GPS精密单点定位算法及故障诊断研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
精密单点定位技术是GPS领域的一个研究热点。本文主要研究GPS精密单点定位理论和算法,其主要贡献如下:
     1.采用Kalman滤波处理静态GPS数据和动态GPS数据。针对载体不同运动状态,给出不同的状态方程和观测方程,并利用多组数据进行了验证。考虑运动载体多接收机之间的距离为固定常数,提出距离约束的动态精密单点定位,提高其精度和可靠性。
     2.使用方差分量估计调整伪距与载波相位观测值的权比。在精密单点定位中,伪距与载波相位观测值的权比一般为固定常数,这与实际测量情况不符,另外这也不利于提高模糊度的收敛速度。采用简化Helmert方差分量估计实时地调整两类观测值的权比,提高模糊度收敛速度和定位精度。
     3.讨论了基于CORS对流层延迟信息的精密单点定位。若观测时间内发生下雨、下雪等天气变化,采用一般对流层延迟模型将无法得到高精度的天顶延迟量。根据CORS网的对流层延迟信息,可内插得到测站的对流层延迟时间序列,并将该序列替代由模型估计的对流层延迟,如此,可以提高定位精度。
     4.讨论了单差模糊度固定方法在动态精密单点定位中的应用。模糊度一般作为状态参数进行估计,显然增大了计算矩阵的维数,并且不利于滤波收敛。采用单差无电离层组合模糊度固定方法首先固定模糊度,一方面减少状态参数的维数,另一方面可以提高初始阶段的收敛速度和定位精度。GPS数据的噪声一般都不为高斯白噪声,在模糊度固定的基础上,本文讨论了有色噪声最小二乘估计,如此可削弱有色噪声的影响。动力学模型误差的协方差矩阵一般靠经验取值任何经验值都有可能出现偏差,从而影响动力学模型对定位结果的贡献。本文采用自适应因子调整预测值的协方差矩阵与观测量噪声的协方差矩阵的比例,使动力学模型更加有效。
     5.针对GPS数据处理中的非正态分布噪声与非线性函数线性化的问题,采用粒子滤波降低由这两方面造成的精度损失。粒子滤波的粒子数选取与状态参数的维数有很大关系,降低状态参数维数可以减少粒子个数。本文将单差模糊度固定方法与粒子滤波相结合应用于精密单点定位中,不但可以减少粒子滤波的粒子个数,而且能够提高动态精密单点定位的精度。针对粒子滤波容易出现粒子退化的问题,采用Kalman滤波进行重点采样,提高随机样本的精度,进而提高粒子滤波的解算精度。为了进一步提高粒子的精度,在重点采样的基础上,采用粒子群优化智能算法优化重点采样得到的粒子。另外,计算效率是粒子滤波的一个难点,本文采用均值漂移算法提高粒子滤波的计算效率。
     6.对于单频精密单点定位,尝试采用顾及电离层延迟先验信息的估计方法。一般情况下,采用已知的电离层模型,如采用格网电离层模型等仅能消除电离层延迟的60%左右,剩余残差对于精密定位的影响仍然较大。本文在电离层模型估计的基础上,根据观测信息重新估计电离层延迟影响,从而提高电离层延迟的估计精度。
     7.精密单点定位的故障诊断是提高精密单点定位精度的重要环节。但由于精密单点定位中不存在冗余观测,抗差估计方法难以实现。本文采用交互多模型方法诊断精密单点定位的观测故障。为了提高诊断的效率,提出了基于相邻历元模型概率比的方法。进而又提出使用粒子滤波处理含有观测异常的数据。神经网络具有强大的逼近能力与模式识别能力,本文构造二级神经网络进行诊断故障,提高故障诊断的效率。
Precise point positioning (PPP) is an important subject in GPS. The paper focuses on the theories and algorithms of PPP. The main works are shown as follows: 1. Kalman filtering is used to process the static data and the dynamic data. To the different state, the different dynamic models are given in Kalman filtering, and examined by several data in the different state. The reliability and accuracy of dynamic PPP will be improved if the immobile distances of GPS receivers in the aircraft as contraints are considered. 2. The variance component estimation is used to adjust the proportion of weights between phase observations and pseudorange observations. In PPP, the proportion of weights for two kinds of observations is a constant during the computation, so it is not consistent with the fact, it will slow down the convergence speed of ambiguities. Simplified Helmert variance component estimation is employed to adjust efficiently the proportion in the real time in order to improve the accuracy of PPP and the convergence speed of ambiguities. 3. The information of troposphere delay in CORS is used in PPP. When it rains or snows, the common model of troposphere will get the higher delay. The sequence of troposphere delay in the position of the receiver will be interpolated by the information of troposphere delay of CORS, and is used to replace the adjustment estimated by troposphere model. So the accuracy of positioning will be improved. 4. The algorithms to fix the ambiguities are applied to dynamic PPP. When ambiguities are estimated as the state parameters, it obviously enlarges the dimensions of the matrix, and is disadvantageous to the convergence of ambiguities. Firstly fixing single difference ionosphere ambiguities can not only reduce the dimensions of the parameters, but also improve the convergence speed and the accuracy of position in the initial time. For noises of GPS data always are not Gaussian noises, the least square is used to weaken the influence of colored noises on the base of ambiguities fixed. Because the covariance matrix of the state noise is given by experience which always has bias, it can affect the contribution to the positioning result. The adaptive factor is used to modulate the proportion between the covariance matrix of predicted state vector and the covariance matrix of observational noise in order to make full use of dynamic model.
