电网同步采集相位精度影响因素的权重分布与补偿研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
先进的相量测量(PMU)与广域测量技术(WAMS)是未来智能电网的发展方向之一,开发新技术,提高测量与计算精度被认为是该领域今后的主要研究方向。采集装置作为WAMS系统重要组成部分,要求其测量数据严格同步,各节点采集数据具有可比性精度(即整体相位误差小于1%)是其关键技术指标,也是智能电网的推广与安全可靠运行不可或缺的重要环节。国内外大量研究揭示,不同系统产生相量测量结果仅在稳态条件下具有可比性,且强调相位延时及其它误差需由测量系统本身补偿,但没有给出一种统一可行的测量方法,亦未明确的指出相位差在具有“可比性”的前提下,对电力系统具体应用的精度影响。由于缺乏可信的相位测量校准仪器和统一配置条件,相位测量装置的精度标定存在很大的模糊性。
     本文旨在研究稳定可靠的实时数据采集平台,结合已有相位测量标准以及电力系统中典型应用对相位测量精度需求,综合考虑相位精确测量、计算与补偿方法,在广域测量的源头“遏制”误差累计与蔓延。文中对系统中的数据流跟随访问机制、相位误差测量方法、补偿机制以及故障时刻相位精度等问题进行深入分析,该研究对电力系统的实时数据分析与离线数据应用具有重要价值。
     针对目前国内采集装置存在采集数据不连续、功能单一、分析困难等问题,研究基于多处理器同步控制的数据监测系统,测试稳态与暂态录波功能在各处理器模块中执行时间以及各模块接口访问速度。采用一种统筹方法优先处理故障数据,同步控制各处理模块内部及模块接口任务逻辑切换,并留有一定时间裕量,达到对电网进行长期有效监测的目的。
     研究数据流采集、存储、传输与控制逻辑,分析影响数据处理速度的瓶颈因素及优化设计方法,兼顾实时性与可靠性,设计实时多任务并行处理机制,对电力采集系统的性能进行全面评估与优化。研究采样电气传输特性对单路相位误差的贡献和规律,通过对多种测量方法对比分析,采用增益相位测量方法测量采集系统单路信号传输中各因素相移,计及测量系统误差对多因素进行综合估算,给出各因素对相位精度影响概率分布。
     进一步分析多路相位误差计算与补偿方法,考虑同步误差对相量算法精度影响,采用带补偿基波相位分离法,并研究补偿方法中的重要环节——测频。考虑实时性,采用简化的递归软件测频方法,兼顾采样频率对相量算法精度影响,并给出统筹兼顾的采样频率配置方法。分析不同频偏范围内,影响相位精度的几大因素权重分布,并采用分布式补偿方法对相位误差进行补偿,从根本上提高各节点采集数据的可比性精度,减小电力系统数据分析算法计算量。
     分析故障时刻影响相位精度的因素,基于采集系统间相位状态估计的高速采集算法,改进故障时刻相位精度。对电网各子站节点数据进行长期有效监测,建立采集系统间相角差预测模型,设置相应计算参数,对子站间相位差进行预测,并分析双端电压与电流相位差非一致性对故障测距,以及故障初始相位对继电保护控制精度影响。
     本文研制的电力采集系统的电气性能与各项功能均已达到设计指标要求,部分研究成果已通过相关单位认证,在华北与华南等地变电站运行良好,目前处于批量生产阶段。
Advanced phasor measurement unit (PMU) and wide-area measurement system (WAMS) is one of the developing trends of the future smart grid. It is considered as the main research interests that are developing new technologies and improving the accuracy of measurement and calculation. Data sampling system, as an important component of WAMS, is required to measure the data strictly synchronously. And its key technical indicator is that sampling data from different sampling system has comparability accuracy, which is also the indispensable part for promotion and safety reliability operation of smart grid. Significant amount of research at home and abroad have revealed that phasor from different measurement systems has lower“comparability”only in the steady state, and stressed that the phase delay and other errors must be compensated by sampling devices themselves. But so far, a kind of possible uniform measurement algorithm is not proposed. It is not clearly pointed out how the accuracy of specific power system applications are influenced by phase error based on“comparability”. The accuracy of phase measurement device calibration is of significant ambiguity due to the lack of reliable calibration and unified configuration conditions for phase measurement instruments.
     A stable and reliable platform is developed for real-time data sampling. Taking the present phase measurement standard and precision requirement in typical application of power system into consideration, it is intended to make the phase error accumulation and spread to be limited in the pre-unit of wide-area measurement system with accuracy algorithm for phase measurement and compensation. Several key issues have been deeply analyzed in this paper that are data follow access mechanism, the measurement method of phase error, compensation algorithm and phase accuracy at fault time. And the study of phase accuracy measurement has important value for data analysis and application on real-time and off-line state.
