含三齿配体的新型有机铋化合物的合成、表征与应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铋(Bi)是自然界中唯一兼具相对价廉、低毒和低放射性等特性的重金属元素,外围特征电子结构为4f145d106s26p3。铋及其化合物在医药、有机合成、催化等领域已有应用,而且呈现较好的发展前景。有机铋化学作为铋化学的重要分支,近三十年获得了一些发展。迄今为止,有机铋化学发展中存在的不足主要体现在以下几个方面:(1)常规有机铋化合物中的Bi-C键的稳定性较差,(2)所披露的有机配体只有少部分适合于构建有机铋化合物,以及(3)有机铋化合物的功效没有被发掘。由于铋的“绿色”特性,在现代化学化工“绿色化”的发展潮流以及人类社会“可持续发展”的要求和驱动下,开发新型有机铋功能化合物将具有重要的科学价值和可观的应用前景。
     针对有机铋化学发展的不足以及铋外围的特征电子结构,本论文设计和合成了11种含O、S、N配位原子的三齿有机配体,并以此配体研制了30种具有耐水耐空气特性的新型有机铋化合物。采用NMR、FT-IR、X射线单晶衍射、TG-DSC等多种表征技术对配体前驱体以及有机铋化合物的组成、结构和物化性质进行了分析表征,还探讨了其在抑制癌细胞增殖、CO2化学固定及酸催化反应中的应用,取得了以下主要研究结果和结论:
     (1)在配体前驱体合成方面:采用NBS (N-Bromosuccinimide)作为溴化试剂,以及碳酸钾或者有机胺作为中和剂,通过优化制备条件,高选择性和高产率地合成了9种含N、O或S配位原子的对称配体前驱体以及2种含N或S配位原子的不对称配体前驱体。
     (2)以含S、N配位原子的前驱体((2-BrC6H4CH2)2S、(2-BrC6H4CH2)2NR(R=tBu、C6H5和C6H11)合成了8种有机铋氯化物(S(C6H4CH2)2BiCl、tBuN(C6H4-CH2)2BiCl、C6H5N(C6H4CH2)2BiCl和C6H11N(C6H4CH2)2BiCl等);通过引入具有生理活性的含锗丙酸基团,制备了三种新型有机铋锗丙酸盐(S(CH2C6H4)2Bi02C-(CH2)2GePh3、C6H5N(C6H4CH2)2BiO2C(CH2)2GePh3和C6H11N(C6H4CH2)2Bi02C-(CH2)2GePh3)。结构分析结果表明,与配位原子氮或者铋原子直接相连的取代基影响这些配合物中的Bi-S或Bi-N的键长,而且有机锗丙酸基团取代氯原子后使得Bi-S或Bi-N键增长。抗肿瘤实验结果显示,这些有机铋化合物对MGC-803胃癌细胞的抗增殖性能优于临床药物顺铂,而且含锗丙酸基团的有机铋化合物比有机铋氯化物具有更高的抗增殖活性,化合物S(CH2C6H4)2Bi02C(CH2)2GePh3的IC50值为0.7μM。因此,三价铋离子的合适配位能力和有机锗基团的引入有利于提高铋化合物的抗增殖活性。
     (3)以含S、N配位原子的有机铋氯化物(S(C6H4CH2)2BiCl、RN(C6H4CH2)2BiCl(R=tBu、C6H5和C6H11))合成了8种新型超高价有机铋氢氧化物和氧化物(S(C6H4CH2)2BiOH,RN(C6H4CH2)2BiOH(R=tBu、C6H5和C6H11),[S(C6H4CH2)2Bi]2O,[RN(C6H4CH2)2Bi]2O(R=tBu、C6H5和C6H11));并探讨了它们吸收固定CO2的性能。有机铋氢氧化物、氧化物和碳酸盐在一定的条件下可以相互转化。吸收/解吸试验结果表明,超高价有机铋氧化物具有良好的CO2捕集性能。与通常使用的有机胺吸收剂相比,具有吸收速度快、无腐蚀性、再生温度和耗能低、操作条件温和等优点,是一类具有应用前景的吸收剂。
     (4)构建了由阳离子有机铋化合物[tBuN(CH2C6H4)2Bi]+[B(C6F5)4]-和四丁基碘化铵所组成的催化剂体系,发现它在较温和反应条件下可以高效催化CO2与环氧化物之间的偶联反应制备环状碳酸酯,环状碳酸酯的选择性接近100%,而且催化剂可以多次重复使用。通过考察催化剂组成和反应条件的影响规律,初步揭示了该类催化剂对此偶联反应的催化作用是通过酸碱协同机制实现的,即该催化剂良好的催化活性与有机铋阳离子合适的路易斯酸性紧密相关。
     (5)以含N配位原子的有机铋氯化物RN(C6H4CH2)2BiCl(R=tBu、C6H5和C6H11)与全氟磺酸银和四氟硼酸银反应合成了11种具有较强路易酸酸性的新型超高价有机铋化合物79~89(RN(C6H4CH2)2BiX(R=tBu、C6H5和C6H11;X=BF4、OSO2CF3、OSO2C4F9和OSO2C8F17)),并探讨了其催化应用性能。研究结果表明,86(C6H11N(C6H4CH2)2Bi(BF4))在甲醇的水溶液(CH3OH/H2O=9:1)中可以有效催化醛的烯丙基化反应,89(C6H11N(C6H4CH2)2Bi(OSO2C8F17))在水为反应介质时仍可以高效催化“一锅”三组分Mannich反应。此外,这两种催化剂对空气稳定,用量少,具有很高的化学选择性,可以多次重复利用,其催化活性与选择性受反应底物的影响较小,具有良好的应用前景。
Bismuth, which has an external orbits electronic configuration of 4f145d106s26p3, is a nontoxic and noncarcinogenic element. Many Bi compounds are low in toxicity and can be safely used in many areas such as medicine, catalysis, and organic synthesis. In the past thirty years, as an important branch of bismuth chemistry, organobismuth chemistry had been widely developed. Up to now, the development of organobismuth chemistry has suffered from several shortcomings:(1) poor stability of Bi-C bonds in many organobismuth compounds, (2) only little fraction of the reported organic ligands are suitable for constructing organobismuth compounds, and (3) the functionalities of them have not been disclosed. From the standpoint of "Green Chemistry" and "Sustainable Development", it is envisaged that Bi compounds will find new scientific value and applications.
     Based on the character of external electronic configuration of Bi and the development of organobismuth chemistry,11 tridentate organic ligands bearing O, S or N atoms as coordination atoms and 30 new air-stable organobismuth compouds were synthesized. The structure and properties of the compounds were characterized by NMR, FT-IR, X-Ray single crystal diffraction, TG-DSC techniques, etc. Moreover, their potential applications in antiproliferative activity on cancer cell, CO2 fixation and Lewis acid catalyzed C-C bond forming reactions were investigated. Some innovative results and conclusions were obtained as follows.
