小鼠前额叶皮层GABA环路的发育及其分子机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
前额叶皮层(prefrontal cortex, PFC)是中枢神经系统主要负责多种高级认知功能如工作记忆的一个重要脑区。小清蛋白阳性的快尖峰放电(fast-spiking, FS)中间神经元在这些功能的执行过程中扮演着重要角色。FS中间神经元占新皮层所有中间神经元的40-50%,其中绝大部分是篮状细胞(~90%);这类中间神经元在皮层有复杂的网络联系:它们既投射到锥体细胞(pyramidal neurons, PN)也接受PN的兴奋性输入,从而形成一个交互的局部兴奋-抑制环路(FS-PN);并且这些神经元彼此之间通过广泛的电、化学突触联系形成一个相对独立的网络(FS-FS)。此外,FS中间神经元还接受丘脑-皮层中继神经元的输入,也与皮层内其它中间神经元形成突触联系。尽管PFC的GABA环路,特别是由FS中间神经元参与形成的微环路的结构与功能异常与多种发育相关的神经精神类疾病如精神分裂症关联紧密;然而,目前尚无报道对由PFC的FS中间神经元参与形成的微环路在出生后的发育进行系统研究。
     皮层GABA环路在发育过程中受到多种因素的调控,包括生长因子如BDNF和FGF等。神经调节素1(Neuregulin1,NRG1)作为神经营养因子大家族的一个成员,在中枢神经系统,主要通过与酪氨酸蛋白激酶受体ErbB4结合并激活一系列胞内信号通路来发挥功能。近些年,nrgl和erbb4作为精神分裂症的两大易感基因而备受重视;但是,NRG1-ErbB4信号通路通过哪些途径参与精神分裂症的发生目前仍不清楚。近期研究显示,ErbB4主要在中间神经元,特别是FS中间神经元上表达。但是,NRG1-ErbB4信号通路在PFC的FS中间神经元特别是由篮状细胞参与形成的微环路发育过程中的作用却鲜有报道。
     因此,本研究结合分子遗传学、生化以及电生理等手段,试图回答两个问题:第一,PFC的FS中间神经元在正常发育过程中的微环路构建,我们重点关注FS-PN和FS-FS两个微环路;第二,敲除中间神经元上的ErbB4受体后,由FS中间神经元特别是篮状细胞参与形成的微环路的发育是否受影响。我们发现:1)FS中间神经元微环路在出生后第二周初步建立起来,而环路重塑却一直持续到青春期;2)在胚胎期敲除ErbB4受体,由FS篮状细胞所形成的抑制性突触的发育并没有受到明显影响,但是活性依赖性的突触传递功能明显减弱;3)敲除ErbB4不影响FS-FS之间电突触的发育;4)敲除ErbB4虽不影响PN-FS的兴奋性突触的早期发育,但其成熟受阻。根据上述实验结果,我们提出如下模型:敲除ErbB4后导致FS篮状细胞的兴奋性突触输入减少,同时,由FS篮状细胞所介导的活性依赖性抑制性突触传递功能也减弱了,二者共同促成为了由FS篮状细胞所介导的抑制功能的降低;通过稳态机制,锥体细胞下调兴奋性突触的表达,以维持皮层兴奋-抑制功能之间的相对平衡;这种平衡可能在某些发育关键期如青春期受到破坏而最终导致精神分裂症的发生。
The prefrontal cortex (PFC) is responsible for higher cognitive functions such as working memory, during which parvalbumin-positive fast-spiking (FS) interneurons play an essential role. FS interneurons account for40-50%of all interneurons in the neocortex, a large majority of which are basket cells; these neurons form several microcircuits in the PFC:first, they are connected with pyramidal neurons (PN) through chemical synapses (FS-PN); second, they are interconnected via chemical and electrical synapses (FS-FS). In addition, FS interneurons also receive synaptic inputs from thalamo-cortical relay neurons, and project to and receive inputs from somatostatin-expressing interneurons. Despite the putative relevance of FS interneurons for neurodevelopmental disease processes such as schizophrenia in humans, to the best of our knowledge, little effort has been exerted to study when and how FS interneurons develop their networks in the PFC.
     The development of GABA circuitry is regulated by many factors. Among them are neurotrophins like BDNF and FGF. Neuregulin1(NRG1), a member of the growth factor family, functions in a number of developmental processes mainly through binding with the tyrosine kinase-type receptor ErbB4in the central nervous system. Both nrgl and erbb4are susceptibility genes for schizophrenia, yet their precise roles in schizophrenia are largely unknown. Recent studies show that ErbB4is expressed predominantly in interneurons, specifically, in FS interneurons. However, it is largely unknown what roles NRG1-ErbB4signals play during the development of FS interneuronal microcircuits, particularly that mediated by basket cells in the PFC.
     Here, with the use of a combination of research disciplines including molecular genetics, biochemistry, and electrophysiology, we demonstrate that in the mouse PFC, FS interneurons were poorly developed in terms of the membrane and network properties during the first postnatal week, both of which exhibited an abrupt maturation during the second postnatal week. The development of FS interneuronal microcircuits persisted throughout early adulthood. NRG1-ErbB4signaling was dispensable for the development of GABAergic synapses and gap junctions formed by FS basket interneurons in vivo. However, activity-dependent GABAergic FS-PN transmissions were disrupted without erbb4. While NRG1-ErbB4signaling was not required for the early development of glutamatergic synapses on FS basket interneurons, it was essential for the maturation of these synapses. Based on these observations, we speculate the following model:NRG1-ErbB4signaling is required for the development of glutamatergic synapses, but not GABAergic synapses. Knock-out of ErbB4leads to hypo-glutamatergic transmissions on FS basket interneurons and reduced activity-dependent GABAergic FS-PN transmissions, thus reducing inhibition mediated by FS basket interneurons. To maintain the appropriate excitation/inhibition (E/I) balance, PN neurons then homeostatically reduce the glutamatergic excitatory synapses. The disruption of E/I balance during adolescence may underlie the etiology of neuropsychiatric disorders like schizophrenia.
引文
Abe, Y., Namba, H., Kato, T., Iwakura, Y., and Nawa, H. (2011). Neuregulin-1 signals from the periphery regulate AMPA receptor sensitivity and expression in GABAergic interneurons in developing neocortex. J Neurosci 31,5699-5709.
    Allen, K., Fuchs, E.C., Jaschonek, H., Bannerman, D.M., and Monyer, H. (2011). Gap junctions between interneurons are required for normal spatial coding in the hippocampus and short-term spatial memory. J Neurosci 31,6542-6552.
    Amitai, Y., Gibson, J.R., Beierlein, M., Patrick, S.L., Ho, A.M., Connors, B.W., and Golomb, D. (2002). The spatial dimensions of electrically coupled networks of interneurons in the neocortex. J Neurosci 22,4142-4152.
    Angulo, M.C., Staiger, J.F., Rossier, J., and Audinat, E. (1999). Developmental synaptic changes increase the range of integrative capabilities of an identified excitatory neocortical connection. J Neurosci 19,1566-1576.