     The power sampling system is studied based on multi-processor synchronous control to solve problems in current domestic sampling devices, such as, sampling data discontinuous, single function, analysis difficult, and so on. And the execution time of steady and transient recording functions in processor modules has been tested, and as well as the access speed between module interfaces. It can be achieved that long-term effective monitoring for power grid by accommodating the priority of all functions and setting high priority for fault sampling, synchronously controlling tasks logic switch of the internal and interface modules, and leaving enough time for data processing.
     The bottlenecks factors which affect the data processing speed and its optimization algorithm are analyzed by the processing procedure including data collection, storage, transmission and control logic. The real-time parallel processing mechanism is designed by taking both the real-time and reliability into consideration to assess and optimize the performance of power system comprehensively.The contribution and influence regularity of signal transmission characteristics on phase error of single channel is researched, and gain phase measurement method is adopted after comparing various measurement methods. The probability distribution of phase error due to different factors is achieved by synthetically estimating various errors and the measuring system’s own error.
     The calculations and compensation methods for phase relative error are analyzed, and the FFT method with compensation is adopted when considering the affect of phasor calculation precision by synchronization error. Frequency measurement, as an important link in the compensation algorithm, is also studied. The frequency measurement algorithm with simple recursive software architecture is adopted considering real-time processing. Because calculation precision can be affected by sampling frequency, the allocation method of sampling frequency is given by making overall plans. The weight distribution of several factors which affect phase precision is analyzed, and the corresponding compensation algorithm is adopted in different frequency ranges to improve the comparability of sampling data from different power stations. In addition the data analysis algorithm has low computation complexity.
     Influence factors for phase accuracy at fault time are analyzed. The phase accuracy at fault time is improved by adopting hign-speed data sampling algorithm based on phase state estimation among the sampling systems. The phase difference forecasting model between asynchronous power stations is established based on the long-term effective monitoring for power grid. The phase difference is forecasted by setting the corresponding parameter. Further, two-terminal fault location is analyzed due to the asynchronous phase difference between two-end current and voltage signal. The relay protection accuracy is discussed by the initial phase in fault time.
     The power sampling system has been developed. The electrical properties and functions have satisfied the design requirements, and the partial research results have passed the certification in the relevant units. And it has been kept in good working condition in parts of power stations in China. At present, the power sampling system has been produced on a large scale.
引文
1胡学浩.智能电网——未来电网的发展态势.电网技术.2009, 33(14):1~5
    2易俊,周孝信.电力系统广域保护与控制综述.电网技术.2006, 30(8):7~12,30
    3胡学浩.美加联合电网大面积停电事故的反思和启示.电网技术.2003,27 (9):2~6
    4严剑峰,于之虹,田芳等.电力系统在线动态安全评估和预警系统.中国电机工程学报.2008, 28(34):87~93
    5 IEEE Std C37.118-2005.IEEE Standard for Synchrophasors for Power Systems. 2006:1~57