     5. To the linearization of nonlinear functions and non-Guasssian noise of GPS data, particle filter is employed to reduce the loss of accuracy. The number of particles in particle filter relates with dimensions of the state vector. If dimensions of the state vector are reduced, the number of particle can decrease. Particle filter based on fixing single difference ambiguities can not only reduce the number of particles, but also improve the positioning accuracy in the paper. Important sampling with Kalman filtering can optimize particles for degeneracy of the particle occurs in particle filter. To get higher accuracy of the particle, particle swarm optimization on the base of important sampling with Kalman filtering can heighten accuracy of particles. Mean shift algorithm is used to improve the efficiency of particle filter which is a shortcoming for particle filter.
     6. The prior information of ionosphere is considered in Kalman filtering for single frequency PPP. The residual of ionosphere delay has strong influence on the result of positioning as grid ionosphere model only can eliminate 60% delay. Ionosphere delay is estimated again as parameter to further improve accuracy of ionosphere delay on the base of ionosphere model predicting delay with observations.
     7. Detection and diagnosis of failures in PPP is the important segment. It is difficult that robust estimation can come true for there are redundant observations in PPP. In the paper, interacting multiple models based on the ratio of the probability of failure models is proposed to improve efficiency of diagnosis. And particle filter is used deal with observations with outliers. Two neural networks are designed to diagnose failure to get higher efficiency of correction as neural network has strong approach ability and pattern recognition ability.
引文
1.包海.GPS精密单点定位中对流层延迟改正模型的研究与分析[D].长沙:中南大学,2008.
    2.陈建成.北斗卫星定位导航系统的发展应用关键在政府政策[J].卫星应用,2007,2:18-25.
    3.陈俊勇.美国GPS现代化概述[J].测绘通报,2000,8:44-45.
    4.陈俊勇,党亚民.全球导航卫星系统的进展及建设CORS的思考[J].地理空间信息,2009,7(3):1-3.
    5.陈秀万,方裕,尹军,等.伽利略导航卫星系统[M].北京大学出版社,2005.
    6.陈义.利用精密星历进行单点定位的数学模型和初步分析[J].测绘学报,2002,31(增刊):31-33.
    7.崔先强,樊月波.有色噪声模型参数改进算法[J].测绘学院学报,2002,19(3):174-177.
    8.崔先强.动态导航有色噪声的影响与控制[D].郑州:解放军信息工程大学,2002.
    9.崔先强,杨元喜.分类因子自适应抗差滤波[J].自然科学进展,2006,16(4):490-494.
    10.崔先强,杨元喜,高为广.多种有色噪声自适应滤波算法的比较[J].武汉大学学报,信息科学版,2006,31(8):731-735.
    11.程世来,张小红.基于PPP技术的GPS浮标海啸预警模拟研究[J].武汉大学学报,信息科学版,2007,32(9):764-766.
    12.邓自立、祁荣宾.多传感器信息融合次优稳态Kalman滤波器[J].中国学术期刊文摘(科技快报),2000,6(2):183-184.
    13.耿涛,赵齐乐,刘经南,等.基于PANDA软件的实时精密单点定位研究[J].武汉大学,信息科学版,2007,32(4):312-315.
    14.方正,佟国峰,徐心和.粒子群优化粒子滤波方法[J].控制与决策,2007,22(3):273-277.
    15.方正,佟国峰,徐心和.基于粒子群优化的粒子滤波定位方法[J].控制理论与应用,2008,25(3):533-537.
    16.冯来平.GPS多频观测数据处理方法及应用研究[D].郑州:解放军信息工程大学,2009.
    17.付梦印,邓志红,张继伟.Kalman滤波理论及其在导航系统中的应用[M].北京:科学出版社,2003.
    18.高为广.自适应融合导航理论与方法及其在GPS和INS中的应用[D].郑州,中国人民解放军信息工程大学,2005.
    19.高为广,杨元喜.神经网络辅助的GPS/INS组合导航故障检测算法[J].测绘学报,2008,37(4):403-409.
    20.高为广.GPS/INS自适应组合导航算法研究[D].郑州:解放军信息工程大学,2008.
    21.高为广.自适应融合导航理论与方法及其在GPS和INS中的应用[D].郑州:解放军信息工程大学,2008.
    22.葛茂荣,刘经南.GPS定位中对流层折射估计研究[J].测绘学报,1996,25(4):285-291.
    23.宫轶松,归庆明,孙付平,等.智能优化方法与粒子滤波技术融合的分析与展望[J].海洋测绘,2009,29(3):74-77.
