水平细胞生理特性及神经系统时间信息处理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钙离子是细胞内功能最广泛的第二信使之一,在为数众多的细胞内信号通路中发挥关键作用。研究发现,鲫鱼视网膜H1型水平细胞表达对钙离子具有高通透性的NMDA受体。为揭示NMDA受体活动性对H1型水平细胞的细胞内钙离子动态过程的作用,本论文的第一部分工作结合细胞内钙成像实验和计算模型,对NMDA受体触发的H1型水平细胞的胞内钙离子动态过程进行了研究。细胞内钙成像实验显示H1细胞的胞内钙离子平均浓度在NMDA受体激活后快速升高并缓慢下降至稳态值,呈现明显的尖峰反应;进一步的实验和模型结果提示细胞内钙库的活动性对NMDA触发的H1细胞钙信号的尖峰反应具有关键作用。
     钙离子对神经元之间的化学突触传递具有重要作用。视网膜H1细胞从功能上对应于亮度型水平细胞(LHC)。本论文的第二部分工作对视网膜外网状层LHC与光感受器细胞之间的化学突触传递进行了研究。我们实验室在鲫鱼视网膜铺片的细胞内记录结果发现:LHC的对光反应幅度在重复性红光刺激条件下逐渐增强,细胞的绿光反应幅度同时受到削弱;另一方面,LHC对重复性绿色闪光的反应幅度没有显著变化,细胞的红光反应强度在重复性绿光刺激后同样受到削弱。这一现象提示了LHC与光感受器之间的化学突触在重复性闪光刺激条件下呈现形式多样的可塑性。本论文通过构建离子通道模型研究了以上现象的生理机制。结果提示:(1)突触后细胞内钙离子相关的对AMPA受体的调控过程对LHC的对光反应自增强具有关键作用;(2)LHC对重复性红光和绿光刺激的不对称反应以及不同颜色光之间的互压抑可能与突触前代谢型谷氨酸受体介导的对谷氨酸释放的调控过程相关。
     除化学突触,电突触是神经系统中另一种广泛存在的突触传递形式。在本论文的第三部分,我们通过构建神经网络模型研究了电突触与化学突触协同工作对神经系统处理毫秒尺度时间信息的可能作用。研究表明,自然刺激的时间信息在神经系统的前级环节被编码在神经元动作电位串的时序模式中;而在皮层等高级脑区则存在对特定时间信息选择性反应的神经元集合。本论文的结果提示,在电突触与化学突触协同工作的神经网络中,不同长度的时间信息可以被有效地转化为神经元集合不同的时空放电模式,从而实现神经系统利用神经元群体活动性实现对毫秒尺度时间信息的选择性编码。
Calcium is one of the most versatile intracellular second messengers,playing crucial roles in many intracellular signaling pathways.It was recently reported that NMDA receptors, which are highly permeable to Ca~(2+),are expressed in carp retinal H1-type horizontal cells.To understand the functional role of NMDA receptors for intracellular free calcium concentration([Ca~(2+)_i]dynamics of H1 cells,[Ca~(2+)]_i changes initiated by the activation of NMDA receptors were studied in H1 cells using both experimental and computational techniques.Fura-2 fluorescence calcium imaging showed that H1 subtype horizontal cells responded to exogenously applied NMDA with a transient[Ca~(2+)]_i increase which decayed to a sustained,but elevated level of[Ca~(2+)]_i.Contributions of different Ca~(2+) flux pathways underlying the time course of this increment of[Ca~(2+)]_i were further explored.Intracellular calcium stores were suggested to play crucial role for the initial transient dynamics of [Ca~(2+)]_i.
     Ca~(2+) is known to play crucial roles in the chemical synapses for neuronal communica-tion.Retinal H1 cells is also called as luminosity-type horizontal cells(LHC) according to its light response properties.The second part of this thesis introduces our work on the chem-ical synapses properties between LHC and photoreceptors in the outer retina.Previous work in our laboratory indicated that repetitive red flashes progressively strengthened the synap-tic connection between red-cone and LHC,whereas weakened that between green-cone and LHC.On the other hand,repetitive green flashes remarkably depressed the LHC's red re-sponse,but caused little changes in the cell's green response.This phenomena indicated that the chemical synapses between LHC and photoreceptors in the outer retina are highly modi-fiable.We tried to explore the underlying mechanisms of this phenomenon by computational model.The results suggested that:(1) the auto-enhancement effect might be induced by the Ca~(2+)-dependent process on the post-synaptic AMPA receptors,which could lead to changes of the ionic channel's properties;(2) the asymmetric response to red-and green-flashes and the mutual-chromatic suppression effects might be attributed to the regulatory effects on the pre-synaptic glutamate release.