    6杨贵玉,江道灼,邱家驹.相角测量装置的同步测量精度问题.电力系统自动化. 2003, 27(14):57~61
    7 M.A. Donolo, V.A. Centeno. A Fast Quality Assessment Algorithm for Phasor Measurements. IEEE Transactions on Power Delivery. 2005, 20(4):2407~2413
    8 K.E.Martin, G. Benmouyal, M.G. Adamiak, et al. IEEE Standard for Synchrophasors for Power Systems. IEEE Transactions on Power Delivery. 1998, 13(1):73~77
    9李建,谢小荣,韩英铎.同步相量测量的若干关键问题.电力系统自动化. 2005, 29(1):45~48
    10 A. G. Phadke, B. Pickett, M. Adamiak, et al. Synchronized Sampling and Phasor Measurement for Relaying and Control. IEEE Transactions on Power Delivery. 1994, 9(1):442~452
    11车仁飞,梁军,吴成安.一种提高故障录波装置测量精度的方法.电力系统自动化. 2008, 32(22):73~78
    12 N.Saeidi. Case Study of Designing a Fault Recorder System. Proceedings of Eighth IEE International Conference on Developments in Power System Protection. Amsterdam, Netherlands, 2004, 1:184~187
    13 D. J. Lawrence, D. L. Waser. Transmission Line Fault Location Using Digital Fault Recorder. IEEE Transactions on Power Delivery. 1988, 3(2):496~502
    14 J.Depablos, V.Centeno, A.G.Phadke, et al. Comparative Testing of Synchronized Phasor Measurement Units.Power Engineering Society General Meeting. Virginia Tech, VA, USA, IEEE, 2004, 1:948~954
    15 K. E. Martin, D. Hamai, M. G. Adamiak, et al. Exploring the IEEE Standard C37.118–2005 Synchrophasors for Power Systems. IEEE Transactions on PowerDelivery. 2008, 23(4):1805~1811
    16 K. Narendra, Z. Y. Zhang, J. Lane, et al. Calibration and Testing of Tesla Phasor Measurement Unit (PMU) Using Doble F1650 Test Instrument. 2007 iREP Symposium- Bulk Power System Dynamics and Control - VII, Revitalizing Operational Reliability. Charleston, SC, USA, IEEE, 2007:1~13
    17 M. Lixia, C. Muscas, S. Sulis. On the Accuracy Specifications of Phasor Measurement Units. 2010 IEEE Instrumentation and Measurement Technology Conference (I2MTC). Cagliari, Italy, IEEE, 2010:1435~1440
    18 A. G. Phadke, B.Kasztenny. Synchronized Phasor and Frequency Measurement under Transient Conditions. IEEE Transactions on Power Delivery. 2009, 24(1):89~95
    19 J. D. L. Ree, V. Centeno, J. S. Thorp, et al. Synchronized Phasor Measurement Applications in Power Systems. IEEE Transactions on Smart Grid. 2010, 1(1):20~27
    20江道灼,申屠刚,李海翔等.基础信息的标准化和规范化在智能电网建设中的作用与意义.电力系统自动化. 2009, 33(20):1~6
    21 R.E. Brown.Impact of Smart Grid on Distribution System Design. Proceedings of Power and Energy Society General Meeting: Conversion and Delivery of Elect- rical Energy in the 21st Century, Pitt sburgh. PA, USA, 2008:1~4
    22 J. See, W. Carr, S. E. Collier, et al. Real Time Distribution Analysis for Electric Utilities. Proceedings of 2008 IEEE Rural Electric Power Conference. Charleston, SC, USA, 2008:B5/1~B5/8
    23 R.Deblasio, C.Tom. Standards for the Smart Grid. Proceedings of IEEE Energy 2030 Conference. Atlanta, GA, USA, 2008:127
    24中华人民共和国电力行业标准——DL/T663-1999. 220kV~500kV电力系统故障动态记录装置检测要求.北京:中国电力出版社,1999:1~9
    25 A.G. Phadke, J.S.Thorp, M.G. Adamiak. A New Measurement Technique for Tracking Voltage Phasors, Local System Frequency, and Rate of Change of Frequency. IEEE Transactions on Power Apparatus and Systems.1983, PAS-102(5):1025~1038
    26 H.Y.Li, E.P.Southern, P.A.Crossley. A New Type of differential Feeder Protection Relay Using the Global Positioning System for Data Synchronization. IEEE Transactions on Power Delivery. 1997, 12(3):1090~1099
    27 H. Takata, E. Uchino, S. Takata. A Judging Function of the State Estimation Accuracy and its Application to the Electric Power System. IEEE Transactions on Power Apparatus and Systems.1981, PAS-100(12):5048~5052
    28李碧君,薛禹胜,顾锦汉等.状态估计中选取量测权值的新原则.电力系统自动化. 2000, 4(8):10~14