     (1) Synthesis of ligand precursors:9 ligand precursors bearing N, O or S coordinating atoms and 2 asymmetric ligand precursors containing N or O coordinating atoms were synthesized in high yield and selectivity using 1-Br-2-CH3-C6H4 and 1-Br-2-CH3-C10H6 and NBS as starting raw material in the presence of K2CO3 or amine as neutralizing agent.
     (2) Eight organobismuth chlorides [S(C6H4CH2)2BiCl,tBuN(C6H4CH2)2BiCl, C6H5N(C6H4CH2)2BiCl, C6H11N(C6H4CH2)2BiCl et al.] were synthesized from the tridentate ligand precursors [(2-BrC6H4CH2)2S, (2-BrC6H4CH2)2NR(R=tBu, C6H5, C6H11) et al]. Three cyclic hypervalent organobismuth compounds bearing physiological activity organogermanium segment [S(CH2C6H4)2BiO2C(CH2)2GePh3, C6H5N(C6H4CH2)2BiO2C(CH2)2GePh3 and C6H11N(C6H4CH2)2Bi02C(CH2)2GePh3] were synthesized by the reaction of the organobismuth chlorides withβ-(triphenyl-germyl)-propionic acid in the presence of NaOH. Single crystal X-ray diffraction analysis results reveal that the Bi-S or Bi-N bond lengths in thiabismocine or azabismocine derivatives are dependent on the substituted groups which are acting on the N and Bi atom. The replacement of Cl atom by organogermanium segment leads to the lengthening of the Bi-S or Bi-N bonds. The six compounds show antiproliferative activities on MGC-803, better than that of cisplatin; and the IC50 value for compound S(CH2C6H4)2BiO2CCH2CH2GePh3 is 0.7μM. It is apparent that a proper coordination ability of Bi3+ and the introduction of organogermanium group are beneficial for achieving good antiproliferative activitves.
     (3) Eight cyclic hypervalent organobismuth compounds{S(C6H4CH2)2BiOH, RN(C6H4CH2)2BiOH(R=tBu, C6H5 and C6H11); [S(C6H4CH2)2Bi]2O, [RN(C6H4CH2)2-Bi]2O (R=tBu, C6H5 and C6H11)} were synthesized from the organobismuth chlorides [S(C6H4CH2)2BiCl, RN(C6H4CH2)2BiCl(R=tBu, C6H5 and C6H11)] bearing S, N coordination atoms. Four organobismuth carbonates{[S(C6H4CH2)2Bi]2CO3, [RN(C6H4CH2)2Bi]2CO3(R=tBu, C6H5 and C6H11)} were obtained through the reaction of CO2 with the organobismth oxides or hydroxides respectively. It was found that hydroxide, oxide and carbonate of organobismuth compounds can be mutually transformed under appropriate conditions. The results of adsorption/regeneration experiments indicated that these oxides showed high efficiency for the capture of carbon dioxide under relatively mild conditions. Compared with amine, this absorbent has the advantages such as high absorption capacity of carbon dioxide, no corrosion, low energy consumption and regeneration temperature. Therefore, it will find potential application in CO2 capture.
     (4) Cationic organobismuth complex [tBuN(CH2C6H4)2Bi]+[B(C6F5)4]- was the first time used to examine for the coupling of CO2 into cyclic carbonates, using terminal epoxides as substrates and tetrabutylammonium halide as co-catalyst in a solvent-free environment under mild conditions. It was shown that both of epoxide conversion and cyclic carbonate selectivity (near 100%) are high. The catalyst can be easily separated and reused with little decline in activity and selectivity. A plausible mechanism for the coupling reaction over [tBuN(CH2C6H4)2Bi]+[B(C6F5)4]-+Bu4NI has been proposed. The excellent catalytic performance is possibly related to proper Lewis acidity of the cationic organobismuth complex.
     (5) Eleven new hypervalent organobismuth(Ⅲ) compounds 79~89 RN(C6H4-CH2)2BiX(R=tBu, C6H5 and C6H11; X=BF4, OSO2CF3, OSO2C4F9 and OSO2C8F17) with strong Lewis acidity, were synthesized by the reaction of organobismuth chlorides RN(C6H4CH2)2BiCl(R=tBu, C6H5 and C6H11) with silver perfluorooctane -sulfonate and silver tetrafluorborate, respectively. C6H11N(CH2C6H4)2BiBF4 and C6H11N(C6H4CH2)2Bi(OSO2C8F17) were examined as catalysts for C-C bond forming reactions. It was found that 86 shows good catalytic efficiency in the allylation reaction with tetraallyltin in a medium of aqueous methanol (CH3OH/H2O=9:1), and 89 exhibits high catalytic efficiency towards one-pot Mannich-type reaction of ketones with aromatic aldehydes and aromatic amines in water. Furthermore, these two catalysts show good stability and recyclability, and is almost independed of the reactant substrates.
引文
[1]戴安邦.配位化学.第1版.北京:科学出版社,1987,1-5
    [2]翟慕衡,魏先文,查庆庆编著.配位化学.合肥:安徽人民出版社,2007,3-6
    [3]Basolo F, Ronald C J.配位化学.宋银柱译.北京:北京大学出版社,1980,3-15
    [4]Suzuki H, Ogawa T, Komatsu N, et al. Organobismuth chemistry, v1. Amsterdam:Elsever,2001,1-456
    [5]Finet J-p. Arylation Reactions with Organobismuth Reagents. Chemical Reviews,1989,89:1487-1501
    [6]Leonard N M, Wieland L C, Mohan R S. Applications of bismuth(Ⅲ) compounds in organic synthesis. Tetrahedron,2002,58:8373-8397
    [7]Kricheldorf H R. Syntheses of Biodegradable and Biocompatible Polymers by Means of Bismuth Catalysts. Chemical Reviews,2009,109(11):5579-5594
    [8]Edward R T, Tiekink. Antimony and bismuth compounds in oncology. Oncology/Hematology,2002,42:217-224
    [9]Sun H, Li H, Sadler P J. The Biological and Medicinal Chemistry of Bismuth. Chemische Berichte/Recueil,1997,130:669-681
    [10]蒋琪英,沈娟,钟国清,等.含铋(Ⅲ)配合物的合成及铋的配位性质.化学进展,2006,18(12):1634-1645
    [11]张志朋,钟国清,蒋琪英.砷、锑、铋配合物的生物活性.化学进展,2008,20(9):1315-1322
    [12]杨楠,孙红哲.砷、锑、铋类药物的应用历史和现状.化学进展,2009,21(5):856-865
    [13]Yin S F, Maruyama J, Yamashita T, et al. Efficient Fixation of Carbon Dioxide by Hypervalent Organobismuth Oxide, Hydroxide, and Alkoxide. Angewandte Chemie International Edition,2008,47:6590-6593