     Neurons in the central nervous system(CNS) communicate with each other through both chemical and electrical synapses.We tried to explore the possible roles of electrical synapses in temporal information processing by constructing neural network models.Physiological observations indicate that neurons in the sensory levels of CNS do not respond selectively to the temporal properties of external stimuli.On the other hand,neurons which show selective response to specific temporal properties,especially the duration content,have been reported in the cortex of many species.Temporal information is therefore suggested to be transformed into the spatially distributed neuronal activities in the cortex.Results in our work show that electrical synapse can substantially contribute to the temporal-to-spatial transformation of neuronal activities,and the neuronal activities in such networks can potentially represent the durations of external stimuli.
引文
[1]Field GD and Chichilnisky EJ.Information processing in the primate retina:Circuitry and coding.Annu Rev Neurosci 2007;30:1-30.
    [2]He SG,Dong W,Deng QD,Weng SJ and Sun WZ.Seeing more clearly:Recent advances in understanding retinal circuitry.Science 2003;302:408-411.
    [3]Kolb H.How the retina works.American Scientist 2003;91(1):28-35.
    [4]Haydon PG.Glia:Listening and talking to the synapse.Nat Rev Neurosci 2001;2(3):185-93.
    [5]Lin SC and Bergles DE.Synaptic signaling between neurons and glia.Glia 2004;15(47):290-298.
    [6]Newman EA.Glial modulation of synaptic transmission in the retina.Glia 2004;47(3):268-74.
    [7]Stell WK,Lightfood DO,Wheeler TG and Leeper HF.Goldfish retina:Functional polarization of cone horizontal cell dendrites and synapses.Science 1975;190(4218):989-990.
    [8]Barnes S,Merchant V and Mahmud E Modulation of transmission gain by protons at the photoreceptor output synapse.Proc Natl Acad Sci USA 1993;90:10081-10085.
    [9]Cadetti L and Thoreson WB.Feedback effects of horizontal cell membrane potential on cone calcium currents studied with simultaneous recordings.J Neurophysiol 2006;95:1992-1995.
    [10]Kalloniatis M,Sun D,Foster L,Haverkamp S and Wassle H.Localization of NMDA receptor subunits and mapping NMDA drive within the mammalian retina.Vis Neurosci 2004;21(4):587-97.
    [11]Kamermans M,Fahrenfort I,Schultz K,Janssen-Bienhold U,Sjoerdsma T and Weiler R.Hemichannel-mediated inhibition in the outer retina.Science 2001;292(5519):1178-1180.
    [12]Watkins JC and Jane DE.The glutamate story.Br J Pharmacol 2006;147:S 100-S108.
    [13]Yang XL.Characterization of receptors for glutamate and gaba in retinal neurons.Prog Neurobiol 2004;73:127-150.
    [14]Lipton SA.Failures and successes of NMDA receptor antagonists:Molecular basis for the use of open-channel blockers like memantine in the treatment of acute and chronic neurologic insults.NeuroRx 2004;1(1):101-10.
    [15]McBain CJ and Mayer ML.N-methyl-d-aspartic acid receptor structure and function.Physiol Rev 1994;74:723-760.
    [16]Shen Y,Liu XL and Yang XL.N-methyl-D-aspartate receptors in the retina.Mol Neurobiol 2006;34(3):163-179.
    [17]Blanco R and de la Villa P.Ionotropic glutamate receptors in isolated horizontal cells of the rabbit retina.Eur J Neuros ci 1999;11(3):867-73.
    [18]Vandenbranden CA,Kamphuis W,Cardozo BN and Kamermans M.Expression and localization of ionotropic glutamate receptor subunits in the goldfish retina:An in situ hybridization and immunocytochemical study.J Neurocytol 2000;29(10):729-42.
    [19]Davis SF and Linn CL.Mechanism linking NMDA receptor activation to modulation of voltage-gated sodium current in distal retina.Am J Physiol Cell Physiol 2003;284(5):C1193-204.
    [20]O'Dell TJ and Christensen BN.Horizontal cells isolated from catfish retina contain two types of excitatory amino acid receptors.J Neurophysiol 1989;61(6):1097-109.
