
     A comparison study of the bending angle errors in high solar activity periods andlow solar activity periods was conducted by using the European centre for mediumrange weather forecasts (ECMWF) model and constellation observing system formeteorology, ionosphere, and climate (COSMIC) data. The results show that thebending angle RIE is a main error source in the upper stratosphere (US) and lowermesosphere (LM).
     End-to-end simulations and a detailed analysis of single-event RIEs have beenperformed to investigate the characteristics and magnitude of the bending angle RIEsin various ionospheric conditions. The results illustrate that the bending angle RIE issignificant in the mesosphere (MS) and US; its magnitude is dependant upon localtime, the intensity of solar activity and the direction of the RO plane; and ionosphericdisturbances can enlarge the bending angle RIEs by several to more than20times.
     This research has for the first time quantified daily-zonal-mean bending angleRIEs in the impact height layers of the lower stratosphere (LS), US, LM and uppermesosphere (UM) using end-to-end simulation. A global ensemble of one-day ROevents were simulated and divided into six geographic zones named global (GLO),north hemisphere high latitude (NHH), north hemisphere middle latitude (NHM),equatorial day time (EDT), south hemisphere middle latitude (SHM) and southhemisphere high latitude (SHH). In the simulation, the MSIS-90atmospheric modeland the3D NeUoG ionospheric model were used. The simulated bending angleprofiles were compared with the reference—the ones simulated using the neutralatmosphere only, for calculating the biases, standard deviations and uncertainties of the bending angle RIEs. The variations of the bending angle RIEs with solar activity,latitudinal region, and with and without the assumption of ionospheric sphericalsymmetry were assessed.
     The results show that the layer-average bending angle RIE biases in the US, LMand UM height layers and in all the six zones have an obvious negative tendency andthe magnitude of their absolute values increases with the rise of solar activity level.Comparison of the bending angle RIE biases of the six zones indicated that themaximum layer-average RIE biases, located in the EDT zone, in the UM, LM and USlayers are0.048μrad,0.041μrad and0.032μrad respectively. The minimumlayer-average RIE biases are in the SHH zone with the values close to zero. Theseresults suggest that the bending angle RIEs tend to have negative systematicbiases.This research has significance since these simulation results can be a referencefor the calibration of bending angles derived from real RO observations in future‘s ROdata processing.
     In addition, the mechanism of the bending angle RIEs was also investigatedusing the3D ray tracing technique and those RO events with exceptionally large RIEswere analyzed. The results indicate that the asymmetry of ionospheric electron densityalong inbound‘and outbound‘ray paths is the major cause of the exceptionally largebending angle RIEs.
引文
[1] Parmesan C,Yohe G. A globally coherent fngerprint of climate change impacts acrossnatural systems[J]. Nature,2003,421(2):37-42
    [2] Changnon S A, Jr R A P, Changnon D, et al. Human factors explain the increased lossesfrom weather and climate extremes[J]. Bulletin of the American MeteorologicalSociety,2000,81:437-442
    [3] Naidu C V, Durgalakshmi K, Satyanarayana G C, et al. An observational evidence ofclimate change during global warming era[J]. Global and Planetary Change,2011,79(1-2):11-19
    [4] Lackner B C, Steiner A K, Hegerl G C, et al. Atmospheric climate change detection byradio occultation data using a fingerprinting method[J]. Journal of Climate,2011,24:5275-5291
    [5] Steiner A K, Lackner B C, Ladst dter F, et al. GPS radio occultation for climatemonitoring and change detection[J]. Radio Science,2011,46(6):1-17
    [6] Global Climate Observing System (GCOS)(2010) Guidelines for the generation ofdatasets and products meeting GCOS requirements, GCOS-143, WMO/TD1530, Worldmeteorol. Org., Genveva Switzerland[J].