    24.韩保民,欧吉坤.基于非差观测值进行精密单点定位研究[J].武汉大学学报,信息科学版,2003,28(4):409-412.
    25.韩保民,杨元喜.基于GPS精密单点定位的低轨卫星几何法定轨[J].西南交通大学学报,2007,42(1):75-79.
    26.韩绍伟.GPS组合观测值理论与应用[J].测绘学报,1995,24(2):8-13.
    27.郝明.加速GPS精密单点定位收敛的方法研究[D].中国科学研究院,2007.
    28.何海波,杨元喜.GPS动态测量连续周跳检验[J].测绘学报,1999,28(3):199-204.
    29.何文媛,韩斌,徐之,等.基于粒子滤波和均值漂移的目标跟踪[J].计算机工程与应用,2008,44(11):61-64.
    30.何怡刚,芦湘冬,等.基于神经网络数据融合方法的模拟电路故障诊断[J].湖南大学学报(自然科学版),2005,32(4):47-52.
    31.何正斌,吴富梅.先验协方差阵误差对动态Kalman滤波的影响(待发表).
    32.胡士强,敬忠良.粒子滤波算法综述[J].控制与决策,2005,20(4):361-365.
    33.黄观文.GPS精密单点定位和高精度GPS基线网平差及其软件实现[D].西安:长安大学,2008.
    34.黄家祥,李绍滋,成运,等.Mean Shift自适应步长的改进[J].厦门大学学报,自然科学版,2009,48(2):189-193.
    35.霍星亮.基于GNSS的电离层形态监测与延迟模型研究[D].中科院测地所,2008.
    36.贾彩娟,祝小平,周洲.交互多模型算法的无人机控制系统故障诊断[J].火力与指挥,2006,31(7):8-10.
    37.金瑜,等.基于小波神经网络的模拟电路故障诊断[J].仪器仪表学报,2007,28(9):1600-1604.
    38.李济生.人造卫星精密轨道确定[M].解放军出版社,1995.
    39.李磊磊,陈家斌,谢玲,等.粒子滤波方法在GPS/DR组合导航系统中的应用[J].微电子学与计算机,2004,21(10):97-99.
    40.李炯,黄树彩,王建勋.基于神经网络的某导弹姿态控制系统故障诊断[J].航空计算技术,2002,32(2):4-6.
    41.李鹏.GPS精密单点定位若干关键问题研究[D].西南交通大学,2008.
    42.李涛.非线性滤波方法在导航系统中的应用研究[D].国防科技大学,2003.
    43.李征航,黄劲松.GPS测量与数据处理[M].武汉大学出版社,2005.
    44.李乡儒,吴富朝,胡占义.均值漂移算法的收敛性[J].软件学报,2005,16(3):365-374.
    45.梁静,罗学年,张瑞等.三种对流层投影函数的比较及对定位的影响[J].测绘信息与工程,2009,34(3):3-5.
    46.梁开龙,张玉册.现代化GPS信号的宽巷组合及其求解模糊度研究[J].测绘通报,2002,4:1-3.
    47.廖春发.2007年全球航天产业的进展[J].卫星应用,2008,16(1):23-34.
    48.刘经南,叶世榕.GPS非差相位精密单点定位技术讨论[J].武汉大学学报,信息科学版,2002,27(3):234-240.
    49.刘精攀.GPS非差相位精密单点定位方法与实现[D].河海大学,2007.
    50.刘利生,吴斌,杨萍.航天器精确定轨与自校准技术[M].国防工业出版社,2005.
    51.刘庆元,包海,王潜心,等.基于L5的GPS电离层折射误差改正[J].测绘工程,2008,17(1):17-20.
    52.柳伟,罗以宁,孙南.基于背景优化的Mean Shift目标跟踪算法[J].计算机应用,2009,29(4):1015-1017.
    53.柳玉甜,蒋静坪.多运动状态下的移动机器人故障诊断方法[J].仪器仪表学报,2007,28(9):1660-1667.
    54.孟宪尧,韩新洁,孟松.优化的BP神经网络在船舶故障诊断中的应用[J].中国航海,2007,71(2):85-88.
    55.聂建亮,吴富梅.Kalman滤波的几种检验方法[J].地球科学与环境学报,2008,30(2):204-208.
    56.聂建亮.采用自适应Unscented Kalman的粒子滤波[J].大地测量与地球动力学,2008,28(3):87-91.
    57.南真.“北斗”卫星在救灾中大放异彩[J].国际太空,2008,6:1-3.
    58.欧吉坤.GPS测量的中性大气折射改正的研究[J].测绘学报,1998,27(1):31-36.
    59.欧吉坤,柴艳菊,袁运斌.自适应选权滤波[M].//大地测量与地球动力学进展(朱耀仲,孙和平主编),湖北科学技术出版社,2004,816-823.
    60.欧静,林宏基.基于Mean Shift算法和粒子滤波器的目标跟踪[J].福建电脑,2008,1:19-20.
    61.彭宁嵩,杨杰,刘志,等.Mean Shift跟踪算法中核函数窗宽的自动选取[J].软件学报,2005,16(9):1542-1550.