    [14]Qiu R H, Yin S F, Zhang X W, et al. Synthesis and structure of an air-stable cationic organobismuth complex and its use as a highly efficient catalyst for the direct diastereoselective Mannich reaction in water. Chemical Communications, 2009,4759-4761
    [15]Qiu R H, Qiu Y M, Yin S F, et al. Highly Efficient and Selective Synthesis of (E)-α,β-Unsaturated Ketones by Crossed Condensation of Ketones and Aldehydes Catalyzed by an Air-Stable Cationic Organobismuth Perfluoro -octanesulfonate. Advanced Synthesis & Catalysis,2010,352:153-162
    [16]Hassan A, Wang S N. Organobismuth(V) complexes containing bifunctional ligands:hydrogen-bonded extended structures and stereoselectivity. Journal of the Chemical Society, Dalton Transactions,1997,12:2009-2017
    [17]Stikkerveer A, Wolff F A. Pharmacokinetics and toxicity of bismuth compounds. Medicinal Toxicoinformatics Adverse Drug Experimental,1989,4:303-323
    [18]蒋琪英.新型含多铋(Ⅲ)配合物的合成与表征:[西南科技大学硕士论文].绵阳:西南科技大学,2008,2-9
    [19]Soran A P, Silvestru C, Breunig H J, et al. Organobismuth(III) Dihalides with T-Shaped Geometry Stabilized by Intramolecular N→Bi Interactions and Related Diorganobismuth (Ⅲ) Halides. Organometallics,2007,26(5): 1196-1203
    [20]Silvestru C, Breunig H J, Althaus H. Structural Chemistry of Bismuth Compounds. I. Organobismuth Derivatives. Chemical Reviews,1999,99(11): 3277-3327
    [21]Hancock R D, Cukrowski I, Baloyi J, et al. The affinity of bismuth(Ⅲ) for nitrogen-donor ligands. Journal of the Chemical Society, Dalton Transactions, 1993,19:2895-2899
    [22]Luckay R, Hancock R D, Cukrowski I, et al. Study of protonation of 1,4,7-tris(2-hydroxyethyl)-1,4,7-triazacyclononane, and its complexes with metal ions, by crystallography, polarography, potentiometry, molecular mechanics, and NMR. Inorganica Chimica Acta,1996,246:159-169
    [23]Raston C L, Skelton B W, Tolhurst V A, et al. Geminal arsa(Ⅲ)amide and trisubstituted antimony and bismuth amides from the sterically hindered, N-functionalised amido ligand [{2-(6-Me)C5H3N}NSiMe3]-. Journal of the Chemical Society, Dalton Transactions,2000:8:1279-1285
    [24]Ikegami T, Suzuki H. A Stabilized Triarylbismuthane Imide:Synthesis and First X-ray Structure Analysis. Organometallics,1998,17(6):1013-1017
    [25]Weitze A, Henschel D, Blaschette A, et al. Polysulfonylamine. LXIX. Neuartige Pniktogendisulfonylamide:Synthese von Bismutdimesylamiden und Kristallstrukturen des zwolfgliedrigen Cyclodimers [Ph2BiN(SO2Me)2]2 und des ionischen Komplexes [H(OAsPh3)2]+(MeSO2)2N-. Zeitschrift fuer Anorganische und Allgemeine Chemie,1995,621(10):1746-1754
    [26]Goel R G, Prasad H S. Organobismuth compounds IX. Vibrational spectra and structure of diphenylbismuth(III) chloride, bromide and pseudohalides. Spectro chimica Acta Part A, Molecular Spectroscopy.1979,35(4):339-344
    [27]Herberhold M, Ehrenreich W, Guldner K. Schwefeldiimide mit Organoelement-Substituenten der 5. Chemische Berichte,1984,117:1999-2005
    [28]Cukrowski I, Cukrowska E, Hancock R D, et al. The effect of chelate ring size on metal ion size-based selectivity in polyamine ligands containing pyridyl and saturated nitrogen donor groups. Analytica Chimica Acta,1995,312:307-321
    [29]Benetollo F, Bombied G. The influence of aromatic cations on the geometries of the Bi(III) halide polyhedra. Synthesis and crystal structures of quinolinium, isoquinolinium and 8-hydroxy-quinolinium polychlorobismuthate(Ⅲ) derivatives. Inorganica Chimica Acta,2001,319(1-2):49-56
    [30]Horst K, Alois P, Amd V. Optical metal-to-ligand charge-transfer of 2,2'-bipyridyl complexes of antimony(Ⅲ) and bismuth(Ⅲ). Polyhedron,1989, 8(24):2937-2939
    [31]Boitrel B, Breede M, Brothers P J, et al. Bismuth porphyrin complexes: syntheses and structural studies. Dalton Transactions,2003, (9):1803-180
    [32]Isago H, Kagaya Y. Synthese and characterization of bromo and chloro (phthalocyaninato) bismuth(Ⅲ) complexes. Bulletin of the Chemical Society of Japan,1994,67(2):383-389
    [33]Benihya K, Mossoyan-Deneux M, Giorgi M E. Synthesis, spectral characterization and crystal structure of (1,24-bicyclophthalocyaninato) bismuth(Ⅲ). Journal of Inorganica Chimica,2001,5:1343-1352
    [34]Briand G G, Burford N. Bismuth Compounds and Preparations with Biological or Medicinal Relevance. Chemical Reviews,1999,99(9):2601-2657
    [35]Matano Y, Nomura H, Suzuki H, et al. Synthesis, Structure, and Reactions of (Acylimino)triaryl-λ5-bismuthanes:First Comparative Study of the (Acylimino) pnictorane Series. Journal of the American Chemical Society,2001,123(44): 10954-10965
    [36]Minoura M, kanamori Y, Miyake A, et al. Structure of Azabismocine, Hexacoordinate Pentavalent organobismuth Compound. Chemistry Letters, 1999,9:861-862
    [37]Shimada S, Yamazaki O, Tanaka T, et al. Synthesis and structure of 5,6,7,12-tetrahydrodibenz[c,f][1,5] azabismocines. Journal of Organometallic Chemistry.2004,689(19):3012-3023
    [38]Kotani T, Nagai D, Asahi K, et al. Antibacterial Properties of Some Cyclic Organobismuth(Ⅲ) Compounds. Antimicrobial Agents Chemother,2005,49(7): 2729-2734
    [40]Shimada S, Yin S F, Yahashi T. Synthesis, Structure and Reactivity of Trivalent and Pentavalent Tricarbabismatranes. In:87th Annual Spring Meeting of The Chemical Society of Japan,2007, Osaka, Japan,25-28
    [41]Whitmire K H, Hutchison J C, McKnight A L, et al. Synthesis and structure of [Et2Bi(OAr)]n(Ar=C6F5, Ph):a new inorganic chain polymer. Journal of the Chemical Society, Chemical Communications,1992,8:1021-1022
    [42]Ali M, McWhinnie W R. Organobismuth(Ⅲ) and Organobismuth(Ⅴ) Carboxylates and their Evaluation as Paint Driers. Applied Organometallic Chemistry,1993,7(2):137-141