    [7] Kuo Y, Schreiner W S, Wang J, et al. Comparison of GPS radio occultation soundingswith radiosondes[J]. Geophysical Research Letters,2005,32:1-4
    [8] Puviarasan N, Giri R K, and Ranalkar M. Precipitable water vapour monitoring usingground based GPS system[J]. Mausam,2011,61:203-212
    [9] Thies B, Bendix J. Satellite based remote sensing of weather and climate: recentachievements and future perspectives[J]. Meteorological Applications,2011,18:262-295
    [10] Gobiet A, Kirchengast G. Advancements of Global Navigation Satellite System radiooccultation retrieval in the upper stratosphere for optimal climate monitoring utility[J].Journal of Geophysical Research,2004,109(D24):1-11
    [11] Melbourne W G, Davis E S, Duncan C B, et al. The application of spaceborne GPS toatmospheric limb sounding and global change monitoring[J]. JPL Publication,1994,(147):94-18
    [12] Kursinski E R, Hajj G A, Schofield J T, et al. Observing Earth's atmosphere with radiooccultation measurements using the Global Positioning System[J]. Journal ofGeophysical Research,1997,102:23429-23465
    [13] Gorbunov M E, Gurvich A S, Bengtsson L. Advanced algorithms of inversion ofGPS/MET satellite data and their application to reconstruction of temperature andhumidity[J]. Tech Rep.211, Max Plank Inst. For Meteorol.,1996
    [14] Ware R, Exner M, Feng D, et al. GPS Sounding of the atmosphere from Low Earth Orbit:Preliminary results[J]. Bull. Am. Meteorol. Soc.,1996,77(1):19-40
    [15] Rocken C, Anthes R, Exner M, et al. Analysis and validation of GPS/MET data in theneutral atmosphere[J]. Journal of Geophysical Research-Atmospheres,1997,102(D25):29849-29866
    [16] Steiner A K, Kirchengast G, Ladreiter H-P. Inversion, error analysis, and validation ofGPS/MET occultaiton data[J]. Ann. Geophys.,1999,(17):122-138
    [17] Anthes R A, Rocken C, Kuo Y H. Applications of COSMIC to meteorology andclimate[J]. Terrestrial, Atmospheric and Oceanic Sciences,2000,11:115-156
    [18] Foelsche U, Pirscher B, Borsche M, et al. Assessing the climate monitoring utility ofradio occultation data: From CHAMP to FORMOSAT-3/COSMIC[J]. Terrestrial,Atmospheric and Oceanic Sciences,2009,20(1):155
    [19] Steiner A K, Kirchengast G. Ensemble-based analysis of errors in atmospheric profilesretrieved from GNSS occultation data [J]. Occultations for Probing Atmosphere andClimate,2004,149-160
    [20] Anthes R A. Exploring Earth's atmosphere with radio occultation: contributions toweather, climate and space weather[J]. Atmospheric Measurement Techniques,2011,4:1077-1103
    [21] Mannucci A J, Ao C O, Yunck T P, et al. Generating climate benchmark atmosphericsoundings using GPS occultation data[J]. SPIE Proceedings,2006
    [22] Steiner A K, Kirchengast G, P L H,"Inversion, error analysis, andFORMOSAT-3/COSMIC constellation for global climate monitoring," presented at theAmerican Geophysical Union, Fall Meeting,2006.
    [23] Steiner A K, Hunt D, Ho S P, et al. Quantification of structural uncertainty in climatedata records from GPS radio occultation[J]. Atmospheric Chemistry and Physics,2013,(13):1469-1484
    [24] Foelsche U, Scherllin-Pirscher B, Ladstadter F, et al. Refractivity and temperature climaterecords from multiple radio occultation satellites consistent within0.05%[J].Atmospheric Measurement Techniques,2011,4(8):1593-1651
    [25] Loscher A, Kirchengast G. Variational data assimilation for deriving global climateanalyses from GNSS radio occultation data[J]. GPS Solut.,2008,12:227-235
    [26] Kuo Y H, Sokolovskiy S V, Anthes R A, et al. Assimilation of GPS radio occultation datafor numerical weather prediction[J]. Terrestrial, Atmospheric and OceanicSciences,2000,11:157-186
    [27] Huang C Y, Kuo Y H, Chen S Y, et al. Impact of GPS radio occultation data assimilationon regional weather predictions[J]. GPS Solut.,2010,14:35-49
    [28] Cucurull L. Improvement in the use of an operational constellation of GPS radiooccultation receivers in weather forecasting[J]. Weather Forecasting2010,25(2):749-767
    [29] Poli P, Healy S B, Rabier F, et al. Preliminary assessment of the scalability of GPS radiooccultations impact in numerical weather prediction[J]. Geophysical ResearchLetters,2008,35(23): L23811
