高频雷达信号处理中的若干问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
各种不同频率、不同功能的雷达正广泛地应用于人类活动的诸多领域,其中工作在高频段的雷达因具有超视距探测能力而在近几十年来受到了特别的关注。借助于天波或地波传播方式,高频雷达的探测范围突破了地球曲率的限制,因此使远距离空中预警和目标监测成为可能,同时高频雷达所具有的独特和良好的对低可探测性目标的探测能力,使之成为探测隐形飞行器和处于强地杂波和海杂波背景中的小型军用飞机、巡航导弹等贴地、贴海飞行的小目标及洲际导弹进行有效探测的有力装备。高频超视距雷达的造价也大大低于星载雷达系统。正是由于这些优势,高频超视距雷达成为近代各军事大国的重要装备,目前已是预警和远程警戒情报雷达中的主要支柱。除了军事目的,高频超视距雷达在国家经济建设中也有重要作用。高频雷达可用于海洋表面状态参数遥感,能大面积、全天候地实时监测海面风、浪和流场参数,较之传统的波浪仪、浮标等海洋测量工具和海洋遥感卫星,具有成本低、实时性好等不可比拟的优势。高频雷达还成功应用于海上冰山的探测。高频雷达在海洋环境预报、渔业、海洋排污、海上搜救、海运管理及海上桥梁建设等方面都有着重要意义,而高频雷达所能提供的有效的海洋实时监测手段,对临海国家在联合国海洋公约规定的200海里(370公里)专属经济区(EEZ)内更好地维护权利和履行义务,则更具有特别的重要意义。
     我国国土辽阔,海域宽广,边界线长,高频超视距雷达特别适宜于那些因地理因素、通信及后勤等原因而无法架设雷达所造成的不可探测区域以及海洋环境和海上目标的实时监测。加紧对高频超视距雷达的研究和开发,将为我国的国家安全和经济建设提供强有力的保障,对国计民生都有着重要意义。
     高频超视距雷达基本上存在两条技术路线:一是采用传统的大型相控阵利用窄波束实现高的方位分辨率,二是采用小口径天线阵利用宽波束结合现代空间谱估计算法实现高的方位分辨率。窄波束雷达的目标信号处理是在波束指向的特定方位上进行的,其接收的干扰和杂波信号主要来自该方位上的干扰和杂波源,此时所获得的信噪比较高,目标检测也只在距离—多普勒谱上进行,要求较低。而宽波束雷达则会接收到所有方位上的干扰和杂波,信噪比较低,除了需要在距离—多普勒谱上检测出目标外,还需要分别形成目标的阵列快拍以获取其空间谱估
    
    计。因此相比较l(lJ-占,窄波束雷达对接收信号的信号处理要求较低,但是系统成
    本高、选址困难,11.不便于维护;而宽波束雷达则相反,成本较低、选址相对容
    易、便于维护、可移性好,但是要求的信号处理的复杂度大大增加。一般来说,
    宽波束雷达的目标检测要比窄波束雷达困难得多,如在进了J;多普勒域检测时,窄
    波束雷达对接收信号的空域预滤波可大大降低特定方位上的噪声和干扰,而在宽
    波束雷达中就连不同方位上的有用目标信号也成为彼此之间的干扰。如何更好地
    利用宽波束雷达进行日标探测目前仍是·个鱼待研究和解决的重要课题。由于高
    频雷达工作环境的复杂性,其回波中存在大量的干扰,有川目标信号常常被淹没
    在这些干扰信号,牛,,因此有效地实现干扰抑制是提高「1标检测性能的关键,而为
    此则必须充分认识于扰在时域、空域和跄离一多普勒域的形式、相关性及其与有
    用目标信号的差别。此外,现在的对海探测高频超视距雷达往往同时肩负着海洋
    环境状态监测和海_!二移动目标监测的双重使命,由于海浪和移动目标回波信号的
    平稳时间不同,二者要求的相干积累时间也不同,因此如何更为合理地选择系统
    参数以适应不同的探测要求,也是值得探讨的问题。通常海而舰船目标速度范田
    较大,而径向速度变化也可能较大,即使是匀速航行而由于航行方向的改变也可
    能导致其径向速度的较大改变。一旦系统参数如相干积累时介lJ、最大探测速度等
    确定后,若在相干积累时间内目标的径向速度和方位角变化超出雷达的速度和方
    位分辨率,「!标}:i}波信号则成为非平稳信号,若目标的速度.氖J几雷达有效探测范
    围,目标信号潜则发生混叠。如何更好地处理这些由速度变化导致的非平稳日标
    和速度超出有效探测范围的目标,也仍值得进一步研究以提高高频雷达的目标探
    测能力。
     本文基于由武汉大学研制的高频地波雷达OSMAR2000(Ocean state
    Measuring and Analyzing Radar)这一平台,就应用高频雷达进行海洋环境及海上
    目标监测时的若干问题进行研究和讨论,旨在进一步提高高频雷达的抗干扰能力
    及更充分地挖掘雷达回波中的有效目标信息,以改善高频雷达的目标探测性能。
    这些问题主要包括高频雷达中的射频干扰抑制和基于时频分析的目标参数提取
    方法。
     本文第一章阐述高频雷达进行目标探测的基本原理,这是全文分析和讨论的
    理论基础。主要阐述了脉冲雷达探测目标的原理、线性调频脉冲压缩原理、利用
    