    Ascoli, G.A., Alonso-Nanclares, L., Anderson, S.A., Barrionuevo, G., Benavides-Piccione, R., Burkhalter, A., Buzsaki, G, Cauli, B., Defelipe, J., Fairen, A., et al. (2008). Petilla terminology:nomenclature of features of GABAergic interneurons of the cerebral cortex. Nat Rev Neurosci 9,557-568.
    Barros, C.S., Calabrese, B., Chamero, P., Roberts, A.J., Korzus, E., Lloyd, K., Stowers, L., Mayford, M., Halpain, S., and Muller, U. (2009). Impaired maturation of dendritic spines without disorganization of cortical cell layers in mice lacking NRG1/ErbB signaling in the central nervous system. Proc Natl Acad Sci U S A 106,4507-4512.
    Bartos, M., Vida, I., and Jonas, P. (2007). Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks. Nat Rev Neurosci 8,45-56.
    Beaumont, M., and Maccaferri, G. (2011). Is connexin36 critical for GABAergic hypersynchronization in the hippocampus? J Physiol 589,1663-1680.
    Beierlein, M., Gibson, J.R., and Connors, B.W. (2000). A network of electrically coupled interneurons drives synchronized inhibition in neocortex. Nat Neurosci 3, 904-910.
    Belforte, J.E., Zsiros, V., Sklar, E.R., Jiang, Z., Yu, G., Li, Y., Quinlan, E.M., and Nakazawa, K. (2010). Postnatal NMDA receptor ablation in corticolimbic interneurons confers schizophrenia-like phenotypes. Nat Neurosci 13,76-83.
    Ben-Ari, Y. (2002). Excitatory actions of gaba during development:the nature of the nurture. Nat Rev Neurosci 3,728-739.
    Ben-Ari, Y., Gaiarsa, J.L., Tyzio, R., and Khazipov, R. (2007). GABA:a pioneer transmitter that excites immature neurons and generates primitive oscillations. Physiol Rev 87,1215-1284.
    Benes, F.M., and Berretta, S. (2001). GABAergic interneurons:Implications for understanding schizophrenia and bipolar disorder. Neuropsychopharmacology 25, 1-27.
    Bennett, M.V., and Zukin, R.S. (2004). Electrical coupling and neuronal synchronization in the Mammalian brain. Neuron 41,495-511.
    Bittman, K., Becker, D.L., Cicirata, F., and Parnavelas, J.G (2002). Connexin expression in homotypic and heterotypic cell coupling in the developing cerebral cortex. J Comp Neurol 443,201-212.
    Blum, B.P., and Mann, J.J. (2002). The GABAergic system in schizophrenia. Int J Neuropsychopharmacol 5,159-179.
    Bonifazi, P., Goldin, M., Picardo, M.A., Jorquera, I., Cattani, A., Bianconi, G., Represa, A., Ben-Ari, Y., and Cossart, R. (2009). GABAergic hub neurons orchestrate synchrony in developing hippocampal networks. Science 326,1419-1424.
    Cardin, J.A., Carlen, M., Meletis, K., Knoblich, U., Zhang, F., Deisseroth, K., Tsai, L.H., and Moore, C.I. (2009). Driving fast-spiking cells induces gamma rhythm and controls sensory responses. Nature 459,663-667.
    Chattopadhyaya, B., Di Cristo, G, Higashiyama, H., Knott, G.W., Kuhlman, S.J., Welker, E., and Huang, Z.J. (2004). Experience and activity-dependent maturation of perisomatic GABAergic innervation in primary visual cortex during a postnatal critical period. J Neurosci 24,9598-9611.
    Chattopadhyaya, B., Di Cristo, G, Wu, C.Z., Knott, G, Kuhlman, S., Fu, Y., Palmiter, R.D., and Huang, Z.J. (2007). GAD67-mediated GABA synthesis and signaling regulate inhibitory synaptic innervation in the visual cortex. Neuron 54,889-903.
    Chen, Y.J., Zhang, M., Yin, D.M., Wen, L., Ting, A., Wang, P., Lu, Y.S., Zhu, X.H., Li, S.J., Wu, C.Y., et al. (2010). ErbB4 in parvalbumin-positive interneurons is critical for neuregulin 1 regulation of long-term potentiation. Proc Natl Acad Sci U S A107, 21818-21823.
    Conhaim, J., Easton, C.R., Becker, M.I., Barahimi, M., Cedarbaum, E.R., Moore, J.G, Mather, L.F., Dabagh, S., Minter, D.J., Moen, S.P., and Moody, W.J. (2011). Developmental changes in propagation patterns and transmitter dependence of waves of spontaneous activity in the mouse cerebral cortex. J Physiol 589,2529-2541.
    Connors, B.W., Benardo, L.S., and Prince, D.A. (1983). Coupling between neurons of the developing rat neocortex. J Neurosci 3,773-782.
    Cooper, M.A., and Koleske, A.J. (2011). ErbB4 localization to interneurons:clearer insights into schizophrenia pathology. Biol Psychiatry 70,602-603.
    Cossart, R. (2011). The maturation of cortical interneuron diversity:how multiple developmental journeys shape the emergence of proper network function. Curr Opin Neurobiol 21,160-168.
    Curtin, K.D., Zhang, Z., and Wyman, R.J. (2002). Gap junction proteins expressed during development are required for adult neural function in the Drosophila optic lamina. J Neurosci 22,7088-7096.
    Daw, M.I., Ashby, M.C., and Isaac, J.T. (2007). Coordinated developmental recruitment of latent fast spiking interneurons in layer IV barrel cortex. Nat Neurosci 10, 453-461.
    Deans, M.R., Gibson, J.R., Sellitto, C., Connors, B.W., and Paul, D.L. (2001). Synchronous activity of inhibitory networks in neocortex requires electrical synapses containing connexin36. Neuron 31,477-485.
    Di Cristo, G., Chattopadhyaya, B., Kuhlman, S.J., Fu, Y., Belanger, M.C., Wu, C.Z., Rutishauser, U., Maffei, L., and Huang, Z.J. (2007). Activity-dependent PSA expression regulates inhibitory maturation and onset of critical period plasticity. Nat Neurosci 10,1569-1577.
    Doischer, D., Hosp, J.A., Yanagawa, Y, Obata, K., Jonas, P., Vida, I., and Bartos, M. (2008). Postnatal differentiation of basket cells from slow to fast signaling devices. J Neurosci 28,12956-12968.
    Dupont, E., Hanganu, I.L., Kilb, W., Hirsch, S., and Luhmann, H.J. (2006). Rapid developmental switch in the mechanisms driving early cortical columnar networks. Nature 439,79-83.
    Fazzari, P., Paternain, A.V., Valiente, M., Pla, R., Lujan, R., Lloyd, K., Lerma, J., Marin, O., and Rico, B. (2010). Control of cortical GABA circuitry development by Nrgl and ErbB4 signalling. Nature 464,1376-1380.