    [30] Chen S Y, Huang C Y, Kuo Y H, et al. Assimilation of GPS refractivity fromFORMOSAT-3/COSMIC using a nonlocal operator with WRF3DVAR and its impact onthe prediction of a typhoon event[J]. Terrestrial, Atmospheric and OceanicSciences,2009,20(1):133-154
    [31] Hedin A E. Extension of the MSIS thermosphere model into the middle and loweratmosphere[J]. J. Geophys. Res,1991,96(A2):1159-1172
    [32] Radicella S M, L Z M. The improved DGR analytical model of electron density heightprofile and total electron content in the ionosphere[J]. Ann. Geophys.,1995,(38):35-41
    [33] Leitinger R, Titheridge J E, Kirchengast G, et al. A simple global empirical model for theF layer of the ionosphere[J]. Kleinheubacher Berichte,1996,39:679-704
    [34] Schreiner W, Sokolovskiy S, Rocken C, et al. Analysis and validation of GPS/MET radiooccultation data in the ionosphere[J]. Radio Science,1999,34(4):949-966
    [35] Liou Y A, Pavelyev A G, Wickert J, et al. Analysis of atmospheric and ionosphericstructures using the GPS/MET and CHAMP radio occultation database: a methodologicalreview[J]. GPS Solut.,2005,9(2):122-143
    [36] Rius A, Ruffni G, Romeo A. Analysis of ionospheric electron density distribution fromGPS/MET occultaion [J]. IEEE Trans.Geosci. and Remote Sensing,1998,36(2):383-394
    [37] Hajj G A, Lee L C, Pi X Q, et al. COSMIC GPS ionospheric sensing and spaceweather[J]. Terrestrial, Atmospheric and Oceanic Sciences,2000,11(1):235-272
    [38] Straus P. Ionospheric climatology derived from GPS occultation observations made bythe ionospheric occultation experiment[J]. Adv. Space Res.,2007,39(5):793-802
    [39] Hajj G A, Romans L J. Ionospheric electron density profiles obtained with the GlobalPositioning System: Results from the GPS/MET experiment[J]. Radio Science,1998,33(1):175-190
    [40] Straus P R. Ionospheric remote sensing with the Ionospheric Occultation Experiment(IOX): First results[C]. American Geophysical Union, Fall Meeting2001,2001.
    [41] Wang K Y, Lin S C. First continuous GPS soundings of temperature structure overAntarctic winter from FORMOSAT-3/COSMIC constellation[J]. Geophysical ResearchLetters,2007,34(12).
    [42]宫晓艳,胡雄,吴小成,等. GPS测量误差对大气掩星反演精度影响分析[J].地球物理学进展,2008,23(6):1764-1781
    [43] Gorbunov M E, Gurvich A S. Algorithms of inversion of Microlab-1satellite dataincluding effects of multipath propagation[J]. Int. J. Remote Sens.,1998,19:2283-2300
    [44] Sokolovskiy S, Hunt D. Statistical optimization approach for GPS/MET datainversions[J]. paper presented at the URSI GPS/MET workshop, Union Radio Sci.Int.Tuscon, Ariz,1996
    [45] Pannekoek A. Uber die Erscheinungen,welche bei einer Sternbadeckung durch einerPlaneten auftreten[J]. Astron. Nach,1904,164:5-10
    [46] Elliot J L,Olkin C B. Probing planetary atmospheres with stellar occultations [J].Science,1996,24:89-123
    [47] Kliore A, Gerald S L, Dan L C. Atmosphere and ionosphere of venus from the Mariner Vs-band radio occultation measurement[J]. Science,1967,158:1683-1688
    [48] Fjeldbo G,Eshleman V R. The atmosphere of Venus as studied with the Mariner5dualradio-frequency occultation experiment[J]. Radio Science,1969,4:879-897
    [49] Fjeldbo G, Kliore A, Eshleman V R. The neutral atmosphere of Venus as studied with theMariner V radio occultation experiments [J]. Astronomical Journal,1971,76:123-140
    [50] Fjeldbo G,Eshleman V R. The atmosphere of mars analyzed by integral inversion of theMariner IV occultation data[J]. Science,1968,16:1035-1059:
    [51] Kliore A, Fjeldbo G, Seidel B L, et al. Mariners6and7:radio occultation measurementsof the atmosphere of Mars[J]. Science,1969,166:1393-1397
    [52] Kliore A, Cain D L, Gerald S, et al. Occultation experiment: results of the first directmeasurement of mars's atmosphere and ionosphere[J]. Science,1965,149:243-1248
    [53] Lindal G F, Hotz H B, Sweetnam D N, et al. Viking radio occultation measurements ofthe atmosphere and topography of Mars: Data acquired during1Martian year oftracking[J]. Journal of Geophysical Research,1979,84:8443-8456
    [54] Kliore A, Fjeldbo G, Seidel B L, et al. Atmosphere of jupiter from the pioneer11s-bandoccultation experiment: preliminary results[J]. Science,1975,188:474-476
    [55] Lindal G F, Wood G E, Levy G S, et al. The atmosphere of Jupiter:an analysis of theVoyager radio occultation measurements [J]. Journal of Geophysical Research,1981,86:8721-8727