    29 A. Monticelli, C.A.F.Murari, F.F. Wu. A Hybrid State Estimator: Solving Normal Equations by Orthogonal Transformations. IEEE Transactions on Power Apparatus and Systems. 1985, PAS-104(12):3460~3468
    30 M.P. Young, H.M. Young, B.C. Jin, et al. Design of Reliable Measurement System for State Estimation. IEEE Transactions on Power Systems. 1988, 8(3):830~835
    31 P.Denys, C.Counan, L.Hossenlopp, et al. Measurement of Voltage Phase for the French Future Defense Plan Against Losses of Synchronism. IEEE Transactions on Power Delivery.1992, 7(1):62~69
    32 G.Benmouyal, E.O.Schweitzer, A.Guzman. Synchronized Phasor Measurement in Protective Relays for Protection, Control, and Analysis of Electric Power Systems. 2004 57th Annual Conference for Protective Relay Engineers. Schweitzer Eng. Labs. Inc., Pullman, WA, USA, 2004:419~450
    33 A.Carta, N.Locci, C.Muscas, et al. A Flexible GPS-Based System for Synchronized Phasor Measurement in Electric Distribution Network. IEEE Transactions on Instrumentation and Measurement. 2008, 57(11):2450~2456
    34 IEEE C57.13-2008. IEEE Standard Requirements for Instrument Transformers. 2008:1~32
    35 G. Stenbakken, M Zhou. Dynamic Phasor Measurement Unit Test System. Power Engineering Society General Meeting. IEEE, Tampa, FL, 2007:1~8
    36 G. Stenbakken, T.Nelson. Static Calibration and Dynamic Characterization of PMUS at NIST. Power Engineering Society General Meeting. IEEE, Tampa, FL, 2007:1~4
    37 T.S.Rathore, L.S.Mombasawala. An Accurate Digital Phase Measurement Scheme. Proceedings of the IEEE. 1984, 72(3):397~398
    38 S.Stein, D.Glaze, J.Levine, et al. Automated High-Accuracy Phase Measurement Syatem. IEEE Transactions on instrumentation and measurement. 1983, 32(1):227~231
    39韩凤玲,许承斌,柳焯.单端测试故障定位灵敏度分析.中国电机工程学报. 2000, 20(1):73~76
    40 M.F.Wagdy, S.P.L.Michael.Errors in Sampled Data Phase Measurement. IEEE Transactions on Instrumentation and Measurement. 1985, 34(4):507~509
    41严凤,杨奇逊,齐郑等.基于行波理论的配电网故障定位方法的研究.中国电机工程学报. 2004, 24(9):37~43
    42 T. Funabashi. Digital Fault Location High Resistance Grounded Transmission Lines. IEEE Transactions on Power Delivery.1999, 14(1):80~85
    43 A.T. Johns, P.J. Moore, R. Whittard. New Technique for the Accurate Location of Earth Faults on Transmission System. IEE Proceedings-Generation, Transmission and Distribution. Bath Univ, Britain,1995, 142(2):119~127
    44 Z.Q.Bo, G.Weller, M.A.Redfern. Accurate Fault Location Technique for Distribution System Using Fault-generated High-frequency Transient Voltage Signals. IEE Proceedings-Generation, Transmission and Distribution. Stafford, England, 1999, 146(1):73~79
    45张帆,潘贞存,马琳琳等.基于模量行波传输时间差的线路接地故障测距与保护.中国电机工程学报. 2009, 29(10):78~83
    46 X.Z. Dong, Y.Z. Ge, J.L. He. Surge Impedance Relay.IEEE Transactions on Power Delivery. 2005, 20(2):1247~1256
    47 P.A.Crossley, P.G.Mclaren. Distance Protection Based on Traveling Waves.IEEE Transactions on Power Apparatus and Systems. 1983, 102(9):2971~2983
    48 S.M.Mahmud. High Precision Phase Measurement Using Adaptive Sampling. IEEE Transactions on Instrumentation and Measurement. 1989, 38(5):954~960
    49 B.Djokic, E.So. Phase Measurement of Distorted Periodic Signals Based on Nonsynchronous Digital Filtering. IEEE Transactions on Instrumentation and Measurement. 2001, 50(4):864~867
    50 A.Ferrero, R.Ottoboni. A New Approach to the Fourier Analysis of Periodic Signals for the Minimization of the Phase Errors. IEEE Transactions on Instrumentation and Measurement. 1991, 40(4):694~698
    51 Y. Ohura, M. Suzuki, K.Yanagihashi, et al. A Predictive Out-of-Step Protection System Based on Observation of the Phase Difference between Substations. IEEE Transaction on Power Delivery.1990, 5(4):1695~1704