    Fisahn, A., Neddens, J., Yan, L., and Buonanno, A. (2009). Neuregulin-1 modulates hippocampal gamma oscillations:implications for schizophrenia. Cereb Cortex 19, 612-618.
    Fischbach, GD. (1972). Synapse formation between dissociated nerve and muscle cells in low density cell cultures. Dev Biol 28,407-429.
    Flames, N., Long, J.E., Garratt, A.N., Fischer, T.M., Gassmann, M., Birchmeier, C., Lai, C., Rubenstein, J.L., and Marin, O. (2004). Short- and long-range attraction of cortical GABAergic interneurons by neuregulin-1. Neuron 44,251-261.
    Fuchs, E.C., Zivkovic, A.R., Cunningham, M.O., Middleton, S., Lebeau, F.E., Bannerman, D.M., Rozov, A., Whittington, M.A., Traub, R.D., Rawlins, J.N., and Monyer, H. (2007). Recruitment of parvalbumin-positive interneurons determines hippocampal function and associated behavior. Neuron 53,591-604.
    Fukuda, T., and Kosaka, T. (2000). The dual network of GABAergic interneurons linked by both chemical and electrical synapses:a possible infrastructure of the cerebral cortex. Neurosci Res 38,123-130.
    Gajendran, N., Kapfhammer, J.P., Lain, E., Canepari, M., Vogt, K., Wisden, W., and Brenner, H.R. (2009). Neuregulin signaling is dispensable for NMDA- and GABA(A)-receptor expression in the cerebellum in vivo. J Neurosci 29,2404-2413.
    Galarreta, M., and Hestrin, S. (1999). A network of fast-spiking cells in the neocortex connected by electrical synapses. Nature 402,72-75.
    Galarreta, M., and Hestrin, S. (2001). Electrical synapses between GABA-releasing interneurons. Nat Rev Neurosci 2,425-433.
    Galarreta, M., and Hestrin, S. (2002). Electrical and chemical synapses among parvalbumin fast-spiking GABAergic interneurons in adult mouse neocortex. Proc Natl Acad Sci U S A 99,12438-12443.
    Garcia, R.A., Vasudevan, K., and Buonanno, A. (2000). The neuregulin receptor ErbB-4 interacts with PDZ-containing proteins at neuronal synapses. Proc Natl Acad Sci U S A 97,3596-3601.
    Gibson, J.R., Beierlein, M., and Connors, B.W. (1999). Two networks of electrically coupled inhibitory neurons in neocortex. Nature 402,75-79.
    Goldberg, E.M., Jeong, H.Y., Kruglikov, I., Tremblay, R., Lazarenko, R.M., and Rudy, B. (2011). Rapid developmental maturation of neocortical FS cell intrinsic excitability. Cereb Cortex 21,666-682.
    Goldman-Rakic, P.S. (1987). Development of cortical circuitry and cognitive function. Child Dev 58,601-622.
    Gu, Z., Jiang, Q., Fu, A.K., Ip, N.Y., and Yan, Z. (2005). Regulation of NMD A receptors by neuregulin signaling in prefrontal cortex. J Neurosci 25,4974-4984.
    Gupta, A., Wang, Y., and Markram, H. (2000). Organizing principles for a diversity of GABAergic interneurons and synapses in the neocortex. Science 287,273-278.
    Hestrin, S., and Galarreta, M. (2005). Electrical synapses define networks of neocortical GABAergic neurons. Trends Neurosci 28,304-309.
    Hormuzdi, S.G., Pais, I., LeBeau, F.E., Towers, S.K., Rozov, A., Buhl, E.H., Whittington, M.A., and Monyer, H. (2001). Impaired electrical signaling disrupts gamma frequency oscillations in connexin 36-deficient mice. Neuron 31,487-495.
    Huang, Y.Z., Won, S., Ali, D.W., Wang, Q., Tanowitz, M., Du, Q.S., Pelkey, K.A., Yang, D.J., Xiong, W.C., Salter, M.W., and Mei, L. (2000). Regulation of neuregulin signaling by PSD-95 interacting with ErbB4 at CNS synapses. Neuron 26,443-455.
    Huang, Z.J., Di Cristo, G, and Ango, F. (2007). Development of GAB A innervation in the cerebral and cerebellar cortices. Nat Rev Neurosci 8,673-686.
    Huang, Z.J., Kirkwood, A., Pizzorusso, T., Porciatti, V., Morales, B., Bear, M.F., Maffei, L., and Tonegawa, S. (1999). BDNF regulates the maturation of inhibition and the critical period of plasticity in mouse visual cortex. Cell 98,739-755.
    Kandler, K., and Katz, L.C. (1998a). Coordination of neuronal activity in developing visual cortex by gap junction-mediated biochemical communication. J Neurosci 18, 1419-1427.
    Kandler, K., and Katz, L.C. (1998b). Relationship between dye coupling and spontaneous activity in developing ferret visual cortex. Dev Neurosci 20,59-64.
    Kawaguchi, Y. (1995). Physiological subgroups of nonpyramidal cells with specific morphological characteristics in layer Ⅱ/Ⅲ of rat frontal cortex. J Neurosci 15, 2638-2655.
    Kawaguchi, Y, and Kubota, Y. (1997). GABAergic cell subtypes and their synaptic connections in rat frontal cortex. Cereb Cortex 7,476-486.
    Kehrer, C., Maziashvili, N., Dugladze, T., and Gloveli, T. (2008). Altered Excitatory-Inhibitory Balance in the NMDA-Hypofunction Model of Schizophrenia. Front Mol Neurosci 1,6.
    Korotkova, T., Fuchs, E.C., Ponomarenko, A., von Engelhardt, J., and Monyer, H. (2010). NMD A Receptor Ablation on Parvalbumin-Positive Interneurons Impairs Hippocampal Synchrony, Spatial Representations, and Working Memory. Neuron 68, 557-569.
    Krivosheya, D., Tapia, L., Levinson, J.N., Huang, K., Kang, Y, Hines, R., Ting, A.K., Craig, A.M., Mei, L., Bamji, S.X., and El-Husseini, A. (2008). ErbB4-neuregulin signaling modulates synapse development and dendritic arborization through distinct mechanisms. J Biol Chem 283,32944-32956.
    Lai, C., and Lemke, G. (1991). An extended family of protein-tyrosine kinase genes differentially expressed in the vertebrate nervous system. Neuron 6,691-704.
    Lee, S.C., Cruikshank, S.J., and Connors, B.W. (2010). Electrical and chemical synapses between relay neurons in developing thalamus. J Physiol 588,2403-2415.
    Lewis, D.A., Curley, A.A., Glausier, J.R., and Volk, D.W. (2012). Cortical parvalbumin interneurons and cognitive dysfunction in schizophrenia. Trends Neurosci 35,57-67.