    [21]Carafoli E,Santella L,Branca D and Brini M.Generation,control,and processing of cellular calcium signals.Crit Rev Biochem Mol Biol 2001;36(2):107-260.
    [22]Carafoli E.Calcium signaling:A tale for all seasons.Proc Natl Acad Sci U S A 2002;99(3):1115-1122.
    [23]Linn CP and Christensen BN.Excitatory amino acid regulation of intracellular Ca~(2+)in isolated catfish cone horizontal cells measured under voltage- and concentrationclamp conditions.JNeurosci 1992;12(6):2156-64.
    [24]Linn CL and Gafka AC.Modulation of a voltage-gated calcium channel linked to activation of glutamate receptors and calcium-induced calcium release in the catfish retina.J Physiol 2001;535(Pt 1):47-63.
    [25]Hayashida Y and Yagi T.On the interaction between voltage-gated conductances and Ca~(2+) regulation mechanisms in retinal horizontal cells.J Neurophysiol 2002;87:172-182.
    [26]Hayashida Y,Yagi T and Yasui S.Ca~(2+) regulation by the Na~+/Ca~(2+) exchanger in retinal horizontal cells depolarized by glutamate.Neurosci Res 1998;31(3):189-199.
    [27]Huang SY and Liang PJ.Ca~(2+)-permeable and Ca~(2+)-impermeable AMPA receptors coexist on horizontal cells.NeuroReport 2005;16(3):263-266.
    [28]Huang SY,Liu Y and Liang PJ.Role of Ca~(2+) store in AMPA-triggered Ca~(2+) dynamics in retinal horizontal cells.NeuroReport 2004;15(15):2311-2315.
    [29]Schubert T,Weiler R and Feigenspan A.Intracellular calcium is regulated by different pathways in horizontal cells of the mouse retina.J Neurophysiol2006;96:1278-1292.
    [30]Keizer J and Levine L.Ryanodine receptor adaptation and Ca~(2+)-induced Ca~(2+)release-dependent Ca~(2+) oscillations.Biophys J 1996;71:3477-3487.
    [31]Li YX,Stojilkovi SS,Keizer J and Rinzel J.Sensing and refilling calcium stores in an excitable cell.Biophys J 1997;72:1080-1091.
    [32]Rose CR and Konnerth A.Stores not just for storage intracellular calcium release and synaptic plasticity.Neuron 2001;31(4):519-522.
    [33]Zhang W and Linden DJ.The other side of the engram:Experience-driven changes in neuronal intrinsic excitability.Nat Rev Neurosci 2003;4(11):885-900.
    [34]Kandel ER.The molecular biology of memory storage:A dialogue between genes and synapses.Science 2001;294(5544):1030-8.
    [35]Dan Y and Poo MM.Spike timing-dependent plasticity of neural circuits.Neuron 2004;44(1):23-30.
    [36]Zador AM and Dobrunz LE.Dynamic synapses in the cortex.Neuron 1997;19:1-4.
    [37]Zucker RS and Regehr WG.Short-term synaptic plasticity.Annu Rev Physiol 2002;64:355-405.
    [38]Liu Y,Luo FJ and Liang PJ.Dopamine effect on the stimulus pattern related changes in response characteristics of R/G horizontal cells in carp retina.Brain Res 2003;973(2):190-5.
    [39]Luo FJ and Liang PJ.Metabotropic glutamate receptor-mediated hetero-synaptic interaction of red-and green-cone inputs to lhc of carp retina.Brain research bulletin 2003;60:67-71.
    [40]Hu JF,Liu Y and Liang PJ.Stimulus pattern related plasticity of synapses between cones and horizontal cells in carp retina.Brain Res 2000;857(l-2):321-6.
    [41]Jin X,Hu JF and Liang PJ.Possible mechanism of flicking-induced short-term plasticity in retinal cone-lhc synapse:A computational study.Biol Cybern 2004;90(5):360-367.
    [42]Wang XL,Jin X and Liang PJ.Modeling the pre-and post-synaptic components involved in the synaptic modification between cones and horizontal cells in carp retina.Biol Cybern 2007;96(3):367-76.
    [43]Sohl G,Maxeiner S and Willecke K.Expression and functions of neuronal gap junctions.Nat Rev Neurosci 2005;6(3):191-200.
    [44]Connors BW and Long MA.Electrical synapses in the mammalian brain.Annu Rev Neurosci 2004;27:393-418.
    [45]Buonomano DV and Karmarkar UR.How do we tell time? Neuroscientist 2002;8(1):42-51.