     两次快速傅立叶变换(FFT)得到距离一多普勒谱的原理以及目标的空间谱估计
     理论。指出高频雷达信号处理的主要任务是从雷达回波信号中检测出存在的目标
     并提取其距离、速度和方位信息,而如何有效地对目标信号进行检测和估值则构
     成高频雷达信号
Various radars working at different frequencies have been widely used in many domains of human activities, among which high-frequency (HF) radars have received particular attention in recent years for their unique abilities of over-the-horizon (OTH) detection. By sky or ground wave propagation, the detection range of the HF radars breaks through the limit of the curvature of the earth, which makes it possible for long-range air early-warning and target monitoring. At the same time the unique abilities in detecting low-detectable targets of the HF radars makes them powerful equipments for detection of hermit aircrafts, small airplanes in heavy land and sea clutters, and even intercontinental missiles. The costs of HF OTH radars are much lower than those of planet-borne systems. Just for these advantages, HF OTH radars now have become important military equipments of many powerful countries. Besides military objective, HF radars also play important roles in the national economic construction. HF radars can be
    used for measurements of ocean state parameters such as ocean surface currents, waves and wind. And comparing with other traditional measuring equipments such as buoys and satellites, they have remarkable advantages in their wide detection ranges and real-time and all-weather operation capabilities. HF radars have also been successfully used in floating iceberg detection. HF radars have great significance for ocean environment forecasting, fishing, seeking and rescuing, traffic management, and bridge construction. Moreover, the real-time monitoring provided by HF radars has particular significance for a near-sea country to maintain its rights and fulfill its obligation in the 200-miles (370-kilometers) exclusive economic zone (EEZ).
    Our country has so long a coastline that the HF radars are much applicable in the ocean environment and target monitoring. Strengthening of researches and development of HF OTH radars will help provide a powerful safeguard for the national securities and economic construction.