    52 A.Alfredo, R.C.Reyna, C.M. Jose.Differential Eevolution-based Weighted Least Squares State Estimation with Phasor Measurement units. 49th IEEE International Midwest Symposium on Circuits and Systems. MWSCAS '06, San Juan, PR, 2006, 1:576~580
    53 R.Micheletti. Phase Angle Measurement between Two Sinusoidal Signals. IEEE Transactions on Instrumentation and Measurement. 1991, 40(1):40~42
    54 K.E.Martin, J.F. Hauer, T.J. Faris. PMU Testing and Installation Considerations at the Bonneville Power Administration. Power Engineering Society General Meeting. Vancouver, WA, 2007:1~6
    55杨欢,赵荣祥,程方斌.无锁相环同步坐标检测法的硬件延时补偿.中国电机工程学报. 2008, 28(27):78~83
    56 M.I.M Montero, E.R. Cadaval, F.B. Gonzalez.Comparison of Control Strategies for Shunt Active Power Filters in Three-phase Four-wire Systems. IEEETransactions on Power Electronics. 2007, 22(1):229~236
    57 J.Y.Gook, K.W.Yong, L.Y.Cheol, et al. The Algorithm of Expanded Current Synchronous Detection for Active Power Filters Considering Three-phase Unbalanced Power System. IEEE Transactions on Industrial Electronics. 2003, 50(5):1000~1006
    58 P. Salmeron, R.S. Herrera.Distorted and Unbalanced Systems Compensation within Instantaneous Reactive Power Framework. IEEE Transactions on Power Delivery. 2006, 21(3):1655~1662
    59 W.Roux, J.D.Wyk. The Effect of Signal Measurement and Processing Delay on the Compensation of Harmonics by PWM Converters. IEEE Transactions on Industrial Electronics, 2000, 47(2):297~304
    60 B. Eric. Signal integrity: simplified. Beijing: Publishing House of Electronics Industry. 2007:1~8
    61肖耀荣,高祖绵.互感器原理与设计基础.沈阳:辽宁科学技术出版社, 2003:45~60
    62刘庆余.互感器校验仪的原理与整体检定.北京:中国计量出版社, 2003:4~25
    63樊大伟,张承学,邓恒等.电力系统中基于微控制器的自适应数据采集.继电器. 2001, 29(10):26~29
    64王峥,胡敏强,郑建勇.基于GPS的变电站内部时间同步方法.电力系统自动化. 2002, 26(4):36~39
    65曾祥君,尹项根,林干等.晶振信号同步GPS信号产生高精度时钟的方法及实现.电力系统自动化. 2003, 27(8):49~53
    66 W.Lewandowski, G.Petit, C.Thomas. Precision and Accuracy of GPS Time Transfer. IEEE Transactions on Instrumentation and Measurement. 1993, 42(2):474~479
    67 P.Crossley. Future of the Global Positioning System in Power Systems. In: IEE Colloquium on Developments in the Use of Global Positioning Systems. London (UK), 1994:7/1~7/5
    68 M.Weiss, V.Zhang, L.Nelson, et al. Delay Variations in Some GPS Timing Receivers. In Proceedings of the 1997 IEEE International Frequency Control Symposium. Orlando (USA), 1997:304~312
    69 P.Eskelinen. Problems in Estimating Some Timing Uncertainties of Commercial Frequency and Time Standards. IEEE Transactions on Instrumentation and Measurement. 1999, 48(1):62~65
    70潘华,黄纯,王联群.电力参数微机测量中采样周期的优化校正方法.电力系统自动化. 2002, (5):71~75
    71胡虔生,马宏忠.非正弦周期信号测量同步误差研究.中国电机工程学报. 2000, 20(9):35~40
    72 C.Offelli, D.Petri. Interpolation Techniques for Real-time Multifrequency Waveform Analysis. IEEE Transactions on Instrumentation and Measurement. 1990, 39(1):106~111
    73 C.H.Dix. Calculated Performance of a Digital Sampling Wttmeter Using Systematic Sampling. IEE Proceedings on Physical Science, Measurement and Instrumentation, Management and Education - Reviews, Teddington, UK, 1982, 129(3):172~175
    74 J.J.Hill, W.E.Alderson. Design of a Microprocessor-based Digital Wattmeter. IEEE Transactions on IECI.1981, IECI-28(3):180~184
    75陈楷,胡志坚,王卉等.介损角的非同步采样算法及其应用.电网技术. 2004, 28(18):58~61
    76徐志钮,律方成,姚辉等.改进基波相位分离法在介损角测量中的应用.高电压技术. 2007, 33(5):29~31
    77钱昊,赵荣祥.基于插值FFT算法的间谐波分析.中国电机工程学报.2005, 25(21):87~91
    78 R.F. Chu, J.J.Burns. Impact of Cycloconverter Harmonics. IEEE Transactions on Industry Applications. 1989, 25(3):427~435
    79 M.R. Rifai, T.H.Ortmeyer, W.J.McQuillan. Evaluation of Current Interharmonics from AC Drivers. IEEE Transaction on Power Delivery. 2000, 15(3):1094~1098