    Lewis, D.A., and Gonzalez-Burgos, G. (2008). Neuroplasticity of neocortical circuits in schizophrenia. Neuropsychopharmacology 33,141-165.
    Lewis, D.A., Hashimoto, T., and Volk, D.W. (2005). Cortical inhibitory neurons and schizophrenia. Nat Rev Neurosci 6,312-324.
    Lewis, D.A., and Levitt, P. (2002). Schizophrenia as a disorder of neurodevelopment. Annu Rev Neurosci 25,409-432.
    Li, B., Woo, R.S., Mei, L., and Malinow, R. (2007). The neuregulin-1 receptor erbB4 controls glutamatergic synapse maturation and plasticity. Neuron 54,583-597.
    Li, H., Chou, S.J., Hamasaki, T., Perez-Garcia, C.G., and O'Leary, D.D. (2012a). Neuregulin repellent signaling via ErbB4 restricts GABAergic interneurons to
    migratory paths from ganglionic eminence to cortical destinations. Neural Dev 7,10.
    Li, K.X., Lu, YM., Xu, Z.H., Zhang, J., Zhu, J.M., Zhang, J.M., Cao, S.X., Chen, X.J., Chen, Z., Luo, J.H., et al. (2012b). Neuregulin 1 regulates excitability of fast-spiking neurons through Kvl.1 and acts in epilepsy. Nat Neurosci 15,267-273.
    Lin, Y., Bloodgood, B.L., Hauser, J.L., Lapan, A.D., Koon, A.C., Kim, T.K., Hu, L.S., Malik, A.N., and Greenberg, M.E. (2008). Activity-dependent regulation of inhibitory synapse development by Npas4. Nature 455,1198-1204.
    Lo Turco, J.J., and Kriegstein, A.R. (1991). Clusters of coupled neuroblasts in embryonic neocortex. Science 252,563-566.
    Long, M.A., Cruikshank, S.J., Jutras, M.J., and Connors, B.W. (2005). Abrupt maturation of a spike-synchronizing mechanism in neocortex. J Neurosci 25, 7309-7316.
    Ma, L., Huang, Y.Z., Pitcher, GM., Valtschanoff, J.G, Ma, Y.H., Feng, L.Y., Lu, B., Xiong, W.C., Salter, M.W., Weinberg, R.J., and Mei, L. (2003). Ligand-dependent recruitment of the ErbB4 signaling complex into neuronal lipid rafts. J Neurosci 23, 3164-3175.
    Maher, B.J., McGinley, M.J., and Westbrook, GL. (2009). Experience-dependent maturation of the glomerular microcircuit. Proc Natl Acad Sci U S A 106, 16865-16870.
    Marin, O. (2012). Interneuron dysfunction in psychiatric disorders. Nat Rev Neurosci 13,107-120.
    Markram, H., Toledo-Rodriguez, M., Wang, Y, Gupta, A., Silberberg, G, and Wu, C. (2004). Interneurons of the neocortical inhibitory system. Nat Rev Neurosci 5, 793-807.
    Mei, L., and Xiong, W.C. (2008). Neuregulin 1 in neural development, synaptic plasticity and schizophrenia. Nat Rev Neurosci 9,437-452.
    Meyer, A.H., Katona, I., Blatow, M., Rozov, A., and Monyer, H. (2002). In vivo labeling of parvalbumin-positive interneurons and analysis of electrical coupling in identified neurons. J Neurosci 22,7055-7064.
    Miller, E.K., and Cohen, J.D. (2001). An integrative theory of prefrontal cortex function. Annu Rev Neurosci 24,167-202.
    Minlebaev, M., Colonnese, M., Tsintsadze, T., Sirota, A., and Khazipov, R. (2011). Early gamma oscillations synchronize developing thalamus and cortex. Science 334, 226-229.
    Montoro, R.J., and Yuste, R. (2004). Gap junctions in developing neocortex:a review. Brain Res Brain Res Rev 47,216-226.
    Moody, W.J., and Bosma, M.M. (2005). Ion channel development, spontaneous activity, and activity-dependent development in nerve and muscle cells. Physiol Rev 85, 883-941.
    Nakazawa, K., Zsiros, V., Jiang, Z., Nakao, K., Kolata, S., Zhang, S., and Belforte, J.E. (2012). GABAergic interneuron origin of schizophrenia pathophysiology. Neuropharmacology 62,1574-1583.
    Neddens, J., Fish, K.N., Tricoire, L., Vullhorst, D., Shamir, A., Chung, W., Lewis, D.A., McBain, C.J., and Buonanno, A. (2011). Conserved interneuron-specific ErbB4 expression in frontal cortex of rodents, monkeys, and humans:implications for schizophrenia. Biol Psychiatry 70,636-645.
    Okada, M., and Corfas, G. (2004). Neuregulinl downregulates postsynaptic GABAA receptors at the hippocampal inhibitory synapse. Hippocampus 14,337-344.
    Pangratz-Fuehrer, S., and Hestrin, S. (2011). Synaptogenesis of electrical and GABAergic synapses of fast-spiking inhibitory neurons in the neocortex. J Neurosci 31,10767-10775.
    Parker, P.R., Cruikshank, S.J., and Connors, B.W. (2009). Stability of electrical coupling despite massive developmental changes of intrinsic neuronal physiology. J Neurosci 29,9761-9770.
    Peinado, A., Yuste, R., and Katz, L.C. (1993). Extensive dye coupling between rat neocortical neurons during the period of circuit formation. Neuron 10,103-114.
    Personius, K.E., Chang, Q., Mentis, G.Z., O'Donovan, M.J., and Balice-Gordon, R.J. (2007). Reduced gap junctional coupling leads to uncorrelated motor neuron firing and precocious neuromuscular synapse elimination. Proc Natl Acad Sci U S A 104, 11808-11813.
    Rieff, H.I., Raetzman, L.T., Sapp, D.W., Yeh, H.H., Siegel, R.E., and Corfas, G.(1999). Neuregulin induces GABA(A) receptor subunit expression and neurite outgrowth in cerebellar granule cells. J Neurosci 19,10757-10766.
    Rio, C., Rieff, H.I., Qi, P., and Corfas, G. (1997). Neuregulin and erbB receptors play a critical role in neuronal migration. Neuron 19,39-50.
    Rutherford, L.C., DeWan, A., Lauer, H.M., and Turrigiano, GG (1997). Brain-derived neurotrophic factor mediates the activity-dependent regulation of inhibition in neocortical cultures. J Neurosci 17,4527-4535.
    Shamir, A., Kwon, O.B., Karavanova, I., Vullhorst, D., Leiva-Salcedo, E., Janssen, M.J., and Buonanno, A. (2012). The importance of the NRG-1/ErbB4 pathway for synaptic plasticity and behaviors associated with psychiatric disorders. J Neurosci 32, 2988-2997.
    Shimamura, K., Martinez, S., Puelles, L., and Rubenstein, J.L. (1997). Patterns of gene expression in the neural plate and neural tube subdivide the embryonic forebrain into transverse and longitudinal domains. Dev Neurosci 19,88-96.