    There are basically two technology trends for HF OTH radars, one is employing
    
    
    conventional large-scale phased antenna array and forming narrow beams for high azimuth resolution, and the other is employing small-scale array and broad beam while using modern spatial spectral estimation algorithms to achieve the same azimuth resolution. The signal processing of narrow-beam radars are in the given direction to which the beam is pointing, so the received interferences and clutters only come from that direction and thus the signal-to-noise ratio (SNR) is relatively high, and target detection is only need to be performed on the range-Doppler spectra, which has a relatively low demand. However, the broad-beam radars will receive all the interferences and clutters in all directions, so the SNR is relatively low, and besides target detection on the range-Doppler spectra, target snapshots need to be formed for their spatial spectral estimation, respectively. In comparison, the narrow-beam radars ask lowly for the signal processing but the system costs are high and it is difficult for the localization and maintenance, while on the contrary the broad-beam radars cost lowly and are easy to maintain and transport, but the signal processing complexities are greatly increased. Generally speaking, target detection with a broad-beam radar is much more difficult than with a narrow-beam radar. Take detection in Doppler domain for example, spatial domain pre-filtering in narrow-beam radars can greatly lower the noise and interference in a given direction, while in broad-beam radars even the target signals in different directions may interfere with each other. It is still an important task to find out ways for better detection performance with broad-beam radars. Because of the complexity of the operation environment, there is large amount of interference, so effective interference suppression will be the key to improvement of the radar detection performance, and first of all full acknowledgement about the interference forms in tem
引文
1. Merrill I. Skolnik. Introduction to Radar Systems, 3rd ed.. McGraw-Hill International Editions, 2001.
    2. James Headrick. Looking Over the Horizon. IEEE Spectrum, July 1990, 36-39.
    3.陈宗骘等编。现代雷达。北京:国防工业出版社。1988。
    4. James R. Barnum. Ship Detection with High-Resolution HF skywave Radar. IEEE J. Oceanic Eng., 1986, 11(2): 196-209.
    5. Rafaat Khan, Brian Gamberg, Desmond Power, et al. Target Detection and Tracking with a High Frequency Ground Wave Radar. IEEE J Oceanic Eng. 1994, 19(4): 540-548.
    6. T. M. Blake. Ship Detection and Tracking Using High Frequency Surface Wave Radar. IEE conference on HF Radio Systems and Techniques. July 1997, 291-295.
    7. Philomene Verlaan. The 1982UN Convention on Law of the Sea and EEZ Technology: an Overview. EEZ Technology (3rd ed). ICG Publishing Ltd. 1998.
    8. Barrick D.E. EEZ Surveillance-The Compact HF Radar Alternative. EEZ Technology ( 3rd ed ). ICG Publishing Ltd. 1998.
    9.王小谟,张光义编。雷达与探测:现代战争的火眼金睛。北京:国防工业出版社。2000。
    10. Belinda J. Lipa, Randy D. Crissman, and Donald E. Barrick. HF Radar Observations of Arctic Pack-Ice Breakup. IEEE J. Oceanic Eng., 1986, 11 (2): 270-276.
    11.吴世才,杨子杰,文必洋等。高频地波雷达的东海试验。武汉大学学报(理学版)。2001,47(1):111-117.
    12.杨绍麟。高频海洋遥感雷达的天线阵设计与空间超分辨率算法(博士学位论文]。武汉:武汉大学电子信息学院,2001。
    13.黄为民。高频地波雷达探测海面风浪场的研究[博士学位论文]。武汉:武汉大学电子信息学院,2001。
    14. Maxwell L., Lees, B. E., Dip B. M.. An Overview of Signal Processing for an Over-the-Horizon Radar. Collected Papers on Over-the-Horizon Radar, 2001, 32-35.
    
    
    15. Combie D.D.. Doppler Spectrum. of Sea Echo at 13.56Mc./s. Nature, vol. 175, 681-682, 1955.
    16. D.E. Barrick. First-order Theory and Analysis of MF/HF/VHF Scatter from the Sea. IEEE. Trans. Antennaa and Propagation. 1972, 20(1): 2-10.
    17. D. E. Barrick. Extraction of Wave Parameters from Measured HF Radar Sea-Echo Doppler Spectra. Radio Science. 1977, 12(3): 415-424.
    18. Geogres T. M., Costal Ocean Dynamics Applications Radar-A User's Guide. Boulder Colo, NOAA WPL, 1984.
    19. Osborn M. J., OSCR and Interocean $4 Current Measurements in Poole Bay. Underwater Technology, 1991, 17(1): 10-18.
    20. Rafaat Khan, Brian Gamberg, Desmond Power, et al. Target Detection and Tracking with a High Frequency Ground Wave Radar. IEEE J. Oceanic Eng. 1994,19(4): 540-548.