    62.祁芳.卡尔曼滤波算法在GPS非差相位精密单点定位中的应用研究[D].武汉:武汉大学,2003.
    63.曲建光.GPS遥感气象要素的理论与应用研究[D].武汉:武汉大学,2005.
    64.曲伟菁,朱文耀,宋淑丽,等.三种对流层延迟改正模型精度评估[J].天文学报,2008,49(1):113-122.
    65.阮仁桂.GPS非差相位精密单点定位研究[D].郑州:解放军信息工程大学, 2009.
    66.邵占英,葛茂荣,刘经南.GPS定位中对流层折射率随机模型的研究[J].地壳形变与地震,1996,16(2):1-7.
    67.沈慧峰.基于粒子滤波的多目标跟踪算法研究[D].浙江大学硕士论文,2006.
    68.史忠科.最优估计的计算方法[M].科学出版社,2001.
    69.苏福,王小念,皮军明.基于BP神经网络的某型火控雷达角跟踪系统故障诊断[J].指挥控制与仿真,2007,29(4):111-113.
    70.孙伟.基于粒子滤波的视频目标跟踪关键技术及应用研究[D].西安:西安电子科技大学,2009.
    71.邰贺.单频GPS精密单点定位方法与实践[D].武汉大学,2007.
    72.唐颖哲,杨元喜,宋小勇.2000国家GPS大地控制网数据处理方法与结果[J].大地测量于地球动力学,2003,23(3):77-82.
    73.陶本藻.卡尔曼滤波模型误差的识别[J].地壳形变与地震,1999,19:15-20.
    74.陶本藻.测量数据统计分析[M].北京:测绘出版社,1992.
    75.田世君,陈俊,等.粒子滤波在高动态GPS定位中的应用[J].测绘学报,2007,36(3):274-278.
    76.田晓东,韦锡华.小波分析在多传感器组合导航故障检测中的应用[J].青岛大学学报,2002,17(4):66-68.
    77.王威.实时GPS遥感水汽技术的理论研究[D].解放军信息工程大学,2006.
    78.王晓明,殷耀国,杨自明.全球导航卫星系统的现代化进展[J].全球定位系统,2006,31(4):39-42.
    79.王新洲,刘经南,陶本藻.GPS基线向量网方差和协方差分量的MINQUE估计[J].武汉测绘科技大学学报,1993,3
    80.魏春岭.非线性滤波与神经网络在导航系统中的应用研究[D].北京航空航天大学,2001.
    81.魏二虎,史冠军,胡雪霁.GPS现代化及其影响[J].测绘通报,2005a,7:34-28.
    82.魏二虎,柴华,刘经南.关于GPS现代化进展及关键技术探讨[J].测绘通报,2005b,12:5-7.
    83.魏子卿,葛茂荣.GPS相对定位的数学模型[M].北京:测绘出版社,1998.
    84.文志强,蔡自兴.Mean Shift算法的收敛性分析[J].软件学报,2007,18(2):205-212.
    85.吴玲,卢发兴,刘忠.UKF算法及其在目标被动跟踪中的应用.系统工程与电子技术,2005,27(1):49-51.
    86.吴美平.陆用激光陀螺捷联惯导系统误差补偿技术研究[D].国防科技大学,2000.
    87.伍岳.第二代导航卫星系统多频数据处理理论及应用[D].武汉大学,2005.
    88.熊伟.基于GPS三频数据的质量控制研究[D].武汉大学,2006.
    89.熊伟,何友,张晶炜.多传感器多目标粒子滤波算法[J].光电工程,2005,32(4):1-4.
    90.许承权.单频GPS精密单点定位算法研究与程序实现[D].武汉大学,2008.
    91.杨力.大气对GPS测量影响的理论与研究[D].中国解放军信息工程大学,2001.
    92.杨建刚.人工神经网络使用教程[M].杭州:浙江大学出版社,2001.
    93.杨元喜.抗差估计理论及其应用[M].北京,八一出版社,1993.
    94.杨元喜.动态系统的抗差Kalman滤波[J].解放军测绘学院学报,1997,14(2):79-84.
    95.杨元喜,段五杏,唐颖哲,等.全国GPS网的抗差平差[J].解放军测绘研究所学报,2002,22(4):1-4.
    96.杨元喜.Kalman滤波异常检验[J].测绘科学与工程,2005,25(4):1-4.
    97.杨元喜.自适应动态导航定位[M].北京,测绘出版社,2006.
    98.杨元喜,崔先强.动态定位有色噪声影响函数—以一阶AR模型为例[J].测绘学报,2003,32(1):6-10.
    99.杨元喜,何海波,徐天河.论动态自适应滤波[J].测绘学报,2001,30(4):293-298.
    100.杨元喜,宋力杰,徐天河.双因子方差膨胀抗差估计[J].测绘研究所学报,2001,21(2):1-5.
    101.杨元喜,徐天河.基于移动开窗法协方差估计和方差分量估计的自适应滤 波[J].武汉大学学报,信息科学版,2003,28(6):714-718.