    Silberberg, G, Darvasi, A., Pinkas-Kramarski, R., and Navon, R. (2006). The involvement of ErbB4 with schizophrenia:association and expression studies. Am J Med Genet B Neuropsychiatr Genet 141B,142-148.
    Sohal, V.S., Zhang, F., Yizhar, O., and Deisseroth, K. (2009). Parvalbumin neurons and gamma rhythms enhance cortical circuit performance. Nature 459,698-702.
    Soltesz, I., Smetters, D.K., and Mody, I. (1995). Tonic inhibition originates from synapses close to the soma. Neuron 14,1273-1283.
    Stefansson, H., Sigurdsson, E., Steinthorsdottir, V., Bjornsdottir, S., Sigmundsson, T., Ghosh, S., Brynjolfsson, J., Gunnarsdottir, S., Ivarsson, O., Chou, T.T., et al. (2002). Neuregulin 1 and susceptibility to schizophrenia. Am J Hum Genet 71,877-892.
    Sudhof, T.C. (2008). Neuroligins and neurexins link synaptic function to cognitive disease. Nature 455,903-911.
    Tamas, G, Buhl, E.H., Lorincz, A., and Somogyi, P. (2000). Proximally targeted GABAergic synapses and gap junctions synchronize cortical interneurons. Nat Neurosci 3,366-371.
    Tan, G.H., Liu, Y.Y., Hu, X.L., Tin, D.M., Mei, L., and Xiong, Z.Q. (2012). Neuregulin 1 represses limbic epileptogenesis through ErbB4 in parvalbumin-expressing interneurons. Nat Neurosci 15,258-266.
    Taniguchi, H., Lu, J., and Huang, Z.J. (2013). The spatial and temporal origin of chandelier cells in mouse neocortex. Science 339,70-7'4.
    Terauchi, A., Johnson-Venkatesh, E.M., Toth, A.B., Javed, D., Sutton, M.A., and Umemori, H. (2010). Distinct FGFs promote differentiation of excitatory and inhibitory synapses. Nature 465,783-787.
    Ting, A.K., Chen, Y., Wen, L., Yin, D.M., Shen, C., Tao, Y, Liu, X., Xiong, W.C., and Mei, L. (2011). Neuregulin 1 promotes excitatory synapse development and function in GABAergic interneurons. J Neurosci 31,15-25.
    Todd, K.L., Kristan, W.B., Jr., and French, K.A. (2010). Gap junction expression is required for normal chemical synapse formation. J Neurosci 30,15277-15285.
    Tovar, K.R., Maher, B.J., and Westbrook, G.L. (2009). Direct actions of carbenoxolone on synaptic transmission and neuronal membrane properties. J Neurophysiol 102, 974-978.
    Turrigiano, GG, and Nelson, S.B. (2004). Homeostatic plasticity in the developing nervous system. Nat Rev Neurosci 5,97-107.
    Tyzio, R., Represa, A., Jorquera, I., Ben-Ari, Y, Gozlan, H., and Aniksztejn, L. (1999). The establishment of GABAergic and glutamatergic synapses on CA1 pyramidal neurons is sequential and correlates with the development of the apical dendrite. J Neurosci 19,10372-10382.
    Venance, L., Glowinski, J., and Giaume, C. (2004). Electrical and chemical transmission between striatal GABAergic output neurones in rat brain slices. J Physiol 559,215-230.
    Venance, L., Rozov, A., Blatow, M., Burnashev, N., Feldmeyer, D., and Monyer, H. (2000). Connexin expression in electrically coupled postnatal rat brain neurons. Proc Natl Acad Sci U S A 97,10260-10265.
    Vullhorst, D., Neddens, J., Karavanova, I., Tricoire, L., Petralia, R.S., McBain, C.J., and Buonanno, A. (2009). Selective expression of ErbB4 in interneurons, but not pyramidal cells, of the rodent hippocampus. J Neurosci 29,12255-12264.
    Waites, C.L., Craig, A.M., and Garner, C.C. (2005). Mechanisms of vertebrate synaptogenesis. Annu Rev Neurosci 28,251-274.
    Wen, L., Lu, Y.S., Zhu, X.H., Li, X.M., Woo, R.S., Chen, Y.J., Yin, D.M., Lai, C., Terry, A.V., Jr., Vazdarjanova, A., et al. (2010). Neuregulin 1 regulates pyramidal neuron activity via ErbB4 in parvalbumin-positive interneurons. Proc Natl Acad Sci U S A 107,1211-1216.
    Williams, S.M., Goldman-Rakic, P.S., and Leranth, C. (1992). The synaptology of parvalbumin-immunoreactive neurons in the primate prefrontal cortex. J Comp Neurol 320,353-369.
    Wonders, C.P., and Anderson, S.A. (2006). The origin and specification of cortical interneurons. Nat Rev Neurosci 7,687-696.
    Woo, R.S., Li, X.M., Tao, Y, Carpenter-Hyland, E., Huang, Y.Z., Weber, J., Neiswender, H., Dong, X.P., Wu, J., Gassmann, M., et al. (2007). Neuregulin-1 enhances depolarization-induced GAB A release. Neuron 54,599-610.
    Yang, J.M., Zhang, J., Yu, Y.Q., Duan, S., and Li, X.M. (2012). Postnatal Development of 2 Microcircuits Involving Fast-Spiking Interneurons in the Mouse Prefrontal Cortex. Cereb Cortex DOI:10.1093/cercor/bhs291.
    Yang, J.W., Hanganu-Opatz, I.L., Sun, J.J., and Luhmann, H.J. (2009). Three patterns of oscillatory activity differentially synchronize developing neocortical networks in vivo. JNeurosci 29,9011-9025.
    Yau, H.J., Wang, H.F., Lai, C., and Liu, F.C. (2003). Neural development of the neuregulin receptor ErbB4 in the cerebral cortex and the hippocampus:preferential expression by interneurons tangentially migrating from the ganglionic eminences. Cereb Cortex 13,252-264.
    Yizhar, O., Fenno, L.E., Prigge, M., Schneider, F., Davidson, T.J., O'Shea, D.J., Sohal, V.S., Goshen, I., Finkelstein, J., Paz, J.T., et al. (2011). Neocortical excitation/inhibition balance in information processing and social dysfunction. Nature 477,171-178.
    Yu, Y.C., He, S., Chen, S., Fu, Y, Brown, K.N., Yao, X.H., Ma, J., Gao, K.P., Sosinsky, G.E., Huang, K., and Shi, S.H. (2012). Preferential electrical coupling regulates neocortical lineage-dependent microcircuit assembly. Nature 486,113-117.
    Zerucha, T., Stuhmer, T., Hatch, G., Park, B.K., Long, Q., Yu, G., Gambarotta, A., Schultz, J.R., Rubenstein, J.L., and Ekker, M. (2000). A highly conserved enhancer in the Dlx5/Dlx6 intergenic region is the site of cross-regulatory interactions between Dlx genes in the embryonic forebrain. J Neurosci 20,709-721.