    [56] Kliore A, Dan L C, Fjeldbo G, et al. Preliminary results on the atmospheres of io andjupiter from the pioneer10s-band occultation experiment[J]. Science,1974,183:323-324
    [57] Howard H T, Tyler G L, Esposito P B, et al. Mercury: results on mass, radius, ionosphere,and atmosphere from mariner10dual-frequency radio signals[J]. Science,1974,185(1446):179-180
    [58] Lindal G F, Sweetnam D N, and Eshleman V R. The atmosphere of Saturn-An analysisof the Voyager radio occultation measurements[J]. Astronomical Journal,1985,90:1136-1146
    [59] Lindal G F, Lyons J R, Sweetnam D N, et al. The atmosphere of Uranus: results of radiooccultation measurements with Voyager2[J]. Journal of Geophysical Research,1987,92(A13):14987-15001
    [60] Lindal G F, Lyons J R, Sweetnam D N, et al. The atmosphere of Neptune: results of radiooccultation measurements with Voyager2spacecraft[J]. Geophysical ResearchLetters,1990,17(10):1733-1736
    [61] Lindal G F, Wood G E, Hotz H B, et al. The atmosphere of Titan: An analysis of theVoyager1radio occultation measurements[J]. Icarus,1983,53(2):348-363
    [62] Fishbach F F. A satellite method for temperature and pressure below24km[J]. Bulletinof the American Meteorological Society,1965,9:528-530
    [63] Lusignan B, Modrell G, Morrison A, et al. Sensing the earth‘s atmosphere withoccultation satellite[J]. Proceeding of IEEE.,1969,4:458-467
    [64] Hardy K, Hajj G A, Kursinski E R. Accuracies of atmospheric profiles obtained fromGPS occultations[J]. International Journal of Satellite Communications,1994,12(5):463-473
    [65]丁金才,郭鹏. GPS气象学及其应用[M].北京:气象出版社,2009
    [66]严豪健,符养,洪振杰,等.天基GPS气象学与反演技术[M].北京:中国科学技术出版社,2007
    [67] Kuo Y, Zou X, Chen S J, et al. A GPS/MET sonding through an intense upper-levelfront[J]. Bulletin of the American Meteorological Society,1998,79(4):617-626
    [68] Hocke K. Inversion of GPS meteorology data[J]. Annals of Geophysics,1997,15(4):443-450
    [69]曾桢,胡雄,张训械.无线电掩星和激光雷达观测结果比较[J].空间科学学报,2001,21(2):165-171
    [70]张训械, Hoeg P, Larsen G B.奥斯特/GPS掩星与地面雷达联合观测电离层电子密度的初步结果[J].全球定位系统,2000,25(3):1-5
    [71]宫晓燕.大气无线电GNSS掩星探测技术研究[D].中国科学院空间科学与应用研究中心,中国科学院研究生院,2008.
    [72] Escudero A, Schlesier A C, Rius A, et al. Ionospheric tomography using rsted GPSmeasurements-preliminary results[J]. Physics and Chemistry of the Earth,2001,26(3):173-176
    [73] Larsen G B, Syndergaard S, H eg P, et al. Single frequency processing of rsted GPSradio occultation measurements[J]. GPS Solut.,2005,9(2):144-155
    [74] Yunck T P, Liu C, and Ware R. A history of GPS sounding[J]. Terrestrial, Atmosphericand Oceanic Sciences,2000,11(1):1-20
    [75] Wickert J, Beyerle G, K nig R, et al. GPS radio occultation with CHAMP and GRACE: Afirst look at a new and promising satellite configuration for global atmosphericsounding[J]. Annals of Geophysics,2005,23(4):653-658
    [76] Wickert J, Schmidt T, Beyerle G, et al. The radio occultation experiment aboard CHAMP:Operational data analysis and validation of vertical atmospheric profiles[J]. Journal ofthe Meteorological Society,2004,82:381-395
    [77] Wickert J, Reigber C, Beyerle G, et al. Atmosphere sounding by GPS radio occultation:First results from CHAMP[J]. Geophysical Research Letters,2001,28(17):3264-3266
    [78] Wickert J, Beyerle G, Hajj G A, et al. GPS radio occultation with CHAMP: Atmosphericprofiling utilizing the space-based single difference technique[J]. Geophysical ResearchLetters,2002,29(8):281-284
    [79] Hajj G A, Ao C O, Iijima B A, et al. CHAMP and SAC‐C atmospheric occultationresults and intercomparisons[J]. J. Geophys. Res.,2004,109(D6):1-24
    [80] Schmidt T, Heise S, Wickert J, et al. GPS radio occultation with CHAMP and SAC-C:global monitoring of thermal tropopause parameters[J]. Atmospheric Chemistry andPhysics,2005,5:1473-1488
    [81] Han S C, Shum C K, Jekeli C, et al. Improved estimation of terrestrial water storagechanges from GRACE[J]. Geophysical Research Letters,2005,32(7): L073021-5
    [82] Klobuchar J A. Ionospheric time-delay algorithm for single-frequecy GPS users[J].IEEE Traansactions on aerospace and electronnic systems1987, AES-23(3):325-331
    [83] Feess W A,Stephens S G,"Evaluation of GPS ionospheric time-delay model," presentedat the IEEE1986Position, Location, and Navigation Symposium,1986.