    102.杨元喜,高为广.基于方差分量估计的自适应融合导航[J].测绘学报,2004,33,(1):22-26.
    103.杨旭,程杨,曹喜滨,等.粒子滤波在卫星轨道确定中的应用[J].控制理论与应用,2005,22(4):573-577.
    104.姚剑敏.粒子滤波跟踪方法研究[D].中科院博士论文,2004.
    105.叶世榕.GPS非差相位精密单点定位理论与实现[D].武汉,武汉大学论文,2002.
    106.叶世榕,张双成,刘经南.精密单点定位方法估计对流层延迟精度分析[J].武汉大学学报,信息科学版,2008,33(8):788-791.
    107.殷海涛.基于参考站网络的区域对流层4D建模理论、方法及应用研究[D].成都:西南交通大学,2006.
    108.尹建君.线性/非线性系统的混合动态滤波理论及应用[D].上海:复旦大学,2008.
    109.于正林,陈惠明.方差分量估计中的精度评定[J].测绘学报,1989,18(3):219-226.
    110.於宗俦.方差—协方差分量估计的统一理论[J].测绘学报,1991,20(3):161-171.
    111.於宗俦.Helmert型方差—协方差分量估计的通用公式[J].武汉测绘科技大学学报,1992,16(2):8-17.
    112.於宗俦.方差分量极大似然估计的通用公式[C].平差模型误差理论及其应用论文集,北京,测绘出版社,1993.
    113.袁修孝,付建红,楼益栋.基于精密单点定位技术的GPS辅助空中三角测量[J].测绘学报,2007,36(3):251-255.
    114.袁运斌.基于GPS的电离层监测及延迟改正理论与方法的研究[D].中科院测地所,2002.
    115.张飞鹏,黄珹,冯初刚,等.方差分量估计方法在ERS-2卫星精密定轨中的应用[J].天文学报,2001,42(2):173-183.
    116.张共愿.粒子滤波及其在惯性导航系统中的应用[D].西安:西北工业大学, 2007.
    117.张红梅,邓正隆,高玉凯.UKF在基于修正罗德里格参数的飞行器姿态确定中的应用[J].宇航学报,2005,26(2):164-167.
    118.张丽娜.精密单点定位技术在IMU/GPS辅助航空摄影中的应用研究[D].中国国地质大学,2008.
    119.张利萍.多因子自适应序贯平差[J].测绘科学,2008,33(1):71-73.
    120.张琪,胡昌华,乔玉坤.基于聚类粒子滤波器的故障预报方法研究[J].信息与控制,2009,38(1):115-120.
    121.张双成,叶世榕,刘经南,李冲.动态映射函数最新进展及其在GNSS遥感水汽中的应用研究[J].武大学报信息科学版,2009,34(3):280-283.
    122.张小红,刘经南,Rene Forsberg.基于精密单点定位技术的航空测量应用实践[J].武汉大学学报,信息科学版,2006,31(1):19-22.
    123.张小红,李星星,等.GPS单频精密单点定位软件实现与精度分析[J].武汉大学学报,信息科学版,2008,33(8):783-787.
    124.张旭,李志国.基于粒子滤波和均值平移的目标跟踪[J].激光与红外,2008,38(8):834-836.
    125.赵康宁,胡刚,朱志明.基于北斗卫星导航定位系统的减灾救助应急指挥系统的应用[J].卫星应用,2008,3:9-13.
    126.赵齐乐.GPS导航星座及低轨卫星的精密定轨理论及软件研究[D].武汉:武汉大学,2004.
    127.周东华,王桂增.故障诊断技术综述[J].化工自动化及仪表,1998,25(1):58-62.
    128.周江文.误差理论[M].北京:测绘出版社,1982.
    129.周祖渊.全球卫星导航系统的构成及其比较[J].重庆交通大学学报(自然科学版),2008,27(增刊):999-1004.
    130.朱建军.方差分量的Bayes估计[J].测绘学报,1991,20(1):1-6.
    131.朱胜利.Mean Shift及相关算法在视频跟踪中的研究[D].杭州:浙江大学,2006.
    132.朱胜利,朱善安.核函数带宽自适应的Mean Shift目标跟踪算法[J].光电工程, 2006,33(8):11-16.
    133.祝文姬,何怡刚,等.基于遗传BP网络的模拟电路故障诊断[J].测试技术学报,2007,21(5):460-467.
    134. Abdel-salam, M. Precise point positioning using un-differenced code and carrier phase observations[D]. Canada, The university of Calgary,2005.
    135. Anh Quan Le, Christian Tiberius. Single-frequency precise point positioning with optimal filtering[J]. GPS Solution,2006
    136. Azimi-Sadjadi, Baba. Approximate nonlinear filtering with applications to navigation [D]. UMI,2001.
    137. Bevis M, Businger S, Herring T A, C. Rocken, R. Anthes, et al. GPS meteorology: romote sensing of atmospheric water vapor using the global positioning system [J]. JGR,1992,97(D14):15787-15801.