    1. Lewis DA, Levitt P:Schizophrenia as a disorder of neurodevelopment. Annu Rev Neurosci 2002,25:409-432.
    2. Harrison PJ:Schizophrenia:a disorder of neurodevelopment? Curr Opin Neurobiol 1997,7:285-289.
    3. Jaaro-Peled H, Hayashi-Takagi A, Seshadri S, Kamiya A, Brandon NJ, Sawa A: Neurodevelopmental mechanisms of schizophrenia:understanding disturbed postnatal brain maturation through neuregulin-l-ErbB4 and DISCI. Trends Neurosci 2009,32:485-495.
    4. Harrison PJ, Weinberger DR:Schizophrenia genes, gene expression, and neuropathology:on the matter of their convergence. Mol Psychiatry 2005,10:40-68; image 45.
    5. Owen MJ, Craddock N, O'Donovan MC:Schizophrenia:genes at last? Trends Genet 2005,21:518-525.
    6. Walsh T, McClellan JM, McCarthy SE, Addington AM, Pierce SB, Cooper GM, Nord AS, Kusenda M, Malhotra D, Bhandari A, et al.:Rare structural variants disrupt multiple genes in neurodevelopmental pathways in schizophrenia. Science 2008, 320:539-543.
    7. Stefansson H, Sigurdsson E, Steinthorsdottir V, Bjornsdottir S, Sigmundsson T, Ghosh S, Brynjolfsson J, Gunnarsdottir S, Ivarsson O, Chou TT, et al.:Neuregulin 1 and susceptibility to schizophrenia. Am J Hum Genet 2002,71:877-892.
    8. Nicodemus KK, Luna A, Vakkalanka R, Goldberg T, Egan M, Straub RE, Weinberger DR:Further evidence for association between ErbB4 and schizophrenia and influence on cognitive intermediate phenotypes in healthy controls. Mol Psychiatry 2006, 11:1062-1065.
    9. Silberberg G, Darvasi A, Pinkas-Kramarski R, Navon R:The involvement of ErbB4_with schizophrenia:association and expression studies. Am J Med Genet B Neuropsychiatr Genet 2006,141B:142-148.
    10. Mei L, Xiong WC:Neuregulin 1 in neural development, synaptic plasticity and schizophrenia. Nat Rev Neurosci 2008,9:437-452.
    11. Barros CS, Calabrese B, Chamero P, Roberts AJ, Korzus E, Lloyd K, Stowers L, Mayford M, Halpain S, Muller U:Impaired maturation of dendritic spines without disorganization of cortical cell layers in mice lacking NRG1/ErbB signaling in the central nervous system. Proc Natl Acad Sci U S A 2009,106:4507-4512.
    12. Gajendran N, Kapfhammer JP, Lain E, Canepari M, Vogt K, Wisden W, Brenner HR: Neuregulin signaling is dispensable for NMD A-and GABA(A)-receptor expression in the cerebellum in vivo. J Neurosci 2009,29:2404-2413.
    13. Penzes P, Cahill ME, Jones KA, VanLeeuwen JE, Woolfrey KM:Dendritic spine pathology in neuropsychiatric disorders. Nat Neurosci 2011,14:285-293.
    14. Garey LJ, Ong WY, Patel TS, Kanani M, Davis A, Mortimer AM, Barnes TR, Hirsch SR:Reduced dendritic spine density on cerebral cortical pyramidal neurons in schizophrenia. J Neurol Neurosurg Psychiatry 1998,65:446-453.
    15. Glantz LA, Lewis DA:Decreased dendritic spine density on prefrontal cortical pyramidal neurons in schizophrenia. Arch Gen Psychiatry 2000,57:65-73.
    16. Rosoklija G, Toomayan G, Ellis SP, Keilp J, Mann JJ, Latov N, Hays AP, Dwork AJ: Structural abnormalities of subicular dendrites in subjects with schizophrenia and mood disorders:preliminary findings. Arch Gen Psychiatry 2000,57:349-356.
    17. Rimer M, Barrett DW, Maldonado MA, Vock VM, Gonzalez-Lima F:Neuregulin-1 immunoglobulin-like domain mutant mice:Clozapine sensitivity and impaired latent inhibition. NeuroReport 2005,16:271-275.
    18. Bao J, Wolpowitz D, Role LW, Talmage DA:Back signaling by the Nrg-1 intracellular domain. J Cell Biol 2003,161:1133-1141.
    19. Bao J, Lin H, Ouyang Y, Lei D, Osman A, Kim TW, Mei L, Dai P, Ohlemiller KK, Ambron RT:Activity-dependent transcription regulation of PSD-95 by neuregulin-1 and Eos. Nat Neurosci 2004,7:1250-1258.
    20. Garcia RA, Vasudevan K, Buonanno A:The neuregulin receptor ErbB-4 interacts with PDZ-containing proteins at neuronal synapses. Proc Natl Acad Sci U S A 2000, 97:3596-3601.
    21. Huang YZ, Won S, Ali DW, Wang Q, Tanowitz M, Du QS, Pelkey KA, Yang DJ, Xiong WC, Salter MW, et al.:Regulation of neuregulin signaling by PSD-95 interacting with ErbB4 at CNS synapses. Neuron 2000,26:443-455.
    22. Krivosheya D, Tapia L, Levinson JN, Huang K, Kang Y, Hines R, Ting AK, Craig AM, Mei L, Bamji SX, et al.:ErbB4-neuregulin signaling modulates synapse development and dendritic arborization through distinct mechanisms. J Biol Chem 2008,283:32944-32956.
    23. Sardi SP, Murtie J, Koirala S, Patten BA, Corfas G:Presenilin-Dependent ErbB4 Nuclear Signaling Regulates the Timing of Astrogenesis in the Developing Brain. Cell 2006,127:185-197.
    24. Ni CY, Murphy MP, Golde TE, Carpenter G:y-secretase cleavage and nuclear locatization of ErbB-4 receptor tyrosine kinase. Science 2001,294:2179-2181.
    25. Linggi B, Carpenter G:ErbB receptors:new insights on mechanisms and biology. Trends Cell Biol 2006,16:649-656.
    26. Linggi B, Cheng QC, Rao AR, Carpenter G:The ErbB-4 s80 intracellular domain is a constitutively active tyrosine kinase. Oncogene 2006,25:160-163.
    27. Jessell TM, Siegel RE, Fischbach GD:Induction of acetylcholine receptors on cultured skeletal muscle by a factor extracted from brain and spinal cord. Proc Natl Acad Sci U S A 1979,76:5397-5401.
    28. Falls DL, Rosen KM, Corfas G, Lane WS, Fischbach GD:ARIA, a protein that stimulates acetylcholine receptor synthesis, is a member of the neu ligand family. Cell 1993,72:801-815.