    [43]Chen X, Ohdoi K, Yamamoto Y, et al. Synthesis, Halogenolysis, and Crystal Structure of Hypervalent Organobismuth Compounds (10-Bi-5). Organometallics,1993,12:1857-1864
    [44]Yamamoto Y, Chen X, Kojima S, et al. Experimental Investigation on Edge Inversion at Trivalent Bismuth and Antimony:Great Acceleration by Intra- and Intermolecular Nucleophilic Coordination. Journal of the American Chemical Society,1995,117:3922-3932
    [45]Murafuji T, Nagasue M, Tashiro Y, et al. Structural Characteristics of Aryloxybismuthanes Stabilized by Hypervalent Bond Formation. Synthesis, Incorporation of 4-Methoxyphenol through Hydrogen Bonding, and Crystal Supramolecularity. Organometallics,2000,19:1003-1007
    [46]Yu L, Ma Y Q, Liu R C, et al. Synthesis and structure of a bridging dimmer of PhBi[O2CCH(CH3)CH2GePh3]. Inorganic Chemistry Communications,2004,7: 410-411
    [47]Stavila V, Fettinger J C, Whitmire K H. Synthesis and Characterization of New Phenylbis(salicylato)bismuth(Ⅲ) Complexes. Organometallics,2007,26(14): 3321-3328
    [48]Andrews P C, Deacon G B, Forsyth C M, et al. Towards a Structural Understanding of the Anti-Ulcer and Anti-Gastritis Drug, Bismuth Subsalicylate (BSS). Angewandte Chemie, International Edition in English,2006,45(34): 5638-5642
    [49]Reiss G J, Frank W, Schneider J. Synthess and crystal structure of bismuth(III) trifluoroacetate-trifluoroacetic acid adduct, Bi(OOCCF3)3-HOOCCF3. Main Group Metal Chemistry,1995,18(6):287-294
    [50]Uchiyama Y, Kano N, Kawashima T. Synthesis and Structure of a Novel Ladder-Type Organobismuth Compound with Bismuth-Oxygen Interactions. Organometallics,2001,20:2440-2442
    [51]Sharutin V V, Egorova I V, Sharutina O K. Tetranuclear Bismuth Complexes Bi4(O)2(O2CC6H2F3-3,4,5)8-2C6H6 and Bi4(O)2(O2CC6H2F3-3,4,5)8·2C6H4Me2-1,4:Synthesis and Structures. Russian Journal of Coordination Chemistry,2005,1:2-8
    [52]Domenico P, Salo R J, Novick S G, et al. Enhancement of bismuth antibacterial activity with lipophilic thiol chelators. Antimicrob Agents Chemother,1997, 41(8):1697-1703
    [53]Sadler P J, Li H Y, Sun H Z. Coordination chemistry of metals in medicine: target sites for bismuth. Coordination Chemistry Reviews,1999,185-186: 689-709
    [54]Herrmann W A, Herdtweck E, Pajdla L. Metal complexes in biology and medicine. VI:Synthesis and structure of (penicillaminato-O,S,N) bismuth(III) chloride. Chemische Berichte,1993,126:895-898
    [55]Yang N, Sun H Z. Biocoordination chemistry of bismuth:Recent advances. Coordination Chemistry Reviews,2007,251:2354-2366
    [56]胡建强,李向东,程利锋,等.二丁基二硫代氨基甲酸锡极压抗磨性能研究.润滑油,2006,21(5):44-48
    [57]Gupta A, Sharma R K, Drake J E, et al. Synthesis and characterization of methylbisumth complexes containing dithio ligands:crystal and molecular structure of [MeBi(S2COMe)2] and transformation of [MeBi(S2CO'P7r)2] to Bi2S3. Journal of Organometallic Chemistry,2003,8(1-2):122-127
    [58]Briand G G, Burford N, Cameron T S, et al. A generally applicable synthetic approach for heteroleptic thiolate complexes of bismuth. Canadian Journal of Chemistry,2003,81:632-637
    [59]Garje S S, Jain V K. Chemical of arsenic, antimony and bismuth compounds derived from xanthate, dithiocarbamate and phosphorus based ligands. Coordination Chemistry Reviews,2003,236:35-56
    [60]Reglinski J, Spicer M D, Garner M, et al. Structural Consequences of the Use of Hard and Soft Tripodal Ligands during Metathesis Reactions:Synthesis of the [Bis(hydrotris(methimazolyl)borato)bismuth(Ⅲ) [Bis(hydrotris(pyrazolyl) -borato)sodiate. Journal of the American Chemical Society,1999,121: 2317-2318
    [61]Bailey P J, Lanfranehi M, Marchio L, et al. Hydridotris(thioxotriazolyl) borate(Tt), an ambidentate (N3/S3) tripodal ligand. X-ray crystal structures of sodium, Bismuth(Ⅲ), Tin(Ⅳ), and Manganese(Ⅰ) complexes. Inorganic Chemistry,2001,40:5030-5035
    [62]Bao M, Hayashi T, Shimada S. Synthesis and structural characterisation of a cationic trinuclear organobismuth complex with an unprecedented coordination mode of hydrotris(2-mercaptoimidazolyl)-borate ligands. Dalton Transactions, 2004, (14):2055-2056
    [63]Singh K, Sharma P K, Dubey S N. Some Sb(Ⅲ) and Bi(Ⅲ) complexes of benzothiazolines derived from heterocyclic aldehycle. Indian Journal of Chemistry, Section A,1994,33A(3):266-268
    [64]Diemer R, Dittes U, Nuber B, et al. Synthesis, Characterization and molecular Structures of Some Bismuth(Ⅲ) Complexes with Thiosemicarbazones and Dithiocarbazonic Acid Methylester Derivatives with Activity Against Helicobacter Pylort. Metal- Based Drugs,1995,2(5):271-292
    [65]Nomiya K, Sekino K, Ishikawa M, et al. Syntheses, crystal structures and antimicrobial activities of monomeric 8-coordinate, and dimeric and monomeric 7-coordinate bismuth(Ⅲ) complexes with tridentate and pentadentate thiosemicarbazones and pentadentate semicarbazone ligands. Journal of Inorganic Biochemistry,2004,98:601-615
    [66]Bharadwaj P K, Lee A M, Mandal S, et al. Synthesis and X-Ray Structural Characterization of the 1:1 Adduct of Bismuth(Ⅲ) With the'saltren' Anion ['saltren1≡N(CH2CH2N=CHC6H4OH)3]:A Novel Seven-Coordinate Bismuth(Ⅲ) Complex. Australian Journal of Chemistry,1994,47(9):1799-1803
    [67]Dostal L, Cisarova I, Jambor R, et al. Structural Diversity of Organoantimony(Ⅲ) and Organobismuth(Ⅲ) Dihalides Containing O,C,O-Chelating Ligands. Organometallics,2006,25:4366-4373
    [68]Chovancova M, Jambor R, Ruzicka A, et al. Synthesis, Structure, and Reactivity of Intramolecularly Coordinated Organoantimony and Organobismuth Sulfides. Organometallics,2009,28:1934-1941