    [84] Buckreuss S, Werninghaus R, and Pitz W. The German satellite mission TerraSAR-X[J].Aerospace and Electronic Systems Magazine, IEEE,2009,24(11):4-9
    [85] Kumar R, Bhowmick S A, Babu K N, et al. Relative calibration using natural terrestrialtargets: A preparation towards Oceansat-2scatterometer[J]. IEEE Traansactions onGeoscience and Remote Sensing,2011,49(6):2268-2273
    [86] Chakraborty A, Kumar R, and Stoffelen A. Validation of ocean surface winds from theOCEANSAT-2scatterometer using triple collocation[J]. Remote Sensing Letters,2013,4(1):84-93
    [87] Lee S R. Overview of KOMPSAT-5program, mission, and system[J]. IEEE1986Position, Location, and Navigation Symposium,2010,797-800
    [88] Schreiner W, Rocken C, Sokolovskiy S, et al. Estimates of the precision of GPS radiooccultations from the COSMIC/FORMOSAT-3mission[J]. Geophysical ResearchLetters,2007,34(4): L048081-5
    [89] Sokolovskiy S V, Rocken C, Lenschow D H, et al. Observing the moist troposphere withradio occultation signals from COSMIC[J]. Geophysical Research Letters,2007,34(18): L188021-6
    [90] Lin C H, Liu J Y, Fang T W, et al. Motions of the equatorial ionization anomaly crestsimaged by FORMOSAT-3/COSMIC[J]. Geophysical Research Letters,2007,34(19):L191011-6
    [91] Liou Y A, Pavelyev A G, Liu S F, et al. FORMOS AT-3/COSMIC GPS radio occultationmission:Preliminary results[J]. IEEE Transactions on Geoscience and RemoteSensing,2007,47(11):3813-3826
    [92]陈俊勇. GPS技术进展及其现代化[J].大地测量与地球动力学,2010,30(3):1-4
    [93]刘基于. GPS现代化及其影响[J].数字通信世界,2011,(8):24-30
    [94]陈俊勇,党亚明,程鹏飞.全球导航卫星系统的进展[J].大地测量与地球动力学,2007,27(5):1-4
    [95]司耀锋.俄罗斯第三代全球导航卫星简介[J].国际太空,2011,(9):38-41
    [96] Hofmann-Wellenhof B, Lichtenegger H, et al. GNSS: Global Navigation SatelliteSystems: Gps, Glonass, Galileo, and More[J]. New York: Springer Wien,2008.
    [97] Sokolovskiy S, Rocken C, Hunt D, et al. GPS profiling of the lower troposphere fromspace: Inversion and demodulation of the open-loop radio occultation signals[J].Geophysical Research Letters,2006,33:L148161-5
    [98] Ao C O, Hajj G A, Meehan T K, et al. Rising and setting GPS occultations by use ofopen-loop tracking[J]. Journal of Geophysical Research,2009,114(D4).
    [99] Ao C, Hajj G A, Leroy S S, et al. Backpropagation processing of GPS radio occultationdata [C]. Proceedings of First CHAMP Science Meeting,2002.