    138. Bevis M S, Chiswell B S. Mapping zenith wet delays onto perceptible water [J]. J Appl Meteor,1994,33:379-386.
    139. Blewitt G. An automatic editing algorithm for GPS data[J]. Geophysical research letters,1990,17(3):199-202.
    140. Blom H A P, Bar Shalom Y. The Interacting Multiple Model Algorithm for Systems with Markovian Switching Coefficients[J]. IEEE Trans on Automatic Control, 1988,33(8):780-783.
    141. Bisnath S B, Langley R B. High-precision platform positioning with a single GPS receiver[C]. ION GPS 2001.
    142. Brumback B.D. and Srinath M.D.. A Chi-square test for fault detection in Kalman filter[J]. IEEE Trans. on Automatic Control.1987,32(6):552-554.
    143. Carpenter, P. Clifford, P. Fearnhead. An improved particle filter for non-linear problems[J]. IEE Proc., Radar Sonar Navigation.1999,146:2-7.
    144. Chang C, Ansari R. Kernel particle filter for visual tracking[J]. IEEE Signal Processing,2005,12 (3):242-245.
    145. Chen W, Hu C, et al. Kinematic GPS precise point positioning for sea level monitoring with GPS buoy[J]. Journal of global positioning systems,2004, 3:302-307.
    146. Cheng Y. Mean shift, model seeking, and clustering[J]. IEEE Trans. On Pattern Analysis and Machine Intelligence,1995,17(8):790-799.
    147. Choy S, Zhang K, et al. An evaluation of various ionospheric error mitigation methods used in single frequency PPP[J]. Journal of Global Positioning Systems, 2008,7(1):62-71.
    148. Clapp T C. Statistical methods for the processing of communication data [D]. University of Cambridge,2000.
    149. Comaniciu D, Meer P. Mean shift analysis and applications[C]. ICCV, 1999:1197-1203.
    150. Comaniciu D, Ramesh V, et al. Mean shift and optimal prediction for efficient object tracking[C]. ICIP,2000:70-73.
    151. Comaniciu D, Ramesh V, et al. The variable bandwidth mean shift and data-driven scale selection [C]. ICCV,2001:438-445.
    152. Comaniciu D. An algorithm for data-driven bandwidth selection[J]. IEEE Trans. On Pattern Analysis and Machine Intelligence,2003a,25(2):281-288.
    153. Comaniciu D. Nonparametric information fusion for motion estimation [C]. CVPR,2003b:59-66.
    154. Da R. and Lin C.F.. Failure detection of dynamical systems with the state chi-square test[J]. Journal of Guidance, Control and Dynamics.1994,17(2):271-277.
    155. Damien J Allain, Cathryn N. Ionospheric delay corrections for single-frequency GPS receivers over Europe using tomographic mapping[J]. GPS Solution, 2008,13(2):141-151.
    156. Dong D, Bock Y. Global positioning system network analysis with phase ambiguity resolution applied to crustal deformation studies in California[J]. J Geophys Res,1989,94:3949-3966.
    157. Doucet,S.Godsill,and C.Andrieu.On sequential Monte Carlo sampling methods for Bayesian filtering.Statistics and Computing.2000,10(3):197-208
    158. E A Wan, R van der Merwe. The unscented Kalman filter for nonlinear estimation [J]. in Proc.of IEEE,2000.
    159. Erik Trehn. GPS precise point positioning an investigation in reachable accuracy[D]. KTH of Sweden,2006.
    160. Elliott D. Kaplan, Christopher J. Hegerty著,寇艳红译.GPS原理与应用[M].电子工业出版社,2008.
    161. Frank P M. Fault Diagnosis in Dynamic Systems Using Analytical and Knowledge Based Redundancy-a Survey and Some New Results[J]. Automatica,1990,26(3):459-474.
    162. Fukunaga K, Hostetler L D. The estimation of the gradient of density function, with application in pattern recognition[J]. IEEE Trans. Information Theory,1975, 21:32-40.
    163. Gao Y. Canadian high precision real-time GPS correction service and real-time atmosphere and deformation monitoring[R]. Wuhan, CPGPS Workshop,2008.
    164. Gao Y, Shen X. Improving Ambiguity Convergence in Carrier Phase-Based Precise Point Positioning[J]. ION GPS 2001:1532-1539.
    165. Gao Y, Zhang Y, Chen K. Development of real time single frequency precise point positioning system and test results[C]. ION GNSS,2006,2297-2303.
    166. Ge M, Gendt G, et al. Improving carrier-phase ambiguity resolution in global GPS network solutions[J]. J Geod,200579:103-110.
    167. Ge M, Gendt G, et al. Resolution of GPS carrier-phase ambiguities in precise point positioning with daily observations[J]. J Geod,2008 82:389-399.
    168. Geng Jianghui, Teferle, F N, et al. Ambiguity resolution in precise point positioning with hourly data[J]. GPS Sloution,2009,13
    169. Gomm J.B.. On-line learning for fault classification using adaptive neuro-fuzzy network[C]. Proc.13th IFAC World Congress, San Francisco,1996:175-180.