    [46]Ivry RB and Spencer RM.The neural representation of time.Curr Opin Neurobiol 2004;14(2):225-32.
    [47]Mauk MD and Buonomano DV.The neural basis of temporal processing.Annu Rev Neurosci 2004;27:307-340.
    [48]deCharms RC and Zador A.Neural representation and the cortical code.Annu Rev Neurosci 2000;23:613-47.
    [49]Casseday JH,Ehrlich D and Covey E.Neural tuning for sound duration:Role of inhibitory mechanisms in the inferior colliculus.Science 1994;264(5160):847-50.
    [50]Ehrlich D,Casseday JH and Covey E.Neural tuning to sound duration in the inferior colliculus of the big brown bat,eptesicus fuscus.J Neurophysiol 1997;77(5):2360-72.
    [51]Fremouw T,Faure PA,Casseday JH and Covey E.Duration selectivity of neurons in the inferior colliculus of the big brown bat:Tolerance to changes in sound level.J Neurophysiol 2005;94(3):1869-78.
    [52]Galazyuk AV and Feng AS.Encoding of sound duration by neurons in the auditory cortex of the little brown bat,myotis lucifugus.J Comp Physiol [A]1997;180(4):301-11.
    [53]He J,Hashikawa T,Ojima H and Kinouchi Y.Temporal integration and duration tuning in the dorsal zone of cat auditory cortex.J Neurosci 1997;17(7):2615-25.
    [54]Haugland RR Handbook A Guide to Fluorescent Probes and Labeling Technologies.Molecular Probes,2005.
    [55]Grynkiewicz G,Poenie M and Tsien RY.A new generation of Ca~(2+) indicators with greatly improved fluorescence properties.J Biol Chem 1985;260(6):3440-3450.
    [56]Carnevale T and Hines M.The NEURON Book.Cambridge,UK:Cambridge University Press,2006.
    [57]Destexhe A,Mainen ZF and Sejnowski TJ.An efficient method for computing synaptic conductances based on a kinetic model of receptor binding.Neural Comput 1994;6:14-18.
    [58]Zador A,Koch C and Brown TH.Biophysical model of a hebbian synapse.Proc Natl AcadSciUSA 1990;87(17):6718-6722.
    [59]Schuster S,Marhl M and Hofer T.Modelling of simple and complex calcium oscillations:From single-cell responses to intercellular signalling.Eur J Bioch 2002;269:1333-1355.
    [60]Tachibana M.Membrane properties of solitary horizontal cells isolated from goldfish retina.J Physiol 1981;321:141-61.
    [61]Tachibana M.Ionic currents of solitary horizontal cells isolated from goldfish retina.J Physiol 1983;345:329-351.
    [62]Yagi T and Kaneko A.The axon terminal of goldfish retinal horizontal cells:A low membrane conductance measured in solitary preparations and its implication to the signal conduction from the soma.JNeurophysiol 1988;59:482-494.
    [63]Lasater EM and Lam DMK.Membrane properties of distal retinal neurons.Prog Ret Res 1992;11:215-246.
    [64]Usui S,Kamiyama Y,Ishii H and Ikeno H.Reconstruction of retinal horizontal cell responses by the ionic current model.Vision Research 1996;36(12):1711-1719.
    [65]Hodgkin AL and Huxley AF A quantitative description of membrane current and its application to conduction and excitation in nerve.J Physiol 1952;117(4):500-544.
    [66]Kaneko A and Tachibana M.Effects of L-glutamate on the anomalous rectifier potassium current in horizontal cells of carassius auratus retina.J Physiol 1985;358:169-182.
    [67]Mammen AL,Kameyama K,Roche KW and Huganir RL.Phosphorylation of the alpha-amino-3-hydroxy-5-methylisoxazole4-propionic acid receptor glurl subunit by calcium/calmodulin-dependent kinase ii.J Biol Chem 1997;272(51):32528-33.
    [68]Song I and Huganir RL.Regulation of AMPA receptors during synaptic plasticity.Trends Neurosci 2002;25(11):578-88.
    [69]Huang SY,Hu JF,Gong HQ and Liang PJ.Postsynaptic calcium pathway contributes to synaptic plasticity between retinal cones and luminosity-type horizontal cells.Acta Physiologica Sinica 2006;58(5):407-414.
    [70]Awatramani GB and Slaughter MM.Intensity-dependent,rapid activation of presynaptic metabotropic glutamate receptors at a central synapse.J Neurosci 2001;21(2):741-9.