    [100]徐贤胜,洪振杰,郭鹏,等. COSMIC掩星电离层资料反演以及结果验证[J].物理学报,2010,59(3):2163-2168
    [101]徐贤胜,郭鹏,黄思训,等.无线电掩星滑动频谱方法和后传播方法的分析比较[J].物理学报,2011,60(9):099202-(1-7)
    [102] Hocke K, Pavelyev A G, Yakovlev O I, et al. Radio occultation data analysis by theradioholographic method[J]. Journal of Atmospheric and Solar-Terrestrial Physics,1999,61:1169-1177
    [103] Gorbunov M E. Radioholographic analysis of radio occultation data in multipathzones[J]. Radio Science,2002,37(1):1014
    [104] Gorbunov M, Lauritsen K B, Rhodin A, et al. Radio holographic filtering, errorestimation, and quality control of radio occultation data[J]. Journal of GeophysicalResearch,2006,111: D101051-10
    [105] Pavelyev A, Igarashi K, Reigber C, et al. First application of the radioholographic methodto wave observations in the upper atmosphere[J]. Radio Science,2002,37(3):151-11
    [106] Liou Y A, Wickert J, Pavelyev A, et al. Gravity wave "portrait" reconstructed by radioholographic analysis of the amplitude of GPS radio occultation signals[J]. SpringerBerlin Heidelberg,2005:549-554
    [107] Sokolovskiy S. Inversions of radio occultation amplitude data[J]. Radio Science,2000,35(1):97-105
    [108] Lohmann M S, Jensen A S, Benzon H, et al. Application of window functions for fullspectrum inversion of cross-link radio occultation data[J]. Radio Science,2006,41
    [109] Jensen A S, Lohmann M S, Benzon H, et al. Full Spectrum Inversion of radio occultationsignals[J]. Radio Science,2003,38(3)
    [110] Lohmann M S. Dynamic error estimation for radio occultation bending angles retrievedby the full spectrum inversion technique[J]. Radio Science,2006,41(5)
    [111] Gorbunov M E. Canonical transform method for processing radio occultation data in thelower troposphere[J]. Radio Science,2002,37(5)
    [112]刘志权,方宗义,徐建平,等.探测大气参数的GPS/MET方法[J].气象科技,1996,(2):1-9
    [113]蒋虎,黄珹.低轨卫星轨道误差对中性层延迟量影响的模拟研究[J].地球物理学报,2003,46(2):167-170
    [114]徐晓华,李正航,罗佳.单颗LEO卫星轨道参数对GPS掩星事件分布和数量影响的模拟研究[J].武汉大学学报(信息科学版),2005,30(7):609-612
    [115]杜晓勇,符养,薛震刚,等.卫星轨道参数对LEO-LEO掩星事件数量及分布影响的模拟研究[J].地球物理学报,2007,50(5):1289-1297
    [116]胡雄,曾桢,张训械,等.大气GPS掩星观测反演方法[J].地球物理学报,2005,48(4):769-774
    [117]胡雄,曾桢,张训械,等.无线电掩星技术及其应用[J].电波科学学报,2002,17(5):549-556
    [118]徐晓华,罗佳. COSMIC掩星折射指数廓线的统计验证[J].武汉大学学报(信息科学版),2009,34(2):214-217
    [119]王鑫,吕达任,薛震刚. GNSS掩星中大气水汽的非线性反演[J].地球物理学报,2005,48(1):32-38
    [120]张建军,袁洪,王宪. GNSS无线电掩星大气探测系统干扰抑制的子空间投影方法[J].测绘学报,2009,38(5):422-427
    [121]徐晓华, Zhang K,汪海洪.不同季节GPS掩星廓线精度的比较研究[J].武汉大学学报(信息科学版),2010,35(6):639-643
    [122]徐晓华,李正航,罗佳.利用GPS掩星资料反演地球中性大气参数折射角方法研究[J].武汉大学学报(信息科学版),2003,28(5):589-592
    [123]徐继生,郭鹏,黄思训,等.无线电掩星滑动谱方法和后传播方法的分析比较[J].物理学报,2011,60(9):099202(1-7)
    [124]徐晓华, Zhang K, Fu E,等.澳大利亚上空COSMIC掩星廓线反演[J].武汉大学学报(信息科学版),2008,33(8):800-804
    [125]洪振杰,叶凡,郭鹏.非对称大气模式下二维射线追踪算子[J].自然科学进展,2007,17(3):405-409
    [126]曾桢,胡雄,张训械,等.电离层GPS掩星观测反演技术[J].地球物理学报,2004,47(04):578-583
    [127]赵莹,张晓红. COSMIC掩星观测数据反演电离层电子密度廓线[J].武汉大学学报(信息科学版),2010,35(6):644-648
    [128]刘经南,赵莹,张晓红. GNSS无线电掩星电离层反演技术现状与展望[J].武汉大学学报(信息科学版),2010,35(6):631-635
    [129]徐继生,邹玉华,马淑英. GPS地面台网和掩星观测结合的时变三维电离层层析[J].地球物理学报,2005,48(4):759-767
    [130]周义炎,吴云,乔学军. GPS掩星技术和电离层反演[J].大地测量与地球动力学,2005,25(2):29-35
    [131]吴小成,胡雄,张训械,等.电离层GPS掩星观测改正TEC反演方法[J].地球物理学报,2006,49(2):328-334
    [132]洪振杰,刘荣建,郭鹏,等.非对称电离层掩星数据反演[J].物理学报,2011,60(12):129401(1)-(5)
    [133]盛峥,方涵先,刘磊. GPS掩星折射率的一维变分同化[J].解放军理工大学学报,2006,7(1):80-83
    [134]刘敏,郭鹏. GPS/MET掩星观测的变分同化技术[J].天文学进展,2006,24(1):27-42
    [135]岳迎春,赵雪莲,陈春明. GPS掩星技术反演气象要素的误差分析[J].全球定位系统,2007,21-25
    [136]徐晓华,李正航,罗佳. GPS掩星数据反演中的地球扁率影响改正[J].武汉大学学报(信息科学版),2005,30(6):502-505
    [137]宫晓艳,胡雄,吴小成,等.大气掩星反演误差特性初步分析[J].地球物理学报,2007,50(04):1017-1029
    [138]刘经南,罗佳.武汉CHAMP站的建立以及CHAMP任务的应用[J].武汉大学学报(信息科学版),2002,27(6):551-554
    [139]胡雄,张训械,吴小成.山基GPS掩星观测实验及其反演原理[J].地球物理学报,2006,49(1):22-27
    [140]吴小成,胡雄,宫晓燕.雾灵山山基掩星折射率与探空气球折射率比较[J].地球物理学进展,2008,23(4):1149-1155
    [141]袁运斌.基于GPS的电离层监测及延迟改正理论与方法的研究[D].中国科学院测量与地球物理研究所,中国科学院研究生院,2002.