    170. Gordon N J, Salmond D J, Smith A F M. Novel approach to nonlinear/non-Gaussian Bayesian state estimation[J]. IEE proceedings 1993, 140(2):107-113.
    171. Guu J A, Wei C. Tracking technique for maneuvering target with correlated measurement noise and unknown parameters[J]. IEE proceedings F,1991,138(3): 278-288.
    172. Higuchi T. Monte Carlo filter using the genetic algorithm operators[J]. Journal of Statistical Computation and Simulation,1997,59(1):1-23.
    173. Hopfield, H. S. Two-quartic tropospheric refractivity profile for correcting satellite data[J]. J. Geophys. Res,1969,74(18):4487-4499.
    174. Hornik K, Stinchcombe M, White H. Multilayer Feed-forward Networks are Universal Approximators [J]. Neural Networks,1990(1):290-295.
    175. IERS. IERS Standards.1989.
    176. IERS. IERS Conwentions.1996.
    177. Jazwinski A H. Stochastic Processes and Filtering Theory[C]. Mathematics in Science and Engineering. Academic Press,1970, New York.
    178. Johan Vium Andersson. Undifferenced GPS for deformation Monitoring [D]. Royal Institute of Technology, Sweden,2006.
    179. Johan Vium Andersson. A complete model for displacement monitoring based on undifferenced GPS observations [D]. Royal Institute of Technology, Sweden,2008.
    180. Julier S J., Uhlmann J K.. A new approach for filtering nonlinear system. in Proc. Am. Conf., seattle, WA,1995.
    181. Julier S J., Uhlmann J K.. Unscentedfiltering and nonlinear estimation [J]. Proceedings of the IEEE,2004,92(3):401-422.
    182. Kalman R E. A new approach to linear filtering and prediction theory[J]. ASME. Journal of Basic Eng,1960:35-46.
    183. Kerr T. Decentralized filtering and redundancy management for multisensor navigation [J]. IEEE Transactions on Aerospace and Electronic Systems,1987, AES-23,No.1,83-119.
    184. Kouba J, Heroux P. Precise Point Positioning Using IGS Orbit and Clock Product[J]. GPS Solution,2002,5(2):12-28.
    185. Koch K. R. Yang Yuanxi. Robust Kalman filtering for rank deficient observation model[J]. Journal of Gedesy,1998,72 (8):436-441.
    186. Koch K. R. and Kusche J. Regularization of geopotential determination from satellite data by variance components [J]. Journal of Geodesy,2002,76,259-268.
    187. Liu J, Chen R. Sequential Monte Carlo method for dynamic systems [J]. Journal of the American Statistical Association,1998,93:1032-1044.
    188. Mehra R.K. On the identification of variances and adaptive Kalman filtering[J]. IEEE Transactions on Automatric Control.1970,15:175-184.
    189. Maggio E, Cavallaro A. Hybrid particle filter and Mean Shift tracker with adaptive transition model[C]. In Acoustics, Speech, and Signal Processing 2005.
    190. Napolitano M R, Window D A Ⅱ, Casanova J L. Kalman Filters and Neural Network Schemes for Sensor Validation in Flight Control Systems[J]. IEEE Transactions on Control Systems Technology,1998,6(5):596-611.
    191. Nummiaro K, Koller Meier E, et al. An adaptive color-based particle filter[J]. Image and Vision Computing,2002,21(1):99-110.
    192. Oliver Payne, Alan Marrs. An unsnscented particle filter for GMTI tracking [J]. IEEE Aerospace Conference Proceedings,2004:1869-1875.
    193. Peter T, Csaba S. LS-N-IPS:An improvement of particle filters by means of local search[C]. Proc Nonlinear Control Systems, Petersburg,2001:715-719.
    194. Rodrigo F Leandro, Marcelo C santos, et al. PPP-based ionospheric activity monitoring [J]. ION 2007,2849-2853.
    195. Rolf Dach, Urs Hugentobler, Pierre Fridez, et al. Bernese GPS software version 5.0 [M]. Astronomical Institute, University of Bern,2007.
    196. Ronghua L, Bingrong H. Coevolution based adaptive Monte Carlo localization [J]. Int J of Advanced Robotic Systems,2004,1(3):183-190.
    197. R van der Merwe. Sigma- point Kalman filters for probabilistic inference in dynamic state-space models [D]. Oregon Graduate Institute,2004.
    198. R van der Merwe, et al. The unscented particle filter[R]. In advances in neural information processing systems,2001.
    199. Saasamoinen, J. Atmospheric correction for troposphere and stratosphere in radio ranging of satellite[J]. Int, Symp.1971,247-251.
    200. Salzmann M. Real-time adaptation for model errors in dynamic systems [J]. Bulletin Geodesigue,1995,69:81-89.
    201. Salzmann M, Teunissen. Detection and modeling of colored noise for Kalman filter applications[A]. Kinematic systems in geodesy, surveying and remote sensing[C], New York: Springer-Verlag,1991:251-260.