    29. Sandrock Jr AW, Dryer SE, Rosen KM, Gozani SN, Kramer R, Theill LE, Fischbach GD:Maintenance of acetylcholine receptor number by neuregulins at the neuromuscular junction in vivo. Science 1997,276:599-603.
    30. Altiok N, Altiok S, Changeux JP:Heregulin-stimulated acetylcholine receptor gene expression in muscle:Requirement for MAP kinase and evidence for a parallel inhibitory pathway independent of electrical activity. EMBO Journal 1997, 16:717-725.
    31. Si J, Luo Z, Mei L:Induction of acetylcholine receptor gene expression by ARIA requires activation of mitogen-activated protein kinase. J Biol Chem 1996, 271:19752-19759.
    32. Tansey MG, Chu GC, Merlie JP:ARIA/HRG regulates AChR epsilon subunit gene expression at the neuromuscular synapse via activation of phosphatidylinositol 3-kinase and Ras/MAPK pathway. J Cell Biol 1996,134:465-476.
    33. Si J, Wang Q, Mei L:Essential roles of c-JUN and c-JUN N-terminal kinase (JNK) in neuregulin-increased expression of the acetylcholine receptor epsilon-subunit. J Neurosci 1999,19:8498-8508.
    34. Fu AK, Fu WY, Cheung J, Tsim KW, Ip FC, Wang JH, Ip NY:Cdk5 is involved in neuregulin-induced AChR expression at the neuromuscular junction. Nat Neurosci 2001,4:374-381.
    35. Tidcombe H, Jackson-Fisher A, Mathers K, Stern DF, Gassmann M, Golding JP: Neural and mammary gland defects in ErbB4 knockout mice genetically rescued from embryonic lethality. Proc Natl Acad Sci U S A 2003,100:8281-8286.
    36. Woldeyesus MT, Britsch S, Riethmacher D, Xu L, Sonnenberg-Riethmacher E, Abou-Rebyeh F, Harvey R, Caroni P, Birchmeier C:Peripheral nervous system defects in erbB2 mutants following genetic rescue of heart development. Genes Dev 1999,13:2538-2548.
    37. Rimer M, Prieto AL, Weber JL, Colasante C, Ponomareva O, Fromm L, Schwab MH, Lai C, Burden SJ:Neuregulin-2 is synthesized by motor neurons and terminal Schwann cells and activates acetylcholine receptor transcription in muscle cells expressing ErbB4. Mol Cell Neurosci 2004,26:271-281.
    38. Jaworski A, Burden SJ:Neuromuscular synapse formation in mice lacking motor neuron-and skeletal muscle-derived Neuregulin-1. J Neurosci 2006,26:655-661.
    39. Escher P, Lacazette E, Courtet M, Blindenbacher A, Landmann L, Bezakova G, Lloyd KC, Mueller U, Brenner HR:Synapses form in skeletal muscles lacking neuregulin receptors. Science 2005,308:1920-1923.
    40. Trachtenberg JT, Thompson WJ:Schwann cell apoptosis at developing neuromuscular junctions is regulated by glial growth factor. Nature 1996, 379:174-177.
    41. Britsch S, Goerich DE, Riethmacher D, Peirano RI, Rossner M, Nave KA, Birchmeier C, Wegner M:The transcription factor Sox 10 is a key regulator of peripheral glial development. Genes Dev 2001,15:66-78.
    42. Wietasch K:Regulation of neuronal nicotinic acetylcholine receptors in the interpeduncular nucleus. PhD thesis, Harvard University.1997.
    43. Yang X, Kuo Y, Devay P, Yu C, Role L:A cysteine-rich isoform of neuregulin controls the level of expression of neuronal nicotinic receptor channels during synaptogenesis. Neuron 1998,20:255-270.
    44. Liu Y, Ford B, Mann MA, Fischbach GD:Neuregulins increase alpha7 nicotinic acetylcholine receptors and enhance excitatory synaptic transmission in GABAergic interneurons of the hippocampus. J Neurosci 2001,21:5660-5669.
    45. Kawai H, Zago W, Berg DK:Nicotinic alpha 7 receptor clusters on hippocampal GABAergic neurons:regulation by synaptic activity and neurotrophins. J Neurosci 2002,22:7903-7912.
    46. Hancock ML, Canetta SE, Role LW, Talmage DA:Presynaptic type Ⅲ neuregulinl-ErbB signaling targets{alpha}7 nicotinic acetylcholine receptors to axons. J Cell Biol 2008,181:511-521.
    47. Zhong C, Du C, Hancock M, Mertz M, Talmage DA, Role LW:Presynaptic type Ⅲ neuregulin 1 is required for sustained enhancement of hippocampal transmission by nicotine and for axonal targeting of alpha7 nicotinic acetylcholine receptors. J Neurosci 2008,28:9111-9116.
    48. Lin H, Vicini S, Hsu FC, Doshi S, Takano H, Coulter DA, Lynch DR:Axonal alpha7 nicotinic ACh receptors modulate presynaptic NMDA receptor expression and structural plasticity of glutamatergic presynaptic boutons. Proc Natl Acad Sci U S A 2010,107:16661-16666.
    49. Lozada AF, Wang X, Gounko NV, Massey KA, Duan J, Liu Z, Berg DK: Glutamatergic synapse formation is promoted by alpha7-containing nicotinic acetylcholine receptors. J Neurosci 2012,32:7651-7661.
    50. Chen YJ, Johnson MA, Lieberman MD, Goodchild RE, Schobel S, Lewandowski N, Rosoklija G, Liu RC, Gingrich JA, Small S, et al.:Type Ⅲ neuregulin-1 is required for normal sensorimotor gating, memory-related behaviors, and corticostriatal circuit components. J Neurosci 2008,28:6872-6883.
    51. Nason MW, Adhikari A, Bozinoski M, Gordon JA, Role LW:Disrupted activity in the hippocampal-accumbens circuit of Type Ⅲ neuregulin 1 mutant mice. Neuropsychopharmacology 2011,36:488-496.
    52. Ozaki M, Sasner M, Yano R, Lu HS, Buonanno A:Neuregulin-P induces expression of anNMDA-receptor subunit. Nature 1997,390:691-694.
    53. Rieff HI, Raetzman LT, Sapp DW, Yeh HH, Siegel RE, Corfas G:Neuregulin induces GABA(A) receptor subunit expression and neurite outgrowth in cerebellar granule cells. J Neurosci 1999,19:10757-10766.
    54. Li B, Woo RS, Mei L, Malinow R:The neuregulin-1 receptor erbB4 controls glutamatergic synapse maturation and plasticity. Neuron 2007,54:583-597.
    55. Fazzari P, Paternain AV, Valiente M, Pla R, Lujan R, Lloyd K, Lerma J, Marin O, Rico B:Control of cortical GAB A circuitry development by Nrgl and ErbB4 signalling. Nature 2010,464:1376-1380.
    56. Ting AK, Chen Y, Wen L, Yin DM, Shen C, Tao Y, Liu X, Xiong WC, Mei L: Neuregulin 1 promotes excitatory synapse development and function in GABAergic interneurons. J Neurosci 2011,31:15-25.