    [71]Mitchell SJ and Silver RA.Glutamate spillover suppresses inhibition by activating presynaptic mglurs.Nature 2000;404:498-502.
    [72]Palacios AG,Varel FJ,Srivastava R and Goldsmith TH.Spectral sensitivity of cones in the goldfish,carassius auratus.Vision Research 1998;38(14):2135-2146.
    [73]Beaulieu C,Kisvarday Z,Somogyi P,Cynader M and Cowey A.Quantitative distribution of gaba-immunopositive and-immunonegative neurons and synapses in the monkey striate cortex (area 17).Cerebral Cortex 1992;2:295-309.
    [74]Dayan P and Abbott LF Theoretical Neuroscience.MIT Press,2001.
    [75]Troyer TW and Miller KD.Physiological gain leads to high isi variability in a simple model of a cortical regular spiking cell.Neural Computation 1997;9:971-983.
    [76]Nowotny T,Rabinovich MI and Abarbanel HD.Spatial representation of temporal information through spike-timing-dependent plasticity.Phys Rev E 2003;68(011908).
    [77]Rall W.Distinguishing theoretical synaptic potentials computed for different soma-dendritic distributions of synaptic input.JNeurophysiol 1967;30:1138-1168.
    [78]Kopell N and Ermentrout B.Chemical and electrical synapses perform complementary roles in the synchronization of interneuronal networks.Proc Natl Acad Sci USA 2004;101(43):15482-15487.
    [79]Cheng HP,Wei S,Wei LP and Verkhratsky A.Calcium signaling in physiology and pathophysiology.Acta Pharmacol Sin 2006;27(7):767-72.
    [80]Clapham DE.Calcium signaling.Cell 2001;131(6):1047-58.
    [81]Winslow RL.Bifurcation analysis of nonlinear retinal horizontal cell models.Ⅰ.Properties of isolated cells.J Neurophysiol 1989;62(3):738-49.
    [82]Shingai R and Christensen BN.Excitable properties and voltage-sensitive ion conductances of horizontal cells isolated from catfish (ictalurus punctatus) retina.J Neurophysiol 1986;56(1):32-49.
    [83]Dowling JE,Brown JE and Major D.Synapses of horizontal cells in rabbit and cat retinas.Science 1966;153(744):1639-1641.
    [84]Kolb H.The organization of the outer plexiform layer in the retina of the cat:Electron microscopic observations.JNeurocytol 1977;6(2):131-53.
    [85]Iino M.Dynamic regulation of intracellular calcium signals through calcium release channels.Mol Cell Biochem 1999;190(1-2):185-90.
    [86]Foskett JK,White C,Cheung KH and Mak DOD.Inositol trisphosphate receptor Ca~(2+) release channels.Physiol Rev 2007;87(2):593-658.
    [87]Burnashev N,Monyer H,Seeburg PH and Sakmann B.Divalent ion permeability of AMPA receptor channels is dominated by the edited form of a single subunit.Neuron 1992;8(1):189-98.
    [88]Hollmann M,Hartley M and Heinemann S.Ca~(2+) permeability of KA-AMPA-gated glutamate receptor channels depends on subunits composition.Science 1991;252:851-853.
    [89]Lu T,Shen Y and Yang XL.Desensitization of AMPA receptors on horizontal cells isolated from crucian carp retina.Neurosci Res 1998;31(2):123-35.
    [90]Shen Y,Lu T and Yang XL.Modulation of desensitization at glutamate receptors in isolated crucian carp horizontal cells by concanavalin a,cyclothiazide,aniracetam and pepa.Neuroscience 1999;89(3):979-90.
    [91]Yang XL and Wu SM.Coexistence and function of glutamate receptor subtypes in the horizontal cells of the tiger salamander retina.Vis Neurosci 1991;7(4):377-82.
    [92]Yang JH,Maple B,Gao F,Maguire G and Wu SM.Postsynaptic responses of horizontal cells in the tiger salamander retina are mediated by AMPA-preferring receptors.Brain Res 1998;797(1):125-34.
    [93]Gottesman J and Miller RF.Pharmacological properties of N-methyl-D-aspartate receptors on ganglion cells of an amphibian retina.J Neurophysiol 1992;68(2):596-604.
    [94]Hartveit E and Veruki ML.All amacrine cells express functional NMDA receptors.Neuroreport 1997;8(5):1219-23.
    [95]Stell WK.The structure and relationships of horizontal cells and photoreceptor-bipolar synaptic complexes in goldfish retina.Am J Anat 1967;121(2):401-23.