    80 E.W. Gunther. Interharmonics in Power Systems. IEEE Power Engineering Society Summer Meeting. Vancouver, BC Canada, 2001, 2:813~817
    81 V.K.Jain, W.L.Collins, D.C. Davis. High-accuracy Analog Measurements via Interpolated FFT. IEEE Transaction on Instrumentation and Measurement. 1979, 28(2):113~122
    82 T.T.Grandke. Interpolation Algorithms for Discrete Fourier Transform of Weighed Signals. IEEE Trans on Instrumentation and Measurement. 1983, 32(2):350~355
    83 F.J. Harris. On the Use of Windows for Harmonic Analysis with the Discrete Fourier Transform. Proceeding of the IEEE. 1978, 66(1):51~83
    84 D.C.Rife, G.A.Vincent. Use of the Discrete Fourier Transform in the Measurement of Frequencies and Levels of Tones. The bell System Technical Journal. 1970, (1):197~228
    85马宏忠,胡虔生.软件实现同步采样的误差分析.电工技术学报.1996, 11(1):43~47
    86黄纯,江亚群.谐波分析的加窗插值改进算法.中国电机工程学报. 2005,25(15):26~32
    87 G.Andria, M.Avino, A.Trotta. Windows and Interpolation Algorithms to Improve Electrical Measurement Accuracy .IEEE Transactions on Instrumentation and Measurement. 1989, 38(4):856~863
    88 G.T. Heydt, P.S. Fjeld, C.C. Liu.et al. Applications of the Windowed FFT to Electric Power Quality Assessment. IEEE Transactions on Power Delivery. 1999, 14(4):1411~1416
    89 X.Z.Dai, R.Gretsch. Quasi-synchronous Sampling Algorithm and its Applications. IEEE Transactions on Instrumentation and Measurement. 1994, 43(2):204~209
    90张介秋,粱昌洪,韩峰岩等.介质损耗因数的卷积窗加权算法.电工技术学报. 2005, 20(3):100~104
    91曾祥君,尹项根, K.K.Li等. GPS时钟在线监测与修正方法.中国电机工程学报. 2002, 22(12):41~46
    92 R.Conley, J.W.Lavrakas. Global Implications on the Removal of Selective Availability. Proceedings of the 2000 IEEE Position Location and Navigation Symposium. 2000:506~513
    93杜新伟,李媛,刘涤尘.电力故障录波数据综合处理系统.电力系统自动化. 2006, 30(12):75~78
    94白青刚,夏瑞华,周海斌等.采用高性能集成芯片的故障录波装置设计.电力系统自动化. 2005, 29(22):94~96
    95 A.G.Phadke. Synchronized Phasor Measurements in Power Systems. IEEE Computer Applications in Power. 1993, 6(2):10~15
    96桂勋,姚兰,钱清泉. COMTRADE容错解析算法.电力系统自动化. 2008, 32(22):69~72
    97 IEEE Std C37.111-1999. IEEE Standard Common Format for Transient Data Exchange (COMTRADE) for Power Systems. 1999:1~47
    98 IEEE Std C37. 111-1991. IEEE Standard Common Format for Transient Data Exchange (COMTRADE) for power systems. 1991:1~23
    99 O.E.Bermudez. Computational Tool for Advanced Analysis of Fault Recordings.Transmission & Distribution Conference and Exposition.Latin America, 2006:1~6
    100杨光亮,乐全明,郁惟镛等.基于小波神经网络和故障录波数据的电网故障类型识别.中国电机工程学报. 2006, 26(10):99~103
    101胡广书.数字信号处理.北京:清华大学出版社, 2003:33~38
    102夏德钤.自动控制理论.北京:机械工业出版社, 2002:142~146
    103江道灼,孙伟华,陈素素.电网相量实时同步测量的一种新方法.电力系统自动化. 2003, 27(15):40~45
    104 E.Stewert, Stanton. Application of Phasor Measurements and Partial Energy Analysis in Stabilizing Large Disturbances.IEEE Transactions on PWRS. 1995, 10(1):297~302
    105 R.O.Burnett, M.M. Butts. Synchronized Phasor Measurement of a Power System Event. IEEE Transaction on PWRS. 1994, 9(3):1643~1649
    106 J.D. Greene, C.A. Gross. Nonlinear Modeling of Transformers. IEEE Transactions on Industry Applications. 1988, 24(3):434~438
    107 T.J.Densem, P.S.Bodger, J.Arrillaga. Three Phase Transmission System Modeling for Harmonic Penetration Studies. IEEE Transactions on Power Apparatus and Systems. 1984, 103(2):310~317
    108 W.L.A.Neves, H.W.Demmel. On Modeling Iron Core Nonlinearities. IEEE Transactions on Power Systems. 1993, 8(2):417~425
    109 A.A.Girgis, T.L.D.Hwang. Optimal Estimation of Voltage Phasors and Frequency Deviation Using Linear and Non-Linear Kalman Filtering Theory and Limitations. IEEE Transactions on Power Apparatus and Systems. 1984, 103(10):2943~2951