    [69]Gregory I Elliot. Arylation with organolead and organobismuth reagents. Tetrahedron,2001,57:5683-5705
    [70]Dittes U, Keppler B K, Nuber B. Synthesis and structure of seven-coordinate bismuth(V) complexes with benzenoid and non-benzenoid arene ligands: tri(aryl)tropolonatobismuth(V) complexes. Angewandte Chemie. International Edition in English,1996,35(1):67-68
    [71]Yu L, Ma Y Q, Wang G C, et al. Synthesis, characterization and in vitro antitumor activity of somearylbismuth triphenylgermylpropionates and crystal structures of (4-BrC6H4)3Bi(O2CCH2CH2aGePh3)2 and (4-BrC6H4)3Bi[O2CCH-(CH3)CH2GePh3]2. Journal of Organometallic Chemistry,2003,679:173-180
    [72]Sun H, Sadler P J. Bismuth antiulcer complexes. Topics in Biological and Inorganic Chemistry,1999,2:159-185
    [73]Hellwinkel D, Bach M. Pentaorganyle des antimons. Journal of Organometallic Chemistry,1969,17(42):389-403
    [74]Kurita J, Ishii M, Yasuike, S, et al. A versatile synthetic route to 1-benzometalloles involving the first examples of several C-unsubstituted benzometalloles. Chemical Communications,1993,17:1309-1310
    [75]Ashe A J Ⅲ, Kampf J W, Puranik D B, et al. Secondary bonding in organobismuth compounds. Comparison of the structures of 2,2',5,5'-tetramethyl-1,1' -dibismaferrocene and 2,2',5,5'-tetramethylbibismole. Organometallics,1992,11(8):2743-2745
    [76]Spence R E H, Hsu D P, Buchwald S L. Synthesis of thermochromic dibismuthines with nonthermochromic distibine analogs. Organometallics,1992, 11(11):3492-3493
    [77]Yasuike S, Kiharada T, Tsuchiya T, et al. A Versatile Route to 3-Benzoheteroepines Containing Group 15 and 16 Heavier Elements Involving Several Novel Ring Systems, and Their Thermal Stabilities. Chemical & Pharmaceutical Bulletin,2003,51(11):1283-1288
    [78]Yasuike S, Shiratori S I, Kurita J, et al. A Versatile Synthesis of 1-Benzoheteroepines Containing Group 14,15, and 16 Heavier Elements via a Common 1,6-Dilithium Intermediate. Chemical & Pharmaceutical Bulletin, 1999,47(8):1108-1114
    [79]Alexey Y, Fedorov, Finet J-p. Synthesis and reactivity of pentavalent biphenyl-2,2-ylenebismuth derivatives. Journal of the Chemical Society, Perkin Transactions,2000,1:3775-3778
    [80]Matano Y, Ara Begum S, Miyamatsu T, et al. Synthesis,Halogenolysis, and Crystal Structure of Hypervalent Organobismuth Compounds (10-Bi-5). Organometallics,1993,5:1857-1864
    [81]Suzuki H, Murafuji T, Azuma N. Synthesis and Reactions of Some New Heterocyclic Bismuth(Ⅲ) and-(Ⅴ) Compounds.5,10-Dihydrodibenzo[b,e] bismine and Related Systems. Journal of the Chemical Society, Perkin Transactions 1,1992, (13):1593-1600
    [82]Guilhaume N, Postel M. Easy access to bismuth catecholates. Heteroatom Chemistry,1990,1:233-235
    [83]Klapoke T. Synthesis and Characterization of Novel Chalcogen and Pnictogen Co-ordinated Bi(Ⅲ) Complexes-the First Se,Se'Coordinated Bi Metallacycle. Polyhedron,1987,6:1593-1597
    [84]Engler R Z. Bis(2-mercaptoethyl)sulfide Complexes with As, Sb, Bi, and Sn. Zeitschrift fur Anorganische und Allgemeine Chemie,1974,406:74-75
    [85]Agocs L, Burford N, Cameron T S, et al. Spectroscopic, Structural, and Mass Spectrometric Studies on Two Systematic Series of Dithiabismuth(Ⅲ) Heterocycles:Identification of Bismuthenium Cations and Their Solvent Complexes. Journal of the American Chemical Society,1996,118(13): 3225-3232
    [86]Maddali L N R, Shimada S, Tanaka M. Palladium Complex-Catalyzed Cross-Coupling Reaction of Organobismuth Dialkoxides with Triflates. Organic Letters,1999,8:1271-1273
    [87]Maddali L N R, Shimada S, Yamazaki O. Cross-coupling reaction of organobismuth dialkoxides with aryl bromides and iodides catalyzed by Pd(PPh3)4. Journal of Organometallic Chemistry,2002,659:117-120
    [88]Shimada S, Yamazaki O, Tanaka T, et al.5,6,7,12-Tetrahydrodibenz[c,f][1,5] azabismocines:Highly Reactive and Recoverable Organobismuth Reagents for Cross-Coupling Reactions with Aryl Bromides. Angewandte Chemie, International Edition,2003,42:1845-1848
    [89]Yamazaki O, Tanaka T, Shimada S, et al. Palladium-Catalyzed Cross-Coupling Reaction of Organobismuth Compounds with Aryl and Alkenyl Chlorides. Synletters,2004,11:1921-1924
    [90]Tsubrik O, Kisseljova K, Maeorg U. Copper Salt Catalyzed Coupling of Organobismuth Reagents and Azo Compounds. Synletters,2006,15:2391-2394
    [91]Kyhn Rasmussen L, Begtrup M, Ruhland T. Resin-Bound Triaryl Bismuthanes and Bismuth Diacetates:Novel Multidirectional Linkers and Novel Resin-Bound Arylation Reagents. Journal of Organic Chemistry,2004,69: 6890-6893
    [92]Rasmussen L K, Begtrup M, Ruhland T. Solid-Phase Synthesis with Resin-Bound Triarylbismuthanes:Traceless and Multidirectional Cleavage of Unsymmetrical Biphenyls. Journal of Organic Chemistry,2006,71:1230-1232
    [93]Matano Y, Hisanaga T, Yamada H, et al. Remarkable Substituent Effects on the Oxidizing Ability of Triarylbismuth Dichlorides in Alcohol Oxidation. Journal of Organic Chemistry,2004,25:8676-8679
    [94]Matano Y, Nomura H. Dimeric Triarylbismuthane Oxide:A Novel Efficient Oxidant for the Conversion of Alcohols to Carbonyl Compounds. Journal of the American Chemical Society,2001,123:6443-6444
    [95]Matano Y, Nomura H, Hisanaga T, et al. Diverse Structures and Remarkable Oxidizing Ability of Triarylbismuthane Oxides. Comparative Study on the Structure and Reactivity of a Series of Triarylpnictogen Oxides. Organometallics,2004,23:5471-5480
    [96]Iwata T, Miyake Y, Nishibayashi Y. Palladium (Ⅱ) complex-catalysed enantioselective benzoylation of alcohols using carbon monoxide and an organobismuth(Ⅴ)compound. Journal of the Chemical Society, Perkin Transactions,2002,1:1548-1554