    [96]Marc RE.Mapping glutamatergic drive in the vertebrate retina with a channel-permeant organic cation.J Comp Neurol 1999;407(1 ):47-64.
    [97]Fletcher EL,Hack I,Brandstatter JH and Wassle H.Synaptic localization of NMDA receptor subunits in the rat retina.J Comp Neurol 2000;420(1):98-112.
    [98]Gründer T,Kohler K,Kaletta A and Guenther E.The distribution and developmental regulation of NMDA receptor subunit proteins in the outer and inner retina of the rat.JNeurobiol 2000;44(3):333-42.
    [99]Picaud S,Hicks D,Forster V,Sahel J and Dreyfus H.Adult human retinal neurons in culture:Physiology of horizontal cells.Invest Ophthalmol Vis Sci 1998;39(13):2637-48.
    [100]Ozawa S,Kamiya H and Tsuzuki K.Glutamate receptors in the mammalian central nervous system.Prog Neurobiol 1998;54(5):581-618.
    [101]Shen W and Jiang Z.Characterization of glycinergic synapses in vertebrate retinas.J Biomed Sci 2007;14(1):5-13.
    [102]Benke TA,Lüthi A,Isaac JT and Collingridge GL.Modulation of AMPA receptor unitary conductance by synaptic activity.Nature 1998;393(6687):793-7.
    [103]Vogt KE and Nicoll RA.Glutamate and gamma-aminobutyric acid mediate a het-erosynaptic depression at mossy fiber synapses in the hippocampus.Proc Natl Acad Sci U S A 1999;96(3):1118-22.
    [104]Anwyl R.Metabotropic glutamate receptors:Electrophysiological properties and role in plasticity.Brain Res Rev 1999;29(1):83-120.
    [105]Koulen P,Kuhn R,Wassle H and Brandstatter JH.Modulation of the intracellular calcium concentration in photoreceptor terminals by a presynaptic metabotropic glutamate receptor.Proc Natl Acad Sci U S A 1999;96(17):9909-14.
    [106]Hirasawa H,Shiells R and Yamada M.A metabotropic glutamate receptor regulates transmitter release from cone presynaptic terminals in carp retinal slices.J Gen Physiol 2002;119(1):55-68.
    [107]Hu JF,Liu Y and Liang PJ.Models describing nonlinear interactions in graded neuron synapses.Biol Cybern 2003;88(5):380-6.
    [108]Carr CE.Processing of temporal information in the brain.Annu Rev Neurosci 1993;16:223-43.
    [109]Matell MS and Meek WH.Neuropsychological mechanisms of interval timing behavior.Bioessays 2000;22(1):94-103.
    [110]King DP and Takahashi JS.Molecular genetics of circadian rhythms in mammals.Annu Rev Neurosci 2000;23:713-42.
    [111]Wright BA,Buonomano DV,Mahncke HW and Merzenich MM.Learning and generalization of auditory temporal-interval discrimination in humans.J Neurosci 1997;17(10):3956-63.
    [112]Grondin S and Rousseau R.Judging the relative duration of multimodal short empty time intervals.Percept Psychophys 1991;49(3):245-56.
    [113]Fiala JC,Grossberg S and Bullock D.Metabotropic glutamate receptor activation in cerebellar purkinje cells as substrate for adaptive timing of the classically conditioned eye-blink response.J Neurosci 1996;16(11):3760-74.
    [114]Beggs JM,Moyer JR,McGann JP and Brown TH.Prolonged synaptic integration in perirhinal cortical neurons.JNeurophysiol 2000;83(6):3294-8.
    [115]Buonomano DV and Merzenich MM.Temporal information transformed into a spatial code by a neural network with realistic properties.Science 1995;267(5200):1028-30.
    [116]Mauk MD and Donegan NH.A model of pavlovian eyelid conditioning based on the synaptic organization of the cerebellum.Learn Mem 1997;4(1):130-58.
    [117]Medina JF,Garcia KS,Nores WL,Taylor NM and Mauk MD.Timing mechanisms in the cerebellum:Testing predictions of a large-scale computer simulation.J Neurosci 2000;20(14):5516-25.
    [118]Placantonakis DG,Bukovsky AA,Zeng XH,Kiem HP and Welsh JP.Fundamental role of inferior olive connexin 36 in muscle coherence during tremor.Proc Natl Acad Sci USA 2004;101(18):7164-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700