    110 A.A.Girgis, J.W.Stephens, E.B. Makram. Measurement and Prediction of Voltage Flicker Magnitude and Frequency. IEEE Transactions on Power Delivery. 1995, 10(3):1600~1605
    111 A.A.Girgis, W.L.Peterson. Adaptive Estimation of Power System Frequency Deviation and its Rate of Change for Calculating Sudden Power System Overloads. IEEE Transactions on Power Delivery. 1990, 5(2):585~594
    112闵勇,丁仁杰,韩英铎等.一次系统事故的同步相量测量结果分析.电力系统自动化. 1998, 22(7):10~13
    113 R.A. Pease. Troubleshooting Analog Circuits. Burlington: Elsevier Science, 2007:35~37
    114吴国乔,王兆华.基于全相位的零相位数字滤波器的设计方案.电子与信息学报. 2007, 29(3):574~577
    115侯正信,王兆华,杨喜.全相位DFT数字滤波器的设计与实现.电子学报. 2003, 31(4):539~543
    116 E.O.Schweitzer. III, D. Hou. Filtering for protective relays.WESCANEX 93. 'Communications, Computers and Power in the Modern Environment.' Conference Proceedings. Pullman, WA, USA, 1993:15~23
    117 M.Roitman, P.S.R.Diniz. Real-Time Digital Power System Simulation based onWave Digital Filters for Protective Relays and HVDC/FACTS Control Equipment Testing. Digital Power System Simulators. 1995:161
    118 T.Parks, J.McClellan. Chebyshev Approximation for Nonrecursive Digital Filters with Linear Phase.IEEE Transactions on Circuits Theory. 1988, 19(2):189~194
    119谢明,丁康.频谱分析的校正方法.振动工程学报. 1994, 7(2):172~179
    120 S.Mallat, W.L.Hang. Singularity Detection and Processing with Wavelets. IEEE Transactions on Information Theory. 1992, 32(2):617~643
    121 S.Mallat, S.Zhong. Characterization of Signals from Multiscales Edges. IEEE Transactions on PAMI. 1992, 14(7):710~732
    122郑华珍,乐全明,郁惟镛.基于小波理论的超高压电网故障时刻提取.电网技术. 2005, 29(19):33~38
    123覃剑,陈祥训,郑健超等.利用小波变换的双端行波测距新方法.中国电机工程学报. 2000, 20(8):6~10
    124 Y.G. Paithankar, M.T.Sant. A New Algorithm for Relaying and Fault Location based on Autocorrelation of Travelling Waves. Electric Power System Research. 1985, 8(2):179~185
    125 I.Daubechies. The Wavelet Transform, Time-frequency Localization and Signal Analysis. IEEE Transactions on Information Theory. 1990, 36(5):961~983
    126 J.Qin, X.X.Chen, J.C.Zheng. Travelling Wave Fault Location of Transmission Line Using Wavelet Transform. Proceedings of 1998 International Conference on Power System Technology. Beijing China, 1998:533~537
    127 Z.Q. Bo, G.Weller, F.T.Dai, et al. Transient based Protection for Transmission Lines. International Conference on Power System Technology. Beijing China, 1998:1067~1071
    128 M.Chamia, S.Liberman. Ultra High Speed Relay for EHV/UHV Transmission Lines-development Design and Application. IEEE Transactions on PAS. 1978, PAS-97(6):2104 ~ 2112
    129 A.T.Johns. New Ultra-high Speed Directional Comparison Technique for the Protection of EHV Transmission lines. IEE Proceeding. Generation. Transmission. Distribution. Bath, UK, 1980, 127(4):228 ~239
    130 M.Vitness. A Fundamental Concept for High Speed Relay. IEEE Transactions on PAS. 1981, PAS-100(1):163~168
    131 Z.Q. Bo, R.K. Aggrarwal, A.T. Johns. A New Approach to Phase Selection Using Fault Generated High Frequency Noise and Neural Networks. IEEE Transactions on Power Delivery. 1997, 12(1):106~115
    132 J.A.S.B.Jayasinghe, R.K. Aggarwal, A.T.Johns, et al. A Novel Non-unit Protection for Series Compensated EHV Transmission Lines based on FaultGenerated High Frequency Voltage Signals. IEEE Transactions on Power Delivery. 1998, 13(2):405~413
    133 P. Agrawal. Theoretical Concept and Digital Simulation of the Pramod Scheme for UHS Protection of EHV Transmission Lines. IEEE Transactions on Power Delivery. 1992, 7(3):1139 ~1147
    134 P.Agrawal. Digitally Simulation Test Performance of the Pramod Scheme for UHS Protection of EHV Transmission Lines. IEEE Transactions on Power Delivery. 1992, 7(3):1148~1155