    202. Shan Chuh Hsieh, Luke K Wang, et al. Airborne attitude/ground target location determinations using unscented Kalman filter[J]. IEEE Aerospace Conference Proceedings,2004:1561-1568.
    203. Simen D, Chia T L. Kalman filtering with state equality constraints[J]. IEEE, Transactions on Aerospace and Electronic Systems,2002,39(1):128-136.
    204. Simen D, Simen D L. Aircraft turbofan engine health estimation using constrained Kalman filtering[C]. Proceedings of GT'03,2003, Atlanta Georgia, USA.
    205. Sorenson H.W. and Sacks J.E. Recursive fading memory filtering [J]. Inform, SCI,1971,3,101-119.
    206. Stefan Schaer, Werner Gurtner, Joachim Feltens. IONEX: the ionsphere map exchange format versionl. Proceedings of the 1998 IGS analysis centers workshop, ESA/European Space Operations Center Darmstadt, Germany,1998:233-247.
    207. Stefan Schaer. Mapping and predicting the earth's ionosphere using the global positioning system[D]. Astronomical Institute of the university of Bern, Switzerland.
    208. Sunil Bisnath. Precise orbit determination of low earth orbiters with a single GPS receiver-based, geometric strategy[D]. University of New Brunswick,2004.
    209. Teunissen P J G, Salzmann M A. A recursive slippage test for use in state-space filtering[J]. Manuscripta Geodaetica,1989,14(6):383-390.
    210. Teunissen P J G. Quality control in navigation systems[J]. IEEE Aerospace and Electronic Systems Magazine,1990,5(7):35-41.
    211. Teunissen P J G, N. F. Jonkman, P. Jooaten. Long baseline 3 frequency differential GNSS[C]. Position location and navigation symposium, IEEE 2000:7-14.
    212. Thomas Hobiger, Ryuichi Ichikawa, et al. Ray-traced troposphere slant delays for precise point positioning[J]. Earth planets Space,2008,60:el-e4.
    213. Tomoji Takasu. High-rate precise point positioning: observation of crustal deformation by using 1-Hz GPS data[J]. GPS/GNSS symp,2006,52-59.
    214. Torben Schueler, Guenter W Hein, et al. Improved tropospheric delay modeling using an integrated approach of numerical weather models and GPS[J]. ION,2000.
    215. Wang J, Stewart M P, Tsakiri M. Adaptive Kalman filtering for integration of GPS with GLONASS and INS[R]. IUGG/IAG Briminghan,1999, August 18-31.
    216. Willkey A S. A Survey of Design Methods for Failure Detection in Dynamic Systems [J]. Automatica,1976,12(6):601-611.
    217. Witchayangkoon, Boonsap. Element of GPS precise point positioning[D]. USA, The university of Maine,2000.
    218. Wu, J. T., S. C. Wu, G. A. Hajj, et al. Effects of antenna orientation on GPS carrier phase [J]. Manuscripta Geodaetic,1993,(18):91-98.
    219. Wu Wenrong, Chang Dah-chung. Maneuvering target tracking with colored noise [J]. IEEE transactions on aerospace and electronic system,1996,32(4):1311-1320.
    220. Wu Joz, Tsai, Chungming. Variance component estimation to facilitate GPS ambiguity resolution [J]. ION,2002.
    221. Xu P, Shen Y Fukuda Yoichi. Variance Component Estimation in Linear Inverse Ill-posed models [J]. Journal of Geodesy,2006,80:69-81.
    222. Xu P, Liu Y, Shen Y. Estimability Analysis of Variance and Covariance Components [J]. Journal of Geodesy,2007,81:593-602.
    223. Yang Y. Robust Estimation of variance components and its application in geodesy[C]. IAG Meeting, Beijing,1993.
    224. Yang Y, Cui X. Adaptively robust filter with multi-adaptive factors[J]. Survey review,40,2008,309:260-270.
    225. Yang Y, Gao W. An optimal adaptive Kalman filter[J]. Journal of Geodesy,2006, 80:177-183.
    226. Yang Y, Tang Y, et al. Integrated adjustment of Chinese 2000'GPS control network[J]. Survey Review,2009,41(313):226-237.
    227. Yang Y, Gao W, Zhang X. Robust filtering with constraints[J]. Journal of Geodesy,2010.
    228. Yu D, Gomm J, Williams D. Sensor fault diagnosis in a chemical process via RBF neural networks [J]. Control Engineering Practice,1999,7:49-55.
    229. Zhang Y, Li X. Detection and Diagnosis of Sensor and Actuator Failures Using MM Estimator[J]. IEEE Trans on Aerospace and Electronic Systems,1998,34(4): 1293-1313.
    230. Zhou J. Bennett S. Adaptive error compensation for robust fault detection [J]. International Journal of System Science,1998,29(1):57-64.
    231. Zumbeger, J. F, M. B Heflin, D. C. Jefferson, et al. Precise point positioning for efficient and robust analysis of GPS data from large networks[J]. Journal of Geophysical Research,1997,102:5005-5017.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700