    21. D. E. Barrick, B. J. Lipa. Radar Angle Determination with MUSIC Direction Finding. US Patent 5990834. 1999.
    22. Lipa B.J. and Barrick D.E., Least-Squares Methods for the Extraction of Surface Currents from CODAR Crossed-Loop Data: Application at ARSLOE, IEEE J. Oceanic Eng., 1983, vol.8, 226-253.
    23.凡俊梅,焦培南,肖景明。多功能HF雷达海洋回波谱模拟软件。电波科学学报。1997,12(4):443-447。
    24. Zhou Zhixin, Liu Yongtan, Wang Jinrong. Surface Wind Field Extraction from HF Ground-Wave Remote Sensing Radar. IEEE Oceans Conference Record, 1996, 1488-1491.
    25. Liu Yongtan. Target Detection and Tracking with a High Frequency Ground Wave Over-the-Horizon Radar. CIE International Conference of Radar Proc., 1996, 29-33.
    26.侯杰昌。序—关于海态监测分析雷达(OSMAR)的研究。武汉大学学报(自然科学版—海洋探测专刊),1994,增刊:1-3。
    27.吴世才,杨子杰,邱昌熔等。海态监测分析雷达北海实验。武汉大学学报(自然科学版—海洋探测专刊),1994,增刊:32-37。
    28.杨绍麟,柯亨玉,侯杰昌等。OSMAR2000基于MUSIC的超分辨率海洋表面流算法,武汉大学学报(理学版),2001,47(5):601-608。
    
    
    29.赵汉青。高频地波雷达海面目标方位角估计算法研究[硕士学位论文]。武汉:武汉大学电子信息学院,2002。
    30.吴敏。基于谐波恢复的高频地波雷达目标检测技术[硕士学位论文]。武汉:武汉大学电子信息学院,2002。
    31. Steven M. Kay. Fundamentals of Statistical Signal Processing, Volume Ⅱ: Detection Theory. Publishing House of Electronics Industry. 2002.
    32.杰里 L.伊伏斯,爱德华 K.里迪编,卓荣邦等译,现代雷达原理,电子工业出版社,1991。
    33. D. E. Barrick. FM/CW Radar Signals and Digital Processing. NOAA Technical Report ERL 283-WPL 26.
    34. Barrick. D. E., Lipa B.J., el al. Gated FMCW DF Radar and Signal Processing for Range/Doppler/Angle Determination, United States Patent 5361072, 1994.
    35.吴世才,杨子杰,文必洋等。高频地波雷达信号波形分析。武汉大学学报(理学版)。2001,47(5):519-527.
    36.郑君里,杨为理。信号与系统(上册),高等教育出版社,1996。
    37. S. Haykin, R. Kumaresan. Array Signal Processing. NJ: Prentice Hall, 1985.
    38. Schmidt R.O. Multiple Emitter Location and Signal Parameter Estimation. IEEE Trans. Antenna and Propagation. 1986, 34(3): 276-280.
    39.杨子杰,吴世才,侯杰昌等。高频地波雷达总体方案及工程实施中的几个问题。武汉大学学报(理学版),2001,47(5):513-518。
    40.杨子杰,文必洋,柯亨玉等。高频地波雷达波形参数设计。武汉大学学报(理学版),2001,47(5):528-531。
    41.文必洋,章颂华,吴世才。线性调频雷达I/Q通道功能研究。武汉大学学报(理学版),2001,47(5):593-595。
    42. Maresca J W, Georges T M. Measuring RMS Wave Height and the Scalar Ocean Wave Spectrum with HF Skywave Radar. d Geophysics Res., 1980, 85(C5): 2759-2771.
    43. Heron S. F., Heron M. L.. A comparison of algorithms for extracting significant wave height form HF radar ocean backscatter spectra, J. Atmos. Oceanic Tech., 1998, 18: 1157-1163.