    [97]Miyake Y, Iwata T, Chung K G, et al. Kinetic resolution of secondary alcohols via chiral Pd(II)-complex-catalysed enantioselective benzoylation using CO and organobismuth(V) compound. Chemical Communications,2001,10: 2584-2585
    [98]Matano Y, Imahori H. A New, Efficient Method for Direct a-Alkenylation of a-Dicarbonyl Compounds and Phenols Using Alkenyltriarylbismuthonium Salts. Journal of Organic Chemistry,2004,16:5505-5508
    [99]Finet J-p, Fedorov A Y. Tris(polymethoxyphenyl) bismuth derivatives: Synthesis and reactivity. Journal of Organometallic Chemistry,2006,691: 2386-2393
    [100]Koech P K, Krische M J. Phosphine Catalyzed a-Arylation of Enones and Enals Using Hypervalent Bismuth Reagents:Regiospecific Enolate Arylation via Nucleophilic Catalysis. Journal of the American Chemical Society,2004,17: 5350-5350
    [101]Ooi T, Goto R, Maruoka K. Fluorotetraphenylbismuth:A New Reagent for Efficient Regioselective α-Phenylation of Carbonyl Compounds. Journal of the American Chemical Society,2003,125:10494-10495
    [102]Finet J-p, Fedorov A Y. Synthesis and reactivity of chiral pentavalent bismuth derivatives. Russian Chemical Bulletin of International Edition,2004,7: 1488-1495
    [103]Sorenson R J. Selective N-Arylation of Aminobenzanilides under Mild Conditions Using Triarylbismuthanes. Journal of Organic Chemistry,2000,65: 7747-7749
    [104]Arnauld T, Barton D H R. Chemistry of Pentavalent Organobismuth Reagents. Regioselective a-Arylation of α, β-Unsaturated Carbonyls and Related Systems. Journal of Organic Chemistry,1999,64:6915-6917
    [105]Sharma P, Cabrera A, Rosas N, et al. Synthesis and Crystal Structures of Mixed Halophenylbismuthates(Ⅲ). Zeitschrift fuer Anorganische und Allgemeine Chemie,2000,626:921-924
    [106]Coles S J, Costello J F, Hursthouse M B. A structural and mechanistic investigation of the mono-O-phenylation of diols with BiPh3(OAc)2. Journal of Organometallic Chemistry,2002,662:98-104
    [107]Tsubrik O, Maeorg U, Sillard R et al. Arylation of diversely substituted hydrazines by tri- and pentavalent organobismuth reagents. Tetrahedron,2004, 60:8363-8373
    [108]Ikegaiy K, Mukaiyama T. Synthesis of N-Aryl Pyridin-2-ones via Ligand Coupling Reactions Using Pentavalent Organobismuth Reagents. Chemistry Letters,2005,11:1496-1497
    [109]Fedorov A Y, Finet J-p, Ganina O G, et al. Reductive coupling of polyfunctionalized organobismuth and organolead arylating reagents in the synthesis of benzopyran derivatives. Russian Chemical Bulletin of International Edition,2005,11:2602-2611
    [110]Moiseev D V, Malysheva Y B, Shavyrin A S. Study of homo- and cross-coupling competition in the reaction of triarylbismuth(V) dicarboxylates with methyl acrylate in the presence of a palladium catalyst. Journal of Organometallic Chemistry,2005,690,3652-3663
    [111]Nishikata T, Yamamoto Y, Miyaura N. Asymmetric 1,4-addition of triarylbismuths to enones catalyzed by dicationic palladium(Ⅱ) complexes. Chemical Communications,2004,16:1822-1823
    [112]Ki N V, Pasenok S V, Yagupolskii Y L, et al. Bi(CF3)3/Cu(OCOCH3)2 a new system for the synthesis of 2-tri-uoromethylcycloalkan-1-ones, tri-uoromethylanilines and phenyl(tri-uoromethyl)sulfane. Journal of Fluorine Chemistry,2000,106:217-221
    [113]Breunig H J, Konigsmann L, Lork E, et al. Hypervalent organobismuth(Ⅲ) carbonate, chalcogenides and halides with the pendant arm ligands 2-(Me2NCH2)C6H4 and 2,6-(Me2NCH2)2C6H3. Dalton Transactions,2008,14: 1831-1842
    [114]Murafuji T, Miyoshi Y, Ishibashi M, et al. Antifungal activity of organobismuth compounds against the yeast Saccharomyces cerevisiae:structure-activity relationship. Journal of Inorganic Biochemistry,2004,98:547-552
    [115]Murafuji T, Azuma T, Miyoshi Y. Inhibition of jack bean urease by organobismuth compounds. Bioorganic & Medicinal Chemistry Letters,2006, 16:1510-1513
    [116]Dittes U, Vogel E, Keppler B K. Overview on bimuth(Ⅲ) and bismuth(Ⅴ) complexes with activity against Helixcobacter pylori. Coordination Chemistry Reviews,1997,163:345-364
    [117]Tytgat G N J. Helicobacter infection in man:problems to be solved. Digestive Diseases,1998,16:192-197
    [118]KOpf-Maier P, KlapOtke T. Antitumor activity of some organometallic bismuth(Ⅲ) thiolates. Inorganica Chimica Acta,1988,152:49-52
    [119]Smith K A, Deacon G B, Jackson W R, et al. Preparation and anti-tumour activity of some arylbismuth(Ⅲ) oxine complexes. Metal-Based Drugs,1998,5: 295-304
    [120]Campi E M, Deacon G B, Edwards G L, et al. Bismuth(Ⅲ) acetate:a cheap, efficient, and environmentally acceptable reagent for 'wet' and 'dry' prevost reactions. Journal of the Chemical Society Chemical Communications,1989,7: 407-408
    [121]Desmum J R, Labmuillere M, le Roux C, et al. Surprising Catalytic Activity of Bismuth(Ⅲ) Triflate in the Friedei-Crafts Acylation Reaction. Tetrahedron Letters,1997,38:8871-8874
    [122]Anzalone P W, Baru A R, Danielson E M, et al. Bismuth Compounds in Organic Synthesis. A One-Pot Synthesis of Homoallyl Ethers and Homoallyl Acetates from Aldehydes Catalyzed by Bismuth Triflate. Journal of Organic Chemistry, 2005,70(6):2091-2096
    [123]Le Roux C, Mandrou S, Dubac J. First Catalytic C-Acylation of Enoxysilanes: An Efficient Route to β-Diketones. Journal of Organic Chemistry,1996,61: 3885-3887
    [124]Menard C, Doris E, Mioskowski C. Ph3BiCO3:A mild Reagent for in situ Oxidation of Urazoles to Triazolinediones. Tetrahedron Letters,2003,44: 6591-6593