    57. Abe Y, Namba H, Kato T, Iwakura Y, Nawa H:Neuregulin-1 signals from the periphery regulate AMPA receptor sensitivity and expression in GABAergic interneurons in developing neocortex. J Neurosci 2011,31:5699-5709.
    58. Xie F, Raetzman LT, Siegel RE:Neuregulin induces GABAA receptor beta2 subunit expression in cultured rat cerebellar granule neurons by activating multiple signaling pathways. J Neurochem 2004,90:1521-1529.
    59. Xie F, Padival M, Siegel RE:Association of PSD-95 with ErbB4 facilitates neuregulin signaling in cerebellar granule neurons in culture. J Neurochem 2007, 100:62-72.
    60. Okada M, Corfas G:Neuregulinl downregulates postsynaptic GABAA receptors at the hippocampal inhibitory synapse. Hippocampus 2004,14:337-344.
    61. Woo RS, Li XM, Tao Y, Carpenter-Hyland E, Huang YZ, Weber J, Neiswender H, Dong XP, Wu J, Gassmann M, et al.:Neuregulin-1 enhances depolarization-induced GABA release. Neuron 2007,54:599-610.
    62. Vullhorst D, Neddens J, Karavanova I, Tricoire L, Petralia RS, McBain CJ, Buonanno A:Selective expression of ErbB4 in interneurons, but not pyramidal cells, of the rodent hippocampus. J Neurosci 2009,29:12255-12264.
    63. Chen Y, Hancock ML, Role LW, Talmage DA:Intramembranous valine linked to schizophrenia is required for neuregulin 1 regulation of the morphological development of cortical neurons. J Neurosci 2010,30:9199-9208.
    64. Liu X, Bates R, Yin DM, Shen C, Wang F, Su N, Kirov SA, Luo Y, Wang JZ, Xiong WC, et al.:Specific regulation of NRG1 isoform expression by neuronal activity. J Neurosci 2011,31:8491-8501.
    65. Sweeney C, Lai C, Riese DJ,2nd, Diamonti AJ, Cantley LC, Carraway KL,3rd: Ligand discrimination in signaling through an ErbB4 receptor homodimer. J Biol Chem 2000,275:19803-19807.
    66. Veikkolainen V, Vaparanta K, Halkilahti K, Iljin K, Sundvall M, Elenius K:Function of ERBB4 is determined by alternative splicing. Cell Cycle 2011,10:2647-2657.
    67. Law AJ, Kleinman JE, Weinberger DR, Weickert CS:Disease-associated intronic variants in the ErbB4 gene are related to altered ErbB4 splice-variant expression in the brain in schizophrenia. Hum Mol Genet 2007,16:129-141.
    68. Hashimoto R, Straub RE, Weickert CS, Hyde TM, Kleinman JE, Weinberger DR: Expression analysis of neuregulin-1 in the dorsolateral prefrontal cortex in schizophrenia. Mol Psychiatry 2004,9:299-307.
    69. Hahn CG, Wang HY, Cho DS, Talbot K, Gur RE, Berrettini WH, Bakshi K, Kamins J, Borgmann-Winter KE, Siegel SJ, et al.:Altered neuregulin 1-erbB4 signaling contributes to NMDA receptor hypofunction in schizophrenia. Nat Med 2006, 12:824-828.
    70. Law AJ, Lipska BK, Weickert CS, Hyde TM, Straub RE, Hashimoto R, Harrison PJ, Kleinman JE, Weinberger DR:Neuregulin 1 transcripts are differentially expressed in schizophrenia and regulated by 51 SNPs associated with the disease. Proc Natl Acad Sci U S A 2006,103:6747-6752.
    71. Chong VZ, Thompson M, Beltaifa S, Webster MJ, Law AJ, Weickert CS:Elevated neuregulin-1 and ErbB4 protein in the prefrontal cortex of schizophrenic patients. Schizophr Res 2008,100:270-280.
    72. Golub MS, Germann SL, Lloyd KC:Behavioral characteristics of a nervous system-specific erbB4 knock-out mouse. Behav Brain Res 2004,153:159-170.
    73. Karl T, Duffy L, Scimone A, Harvey RP, Schofield PR:Altered motor activity, exploration and anxiety in heterozygous neuregulin 1 mutant mice:implications for understanding schizophrenia. Genes Brain Behav 2007,6:677-687.
    74. Wen L, Lu YS, Zhu XH, Li XM, Woo RS, Chen YJ, Yin DM, Lai C, Terry AV, Jr., Vazdarjanova A, et al.:Neuregulin 1 regulates pyramidal neuron activity via ErbB4 in parvalbumin-positive interneurons. Proc Natl Acad Sci U S A 2010,107:1211-1216.
    75. Deakin IH, Law AJ, Oliver PL, Schwab MH, Nave KA, Harrison PJ, Bannerman DM:Behavioural characterization of neuregulin 1 type i overexpressing transgenic mice. NeuroReport 2009,20:1523-1528.
    76. Kato T, Kasai A, Mizuno M, Fengyi L, Shintani N, Maeda S, Yokoyama M, Ozaki M, Nawa H:Phenotypic characterization of transgenic mice overexpressing neuregulin-1. PLoS One 2010,5.
    77. Deakin IH, Nissen W, Law AJ, Lane T, Kanso R, Schwab MH, Nave KA, Lamsa KP, Paulsen O, Bannerman DM, et al.:Transgenic overexpression of the type I isoform of neuregulin 1 affects working memory and hippocampal oscillations but not long-term potentiation. Cereb Cortex 2012,22:1520-1529.
    78. Huttenlocher PR:Synaptic density in human frontal cortex-developmental changes and effects of aging. Brain Res 1979,163:195-205.
    79. Pitcher GM, Kalia LV, Ng D, Goodfellow NM, Yee KT, Lambe EK, Salter MW: Schizophrenia susceptibility pathway neuregulin 1-ErbB4 suppresses Src upregulation of NMDA receptors. Nat Med 2011,17:470-478.
    80. Bjarnadottir M, Misner DL, Haverfield-Gross S, Bruun S, Helgason VG, Stefansson H, Sigmundsson A, Firth DR, Nielsen B, Stefansdottir R, et al.:Neuregulinl (NRG1) signaling through Fyn modulates NMDA receptor phosphorylation:differential synaptic function in NRG1+/-knock-outs compared with wild-type mice. J Neurosci 2007,27:4519-4529.
    81. Geddes AE, Huang XF, Newell KA:Reciprocal signalling between NR2 subunits of the NMDA receptor and neuregulinl and their role in schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2011,35:896-904.
    82. Zhang LI, Poo MM:Electrical activity and development of neural circuits. Nat Neurosci 2001,4 Suppl:1207-1214.
    83. Hua JY, Smith SJ:Neural activity and the dynamics of central nervous system development. Nat Neurosci 2004,7:327-332.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700