    44. Lipa B., Inversion of second-order radar echoes from the sea. J. Geophysics Res., 1978, 83(C2): 959-962.
    
    
    45. Kenneth E. Laws, Daniel M. Fernandez, and Jeffrey D. Paduan. Simulation-Based Evaluations of HF Radar Ocean Current Algorithms. IEEE J. Oceanic Eng., 2000, 25(4): 481-491.
    46. J. Parent, A. Bourdillon. A Method to Correct HF Skywave Backscattered Signals for Ionospheric Frequency Modulation. IEEE. Trans. Antennaa and Propagation, 1988, 36(1):127-135.
    47. S. J. Anderson, Y. I. Abramovich. A Unified Approach to Detection, Classification, and Correction of Ionospheric Distortion in HF Skywave Radar Systems. Radio Science, 1998, 33(4): 1055-1067.
    48. Darwish A. EL-Aziz. Experimental Investigation of Radar Interference. IEEE Proceedings of the 35th Midwest Symposium on Circuits and Systems, 1992, vol. 1, 166-169.
    49. Huang Xiaotao, Zhou Zhimin, Liang Diannong. Effects of RFI on UWB-SAR Using LFM Waveforms. IEEE Proceedings of 2001 CIE International Conference on Radar, 2001, 631-633.
    50. David G. Money, David J. Emery, Trevor M. Blake, et al. HF Surface Wave Radar Management Techniques Applied to Surface Craft Detection. IEEE International Radar Conference, 2000, 110-115.
    51. P. Raush, J. Kub, B. Bedford, et al. The Radio Frequency Interference Monitoring Systems (RFIMS), in Proc. URSI Conference, Denver, Colorado, January 1998.
    52. R. Chambliss. Automating Measurement of RF Spectra from an Operating Radar, in Proc. NI Week 97, Austin, TX, August 1997.
    53. P. Raush, J. Kub, E. Gray. Automatic Radio Frequency Monitoring Measurements. IEEE International Symposium on Electrmagnetic Compatibility, 1999, 716-721.
    54.王金荣,张宁。高频地波超视距雷达。雷达与对抗。1994,3:1-6。
    55.朱近康。扩展频谱通信及其应用。合肥:中国科学技术大学出版社。1993。
    56.王宏禹。现代谱估计。东南大学出版社。1990。
    57.张贤达。现代信号处理。清华大学出版社。2001。
    58.何振亚。多维数字信号处理。北京:国防工业出版社。1995。
    59. Bruno Juhel, Georges Vezzosi, Marc Le Goff. Radio Frequency Interferences Suppression for Noisy Ultra Wide Band SAR Measurements. Ultra-Wideband, Short-Pulse Electromagnetics 4, Edited by Heyman et al, Kluwer Academic / Plenum Publishers, New York, 1999, 387-393.
    
    
    60. Timothy Miller, Lee Potter, John McCorkle. RFI Suppression for Ultra Wideband Radar. IEEE Trans. Aero. Elec. Syst. 1997, 33(4): 1142-1146.
    61. LE C.T.C., Hensley S., Chapin E.. Removal of RFI in Wideband Radars. IGARSS'98, 1998, 2032-2033.
    62. Lord R. T., Inggs M. R.. Efficient RFI Suppression in SAR Using a LMS Adaptive Filter with Side-lobe Suppression Integrated with the Range-Doppler Algorithm. IGARSS'99, 1999, 574-576.
    63. X. Luo, L. M. H. Ulander, J. Askne, et al. RFI Suppression in Ultra-Wideband SAR Systems Using LMS Filters in Frequency Domain. Electronics Letters. 2001, 37(4): 241-243.
    64. R. T.Lord, M. R. Inggs. Efficient RFI Suppression in SAR Using LMS Adaptive Filter Integrated with Range/Doppler Algorithm. Electronics Letters. 1999, 35(8): 629-630.