    [125]Khosmpour A R, Mohammadpoor-Baltorka I, Ghorbankhani H. Bi(TFA)3-[nbp]FeCl4:A new, Efficient and Reusable Promoter System for the Synthesis of 4(3H)-quinazolinone Derivatives. Tetrahedron Letters,2006,47:3561-3564
    [126]刘训恩,缪琳,陈力,等.三-(乙氧基苯基)铋的合成及应用.北京理工大学学报,1995,6:7-9
    [127]鲁国林,夏强,杜娟.三苯基铋对高燃速丁羟推进剂的催化固化作用研究.含能材料.1999,7(2):60-62
    [128]Yin S F, Bao M, Shimada S, et al. Synthesis and Structure of Organobismuth Compounds Bearing A Novel Tripodal Ligand. In:The 32nd Symposium on Heteroatom Chemistry (ed. Michael T H L), Tsukuba:Asahi Publishing Company,2005,228-229
    [129]Pelagatti P, Bacchi A, Carcelli M, et al. Palladium(Ⅱ) Complexes Containing a P-N Chelating Ligand Part Ⅲ. Journal of Organometallic Chemistry,1999, 583(1-2):94-105
    [130]姜涛,陈洪侠,匡洞庭,等.三齿配体过渡金属烯烃聚合催化剂研究新进展.化工进展,2005,24(6):586-591
    [131]Small B L, Brookhart M, Bennett A M A. Highly Active Iron and Cobalt Catalysts for the Polymerization of Ethylene. Journal of the American Chemical Society,1998,120(16):4049-4050
    [132]Rio I, Gossage R A, Lutz M, et al. Reactivity of a binuclear Ru(Ⅱ) N2-bridged complex towards phosphines:facile access to novel mono and binuclear phosphorous derivatives. X-ray structural characterization of two unusual binuclear complexes containing'pincer'ligands:[{RuCl2(η3-NN'N)}2(μ-η2-P2)] (NN'N==2,6-bis[(dimethylamino)methyl]pyridine; P2=1,3-bis[(diphenylphos-phino)methyl]benzene or 1,3-bis(diphenylphosphino)propane). Journal of Organometallic Chemistry,1999,583:69-79
    [133]Yin H D, Wang Q B, Xue S C. Synthesis and spectroscopic properties of [N-(4-carboxyphenyl) salicylideneiminato] di- and tri-organotin(IV) complexes and crystal structures of{[nBu2Sn(2-OHC6H4CH=NC6H4COO)]2O}2 and Ph3Sn(2-OH C6H4CH=NC6H4COO). Journal of Organometallic Chemistry,2005, 690:435-440
    [134]Blackman A G. The coordination chemistry of tripodal tetraamine ligands. Polyhedron,2005,24:1-39
    [135]Rapenne G. Synthesis of substituted indazoles and their corresponding tris(indazolyl)borate tripodal ligands as key building blocks for molecular motors. Inorganica Chimica Acta.2009,362(12):4276-4283
    [136]March J. Advanced Organic Chemistry:Reactions, Mechanism and Structure. 4th ed. New York:John Wiley & Sons,1992,531-534
    [137]Kakusawa N, Tobiyasu Y, Yasuike S, et al. Hypervalent organoantimony compounds 12-ethynyl-tetrahydrodibenz[c,f][1,5]azastibocines:Highly efficient new transmetallating agent for organic halides. Journal of Organometallic Chemistry,2006,691:2953-2968
    [138]Ohkata K, Ohnishi M, Akiba K-y. Transannular Bond Formation between The Antimony and The Nitrogen Atoms in Dibenz[c,f][1,5] azastibocine System. Formation of X-Sb-X and X-Sb+ Hypervalent Bond. Tetrahedron Letters,1988, 29(42):5401-5404
    [139]Yamamoto H, Oshima K(Eds.). Main Group Metals in Organic Synthesis. Weinheim:Wiley-VCH,2004,1-25
    [140]Akiba K-y(Ed.). Chemistry of Hypervalent Compounds. New York:Wiley-VCH, 1999,1-380
    [141]Wittig G, Hellwinkel D. Neuere Synthesen von aromatischen Verbindungen des pentavalenten Antimons und Wismuts. Chemische Berichte,1964,97:789-793
    [142]Akiba K-y, Okada K, Ohkata K. Formation of ammoniophosphoranes by transannular interaction in dibenz[c,f][1,5]azaphosphocine system. Tetrahedron Letters,1986,27(43):5221-5224
    [143]Ohkata K, Takemoto S, Ohnishi M, et al. Synthesis and chemical behaviors of 12-substituted dibenz[c,f][1,5] azastibmocine and dibenz[c,f][1,5] azabismocine derivatives:evidences of 10-Pn-4 type hypervalent interaction. Tetrahedron Letters,1989,30(36):4841-4844
    [144]Alcock N W. Secondary Bonding to Nonmetallic Elements. Advances in Inorganic Chemistry and Radiochemistv,1972,15:1-58
    [145]Alcock N W. Bonding and Structure:Structural Principles in Inorganic and Organic Chemistry. Chichester:Ellis Horwood,1990,124-385
    [146]SADABS. Program for Empirical Absorption Correction of Area Detector Data, Germany:University of Madison,1996
    [147]Sheldrick G M. SHELXTL, v5 Reference Manual, Siemens Analytical X-ray Sysytems. USA Wisconsin:Inc, Madison,1996
    [148]Wilson A J. International Table for X-ray Crystallography, volume C, Dordrecht: Kluwer Academic Publishers,1992,199,219-222,500-502
    [149]Morison R. The Treatment of Infected Suppurating War Wounds. British Journal of Surgery,1916,4(16):659-678
    [150]Slikkerveer A, Wolff F A D. Pharmacokinetics and Toxicity of Bismuth Compounds. Medical Toxicology and Adverse Drug Experience,1989,4(5): 303-323
    [151]Howden C W. Clinical Expressions of Helicobacter Pylori Infection. American Journal of medicine,1996,100:S27-34
    [152]Tytgat G N J. Helicobacter Infection in Man:problems to be solved. Digestive Diseases,1998,16:192-197
    [153]Steinbach G, Ford R, Glober G, et al. Antibiotic Treatment of Gastric lymphoma of Mucosa-associated lymphoid tissue. Annals of Internal Medicine,1999,131: 88-95
    [154]Kondo Y, Satoh M, Imura N, et al. Tissue-specific induction of metallothionein by bismuth as a promising protocol for chemotherapy with repeated administration of cis-diamminedichloroplatinum(Ⅱ) against bladder tumor. Anticancer Research,1992,12:2303-2308
    [155]Sun H, Li H, Harvey I et al. Interactions of bismuth complexes with metallothionein(Ⅱ). Journal of Biological Chemistry,1999,274:29094-29101
    [156]Kondo Y, Satoh M, Imura N, et al. Effect of bismuth nitrate given in combination with cis-diamminedichloroplatinum(Ⅱ) on the antitumor activity and renal toxicity of the latter in nude mice inoculated with human bladder tumor. Cancer Chemother. Pharmacol,1991,29(1):9-23
    [157]Kondo Y, Himeno S, Satoh M, et al. Citrate enhances the protective effect of orally administered bismuth subnitrate against the nephrotoxicity of cis-diamminedichloroplatinum. Cancer Chemother. Pharmacol,2004,53:33-38