    135 Z.Q.Bo. A New Non-communication Protection Technique for Transmission Lines. IEEE Transactions on Power Delivery. 1998, 3(4):1073~1078
    136 M.Unser, A.Aldroubi, M.Eden. The L-Polynomial Spline Pyramid: a Discrete Multiresolution Representation of Continuous Signal. IEEE PAMI. 1993, 15(4):364~379
    137杨煊,梁德群,杨万海.边缘检测中Canny算子、二次样条小波算子性能分析.通信学报. 1999, 20(8):47~51
    138何正友,钱清泉.电力系统暂态信号分析中小波基的选择原则.电力系统自动化. 2003, 27(10):45~48
    139胡铭,陈珩.基于小波变换模极大值的电能质量扰动检测与定位.电网技术. 2001, 25(3):12~16
    140 G.Yaleinkaya, M.H.J.Bollen, P.A.Crossley. Characterization of Voltage Sags in Industrial Distribution Systems. IEEE Transactions on Industry Applications. 1998, 34(4):682~688
    141 S.Mallat, W.L.Hwang. Singularity Detection and Processing with Wavelets. IEEE Transactions on Information Theory. 1992, 38(2):617~643
    142张峰,梁军,张利等.奇异值分解理论和小波变换结合的行波信号奇异点检测.电力系统自动化. 2008, 32(20):57~60
    143 A.M.Gaouda. Power Quality Detection and Classification Using Wavelet- Multiresolution Signal Decomposition. IEEE Transactions on Power Delivery. 1998, 14(4):1469~1476
    144 A.M.Gaouda, M.M.A.Salama. Application of Multiresolution Signal Decomposition for Monitoring Short-duration Variations in Distribution Systems. IEEE Transactions on Power Delivery. 2000, 15(2):478~485
    145杨晋萍,冯江涛,段锦升.应用小波变换实现突变信号检测.电力学报. 2009, 24(5):396~398
    146粱军.先进电力故障录波监测系统和精确故障定位研究.山东大学博士学位论文. 2006:42~45
    147赵继印,刘海英,马洪顺等.基于coif5小波的多普勒胎心音信号提取算法的研究.中国生物医学工程学报. 2006, 25(5):538~541
    148董新洲,耿中行,葛耀中等.小波变换应用于电力系统故障信号分析初探.中国电机工程学报. 1997, 17(6):421~424
    149吴军基,吴秋伟,杨伟.电力系统故障时刻提取的小波分析.继电器. 2000, 28(12):1~3
    150葛耀中.新型继电保护和故障侧距原理与技术.西安:西安交通大学出版社, 2007:256~285
    151 A.Gopalakrishnan, M.Kezunovic, S.M.McKenna, et al. Fault Location Using the Distributed Parameter Transmission Line Model. IEEE Transaction on Power Delivery. 2000, 15(4):1169~1174
    152 S.M.Brahma. Fault Location Scheme for a Multi-terminal Transmission Line Using Synchronized Voltage Measurements. IEEE Transaction on Power Delivery. 2005, 20(2):1325~1331
    153 G.B.Song, J.Suonan, Q.Q.Xu, et al. Parallel Transmission Lines Fault Location Algorithm based on Differential Component net. IEEE Transaction on Power Delivery. 2005, 20(4):2396~2406
    154 Z.Galijasevic, A.Abur. Fault Location Using Voltage Measurements. IEEE Transaction on Power Delivery. 2002, 17(2):441~445
    155 H.A.Darwish, A.M.I.Taalab, E.S. Ahmed. Investigation of Power Differential Concept for Line Protection. IEEE Transaction on Power Delivery. 2005, 20(2):617~624
    156 J.Sadeh, N.Hadjsaid, A.M.Ranjbar, et al. Accurate Fault Location Algorithm for Series Compensated Transmission Lines. IEEE Transaction on Power Delivery. 2000, 15(3):1027~1033
    157 D.Novosel, D.G.Hart, E.Udren, et al. Unsynchronized Two-terminal Fault Location Estimation. IEEE Transaction on Power Delivery. 1996, 11(1):130~138
    158 M.M.Saha, J.Izykowski, E.Rosolowski, et al. A New Accurate Fault Locating Algorithm for Series Compensated Lines. IEEE Transaction on Power Delivery. 1999, 14(3):789~797
    159 S.M.Brahma, A.A.Girgis. Fault Location on a Transmission Line Using Synchronized Voltage Measurements. IEEE Transaction on Power Delivery. 2004, 19(4):1619~1622
    160 F.H.Magnago, A.Abur. Fault Location Using Wavelets. IEEE Transaction on Power Delivery. 1998, 13(4):1475~1480
    161葛耀中,董新洲,董杏丽.测距式行波测距保护的研究(一)理论与实现技术.电力系统自动化. 2002, (6):34~40
    162 E.H.Shehab-Eldin, P.G.McLaren. Travelling Wave Distance Protection-Problem Areas and Solutions. IEEE Transactions on Power Delivery. 1988, 3(3):894~902
    163 P.A.Crossly, P.G.McLaren. Distance Protection Based on Travelling Wave. IEEE Transactions on PAS. 1983, 102(9):2971~2983
    164董新洲,葛耀中,徐丙垠.利用暂态电流行波的输电线路故障测距研究.中国电机工程学报. 1999, 19(4):76~80

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700