    65.黄晓涛。UWB-SAR抑制RFI方法研究[博士学位论文]。国防科技大学,1999。
    66.黄晓涛,梁甸农。UWB-SAR抑制RFI技术的参数化方法。系统工程与电子技术。2000,22(6):94-97。
    67.周志敏,黄晓涛等。UWB-SAR抑制RFI算法性能评估与测试。国防科技大学学报。2002,24(2):49-53。
    68. S. Haykin. Adaptive Filter Theory, 3rd Edition. Prentice-Hall, Inc., 1996.
    69.姚天任,孙洪。现代数字信号处理。武汉:华中理工大学出版社。1999。
    70. R. G. Vaughan, N. L. Scott, D. R. White. The Theory of Bandpass Sampling. IEEE Trans. Signal Processing. 1991, 39(9): 1973-1984.
    71. J. Mitola. The Software Radio Architecture. IEEE Communications Magazine. May 1995: 26-38.
    72. Jeseph Mitola Ⅲ. Software Radio Architecture: A Mathematical Perspective. IEEE Journal on Selected Areas in Communication. 1999, 17(4): 514-538.
    73. O. Macchi, N. Bershad. Adaptive Recovery of a Chirped Sinusoid in Noise, Part 1 : Performance of the RLS Algorithm. IEEE Trans. Signal Processing, 1991,39(3): 583 - 594.
    74. N. Bershad, O. Macchi. Adaptive Recovery of a Chirped Sinusoid in Noise, Part 2: Performance of the LMS Algorithm. IEEE Trans. Signal Processing, 1991,39(3):595 - 602.
    75. P. Zarchan, H. Musoff. Fundamentals of Kalman Filtering: A Practical Approach.
    
    Progress in Astronautics and Aeronautics, AIAA, Reston, VA, 2000, 257 - 291.
    76. Zhou Hao, Wen Biyang, Wu Shicai, et al. Radio Frequency Interference Suppression in HF Radars. Electronics Letters. 2003, 39(12): 925-927.
    77.高火涛,柯亨玉,吴世才等。高频地波雷达探测距离的预估及分析。现代雷达。1999,21(5):31-38。
    78.权太范,李健巍。高频雷达抗瞬时干扰研究。现代雷达。1999,21(2):1-6。
    79.邢孟道,保铮,强勇。天波超视距雷达瞬态干扰抑制。电子学报。2002,30(6):823-826.
    80. Leon Cohen. Time-Frequency Distributions - A Review. Proceeding of the IEEE. 1989. 77(7): 941-980.
    81.L.科恩著,白居宪译。时—频分析:理论与应用。西安:西安交通大学出版社。1998。
    82.张贤达,保铮。非平稳信号分析与处理。北京:国防工业出版社。1998。
    83. Zahir M. Hussain, Boualem Boashash. Adaptive Instantaneous Frequency Estimation of Multicomponent FM Signals Using Quadratic Time-Frequency Distributions. IEEE Trans. Signal Processing. 2002, 50(8): 1866-1876.
    84. Francois Auger, Patrick Flandrin. Improving the Readability of Time-Frequency and Time-Scale Representations by the Reassignment Method. IEEE Trans. Signal Processing. 1995, 43(5): 1068-1089.
    85. Shie Qian, Dapang Chen. Joint Time-Frequency Analysis. IEEE Signal Processing Magazine. March 1999, 52-67.
    86.刘德树,罗景青,张剑云编。空间谱估计及其应用。中国科学技术大学出版社。1997。
    87.赵汗青,文必洋,吴敏。MUSIC算法在相干探海雷达中的应用。武汉大学学报(理学版)。2001,47(5):649-652.
    88.位寅生,刘永坦。随机断续高频雷达波形设计和处理。电子学报。2002,30(3):437-440.
    89.陈志群,权太范,赵淑清。高频雷达射频干扰自适应对消。电子学报。2001,29(10):1439-1441.