    [142]袁运斌,霍星亮,欧吉坤.精确求定GPS信号的电离层延迟的模型与方法研究[J].自然科学通报,2006,16(1):40-48
    [143]袁运斌,欧吉坤. GPS观测中的仪器偏差对确定电离层延迟的影响及处理方法[J].测绘学报,1999,28(2):110-114
    [144]袁运斌,欧吉坤.广义三角级数函数电离层延迟模型[J].自然科学通报,2005,15(8):1015-1019
    [145]袁运斌,欧吉坤.基于GPS数据确定电离层延迟的蚀因子法[J].自然科学进展,2005,15(3):363-366
    [146]袁运斌,欧吉坤. WAAS系统下单频GPS用户电离层延迟改正新方法[J].测绘学报,2000,29:96-102
    [147] Guier W H, Weiffenbach G C. A satellite doppler navigation system[J]. Proceedings ofthe IRE,1960,48(4):507-516
    [148] Henkel P, Gunther C. Three frequency linear combinations for Galileo[C].4th Workshopon Positioning, Navigation and Communication2007(WPNC‘07),2007.
    [149] Wang Z, Wu Y, Zhang K, et al. Triple-frequency method for high-order ionosphericrefractive error modelling in GPS modernization[J]. Journal of Global PositioningSystems,2005,4(1-2):291-295
    [150] Kim B-C, Tinin M V, and Scherllin-P B. Effect of ionospheric irregularities on accuracyof dual-Frequency GPS systems[J]. Geomagnetism and Aeronomy,2007,47:238-243
    [151] Brunner F K, Gu M. An improved model for the dual frequency ionospheric correction ofGPS observations[J]. Manuscr. Geod.,1991,16(3):205-214
    [152] Hoque M M, Jakowski N. Ionospheric bending correction for GNSS radio occultationsignals[J]. Radio Science,2011,46
    [153] Morton Y T, Zhou Q, and Graas F V. Assessment of second order ionosphere error inGPS range observatoin using Arecibo incoherent scatter radar measurements [J]. RadioScience,2009,44
    [154] Hoque M M, Jakowski N. Higher order ionospheric effects in precise GNSSpositioning[J]. J Geod,2006,81:259-268
    [155] Hoque M M, Jakowski N. Mitigation of higher order ionospheric effects on GNSS usersin Europe[J]. GPS Solutions,2007,12(2):87-97
    [156] Hoque M M, Jakowski N. Estimate of higher order ionospheric errors in GNSSpositioning[J]. Radio Science,2008,43
    [157] Strangeways H J, Loannides R T. Rigorous calculation of ionospheric effects on GPSEarth-satellite paths using a precise path determinaiton methods[J]. Acta Geod. Geophys.Hung,2002,37(2-3):281-292
    [158] S K, Hajj G A, Wilson B D, et al. The effect of the second order GPS ionosphericcorrection on receiver positions[J]. Geophysical Research Letters,2003,30(16)
    [159] Fritsche M, Dietrich R, Knfel C, et al. Impact of higher-order ionospheric terms on GPSestimates[J]. Geophysical Research Letters,2005,32(23)
    [160] Hawarey M, hobiger T, and Schuh H. Effects of the second order ionospheric terms onVLBI measurements[J]. Geophysical Research Letters,2005,32
    [161] Fleury R, Clemente M, Carvalho F, et al. Modelling of ionospheric high-order errors fornew generation GNSS[J]. Ann. Telecommun.,2009,64:615-623
    [162] Petrie A J, King M A, Moore P, et al. Higher-order ionospheric effects on the GPSreference frame and velocities[J]. Journal of Geophysical Research,2010,115: B034151-8
    [163] Bissiri S, Hajj G A. High-order ionospheric effects on the GPS observables and means ofmodeling them[J]. Manuscripta Geodaetica,1993,18(2):280-289
    [164] Hernandez-Pajares M, Jaun J M, Sanz J, et al. Second order ionospheric term in GPS:implementation and impact on geodetic estimates[J]. Journal of Geophysics Research,2007,112: B084171-16
    [165] Datta‐Barua S, Walter T, Blanch J, et al. Bounding higher‐order ionosphere errors forthe dual‐frequency GPS user[J]. Radio Science,2008,43: RS50101-15
    [166] Hoque M M, Jakowski N. Higher order ionospheric propagation effects on GPS radiooccultation signals [J]. Adv. Space Res.,2010,46(2):162-173
    [167] Spilker J,J J. GPS signal structure and performance characteristics, in Global PositioningSystem[J]. The Inst. of Navig. Alexandria, Va,1980,129-54
    [168] Vorob V V, Krasil T G. Estimation of the accuracy of the atmospheric refractive indexrecovery from Doppler shift measurements at frequencies used in the NAVSTARsystem[J]. Phys. Atmos. Ocean,1994,29:602-609
    [169] Mannucci A J, Ao C O, Pi X. The impact of large scale ionospheric structure on radiooccultation retrievals[J]. Atmospheric Measurement Techniques,2011,4(3):2837-2850
    [170] Budden K G. The propagation of radio waves: the theory of radio waves of low power inthe ionosphere and magnetosphere[M]. Cambridge: Cambridge University Press,1985.
    [171] Ladreiter H-P, Kirchengast G. GPS/GLONASS sensing of the neutral atmosphere: Molelindependent correction of ionospheric influences[J]. Radio Science,1996,31(4):877-891
    [172] Syndergaard S. On the ionosphere calibration in GPS radio occultation measurements[J].Radio Science,2000,35(3):865-883
    [173] Gorbunov M, Sokolovskiy S, and Bengtsson L. Space refractive tomography of theatmosphere: Modeling of direct and inverse problems [R]. Report ofMax-Planck-Institut fuer Meteorologie, Hamburg,1996
    [174] Feng D D, Herman B M. Romotely sensing the Earth's atmosphere using the GlobalPositioning System (GPS): The GPS/MET data analysis[J]. Journal of Atmospheric andOceanic Technology,1999,16(8):989-1002
    [175] Healy S B. Smoothing radio occultation bending angles above40km[J]. AnnalesGeophysicae,2001,19:459-468
    [176]李爱贞.气象学与气候学基础[M].北京:气象出版社,2001
    [177]熊年禄,唐存琛,李行健.电离层物理概论[M].武汉:武汉大学出版社,1999
    [178]周淑贞,张如一,张超.气象学与气候学[M].北京:高等教育出版社,1997
    [179] Smith E K, Weintraub S. The constants in the equation for atmospheric refractive indexat radio frequencies[J]. Proceedings of the IRE,1953,41:1035-1037
    [180] Thayer G D. An improved equation for the radio refractive index of air[J]. RadioScience,1974,9(10):803-807
    [181] Hedin A E. Extension of the MSIS thermosphere model into the middle and loweratmosphere[J]. Journal of Geophysical Research,1991,96:1159-1172
    [182] Bilitza D. International Reference Ionosphere2000[J]. Radio Science2001,36(2):261-275
    [183] Leitinger R,Kirchengast G. Easy to use global and regional models-A report onapproached used in Graz.[J]. Acta Geodaetica et Geophysica Hungarica,1997,32:887-891
    [184]孙学金,王晓蕾,李浩.大气探测学[M].北京:气象出版社,2009
    [185] Kuo Y H, Wee T K, Sokolovskiy S, et al. Inversion and error estimation of GPS radiooccultaiton data [J]. Journal of the Meteorological Society of Japan,2004,82:507-531
    [186] Wu B H, Chu V, Chen P, et al. FORMOSAT-3/COSMIC science mission update[J]. GPSSolution,2005,9111-121
    [187] Sokolovskiy S. Tracking tropospheric radio occultation signals from low Earth orbit[J].Radio Science,2001,36(3):483-498
    [188] Fritzer J, Kirchengast G, Pock M. End-to-End generic occultation performancesimulation and processing system version5.5(EGOPS5.5) software user manual[R].Technology Report ESA-ESTEC WEGC-EGOPS-2011-TR01, Wegener Center andInstitute for Geophysics, Astrophysics, and Meteorology, Universty of Graz, Austria,2011

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700