    90.廖桂生,保铮,张林让。基于特征结构的自适应波束形成新算法。电子学报。1998,26(3):23-27.
    
    
    91.陈志群,赵淑清,权太范。高频雷达多波束最优天线方向图综合。现代防御技术。2002,30(1):56-60。
    92. H. Rohling. Radar CFAR Thresholding in Clutter and Multiple target Situations. IEEE Trans. Aero. Elect. Syst. 1983, 19:608-621.
    93.何友,关键,彭应宁等。雷达自动检测与恒虚警处理。北京:清华大学出版社。1999。
    94. D. M. Fernandez, J. F. Vesecky, C. C. Teague, et al. Ship Detection with High-Frequency Phased-Array and Direction-Finding Radar Systems. IEEE IGARSS'98, 1998, vol. 1,204-206.
    95.吴雄斌,吴世才,文必洋等。高频地波雷达宽波束海洋回波空间谱估计的MVM算法。武汉大学学报(理学版)。2001,47(5):626-629.
    96.刘丹红。宽波束高频地波雷达空间谱估计ESPRIT算法研究[硕士学位论文]。武汉:武汉大学电子信息学院。2003。
    97. Gordon J. Frazer, Stuart J. Anderson. "Wigner-Ville" Analysis of HF Radar Measurements of an Accelerating Target. Fifth Intern. Symp. On Signal Processing and Its Applications, ISSPA'99, 1999, vol. 1,317-320.
    98. Simon Haykin and Tarun Bhattacharya, Wigner-Ville Distribution: An Important Functional Block for Radar Target Detection in Clutter. Signals, Systems and Computers, 1994 Conference Record of the Twenty-Eighth Asilomar Conference on, 31 Oct.-2 Nov. 1994, vol. 1:68 -72.
    99. Wang Wei, Peng Yingning. An Interpolation Algorithm to Improve Range Estimation for the Linear Frequency Modulated Radar. IEEE AES System Magazine. 1999, 14(7): 45-47.
    100. Yimin Zhang and Moeness G. Amin, Beamspace Time-Frequency MUSIC with Application to Airborne Arrays, Signals, Systems & Computers, 1998 Conference Record of the Thirty-Second Asilomar Conference on, 1-4 Nov. 1998, vol. 1 : 838-841.
    101. K. Sckihara, S. Nagarajan, D.Pocppel, and Y. Miyashila. Estimating Neural Sources from each Time-Frequency Component of Magnetoencephalo-Graphic Data. In Proc. IEEE SP Int. Symp. on Time-Frequency and Time-Scale Analysis, Pittsburgh, PA, pp.69-72, 1998.
    102. Adel Belouchrani and Moeness G. Amin, Blind Source Separation Based on Time-Frequency Signal Representations, IEEE Trans. Signal Processing, 1998,
    
    46(11): 2888-2897.
    103. A. Belouchrani and M. G. Amin. Time-Frequency MUSIC. IEEE Signal Proc. Letters, 1999, 6(5): 109-110.
    104. Milan Sonka, Vaclav Hlavac, Roger Boyle. Image Processing, Analysis and Machine Vision, 2nd Ed., 人民邮电出版社, 2002.
    105. Hao Zhou, Biyang Wen, Shicai Wu, et al. Linear Time-Frequency MUSIC Algorithm. IEEE 6th Circuits and Systems Conference on Wireless Mobile Communications. May 31 - June 2, 2004.
    106. Wax M, Kailath. Detection of Signal by Information Theoretic Criteria. IEEE Trans. Antenna and Propagation. 1985, 33(2): 387-392.
    107. Jingqing Luo, Zhiguo Zhang. Using Eigenvalue Grads Method to Estimate the Number of Signal Source. IEEE Proceedings of ICSP2000, 2000, 223-225.
    108. H.T. Wu, Jan Yang, F. K. Chen. Source Number Estimation Using Transformed Gerschgorin Radii. IEEE Trans. Signal Processing. 1995, 42(6): 1325-1333.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700