    [158]Kelley S L, Basu A, Teicher B A, et al. Overexpression of metallothionein confers resistance to anticancer drugs. Science,1988,241:1813-1815
    [159]Lazo J S, Kondo Y, Dellapiazza D, et al. Enhanced sensitivity to oxidative stress in cultured embryonic cells from transgenic mice deficient in metallothionein Ⅰ and Ⅱ genes. Journal of Biological Chemistry,1995,270:5506-5510
    [160]Sato M, Kondoh M. Recent studies on metallothionein:Protection against toxicity of heavy metals and oxygen free radicals. Tohoku Journal of Experimental Medicine,2002,196:9-22
    [161]Wang X Y, Zhang X M, Lin J, et al. DNA-Binding Property and Antitumor Activity of Bismuth(Ⅲ) Complex with 1,4,7,10-Tetrakis (2-pyridylmethyl)-1,4,7,10-tetraazacyclododecane. Journal of the Chemical Society, Dalton Transactions,2003, (12):2379-2380
    [162]Huang R, Wallqvist A, Covell D G. Anti-cancer metal compounds in NCI's tumor-screening database:putative mode of action. Biochemical Pharmacology, 2005,69:1009-1039
    [163]Mahmood N, Burke A, Anner R M, et al. Inhibition of the production of HIV-1 from chronically infected H9 cells by metal compounds and their complexes with L-cysteine or N-acetyl-L-cysteine. Antiviral Chemistry & Chemotherapy, 1995,6:187-189
    [164]浅井一彦.半倍体锗结晶の制产方法.日本公开特许.1971,46-002769
    [165]Hill B T. Anticancer properties of some organogermanium. Cancer Research, 1982,42(4):2582-2586
    [166]Miyamoto T K, Sugita N, Matsumoto Y, et al. A new antineoplastic methylgermanium(IV)porphyrin. Chemistry Letters,1983,12(11):1695-1698
    [167]Kohei M, Ikuo M, Norihiro K, et al. Organogermanium compound.日本公开特许,1983,56-195830
    [168]王雪,关烨第.新型抗癌药物-螺锗的合成及药理研究进展.中国药理学通报,1993,9(5):330-333
    [169]王宝贵,张桂英,赵林伊,等.有机锗多酸衍生物对S180肿瘤细胞DNA合成的抑制作用.西安交通大学学报(医学版),2002,23(6):550-551
    [170]黄桂林,陈晓冬,肖纯,等.肉桂酸锗对小鼠宫颈癌14号抑制作用的研究.中国药业,2002,11(4):42-42
    [171]金正男,昊祯久,罗永善等.Ge-132赖氨酸盐的抗癌作用.中国药理学通报,1995,11(2):147-149
    [172]俞麟.锗丙酸的有机铋衍生物的合成、表征和抗癌活性:[南开大学硕士论文].天津:南开大学化学学院,2003,3-4
    [173]Lukevics E, Ignatovieh L, Belyakov S. Synthesis and molecular structure of phenyl and tolylgermatranes. Journal of Organometallic Chemistry,1999, 588(2):222-230
    [174]Fang X N, Song X Q, Xie Q L. Synthesis and structural characterization of several tris(2-methyl-2-phenylpropyl)tin carboxylates containing germanium. Journal of Organometallic Chemistry,2001,619(1):43-48
    [175]Xie Q L, Sun L J, Liu H, et al. A study of trialkyltin β-aryl-βtriphenyl-germylpropionates. Applied Organometallic Chemistry,1994,8 (1):57-62
    [176]Skehan P, Storeng R, Scudiero D, et al. New colorimetric cytotoxicity assay for anticancer-drug screening. Journal of the National Cancer Institute,1990,82: 1107-1112
    [177]Yang H Q, Xu Z H, Fan M H, et al. Progress in carbon dioxide separation and capture:A review. Journal of Environmental Sciences,2008,20(1):14-27
    [178]Yu K K, Yeung C M, Tsang S C. Carbon dioxide fixation into chemicals(methylformate)at hight yields by surface coupling over a Pd/Cu/ZnO anocatalyst. Journal of the American Chemical Society,2007,129(20): 6360-6361
    [179]Arakawa H, Aresta M, Armor J, et al. catalysis research of relevance to carbon management:progress, challenges, and opportunities. Chemical Reviews,2001, 101(4):953-996
    [180]Clements J H. Reactive Applications of Cyclic Alkylene Carbonates. Industrial & Engineering Chemistry Research,2003,42(4):663-674
    [181]Jessop P G, Hsiao Y, Ikariya T, et al. Homogeneous catalysis in supercritical fluids:hydrogenation of supercritical carbon dioxide to formic acid, alkyl formats, and formamides. Journal of the American Chemical Society,1996, 118(2):344-355
    [182]Salvatore R N, Shin S I, Nagle A S, et al. Efficient carbamate synthesis via a three-component coupling of an amine, CO2, and alkyl halides in the presence of CS2CO3 and tetrabutylammonium iodide. Journal of Organic Chemistry,2001, 66(3):1035-1037
    [183]Shaikh A G, Sivaram S. Organic Carbonates. Chemical Reviews,1996,96(3): 951-976
    [184]王欢.电羧化有机化合物固定CO2反应的研究:[华东师范大学博士论文]上海:华东师范大学理工学院化学系,2008,24-29
    [185]Yamasaki A. An overview of CO2 mitigation options for global warming-Emphasizing CO2 sequestration options. Journal of Chemical Engineering of Japan,2003,36(4):361-375
    [186]Stewart C, Hessami M. A study of methods of carbon dioxide capture and sequestration-the sustainability of a photosynthetic bioreactor approach. Energy Conversion and Management,2005,46:403-420
    [187]Ramachandran N, Aboudheir A, Idem R, et al. Kinetics of the absorption of CO2 into mixed aqueous loaded solutions of monoethanolamine and methyldiethanolamine. Industrial and Engineering Chemistry Research,2006, 45(8):2608-2616
    [188]Jassim M S, Rochelle G T. Innovative absorber/stripper configurations for CO2 capture by aqueous monoethanolamine. Industrial and Engineering Chemistry Research,2006,45(8):2465-2472
    [189]Maroto-Valer M M, Fauth D J, Kuchta M E, et al. Activation of magnesium rich minerals as carbonation feedstock materials for CO2 sequestration. Fuel Processing Technology,2005,86:1627-1645
    [190]Stolaroff J K, Lowry G V, Keith D W. Using CaO- and MgO-rich industrial waste streams for carbon sequestration. Energy Conversion and Management, 2005,46:687-699
    [191]Watson M N, Gibson-Poole C M. Reservoir selection for optimized geological injection and storage of carbon dioxide:A combined geochemical and stratigraphic perspective. In:Fourth annual conference on carbon capture and sequestration DOE/NETL,2005, May 2-5
    [192]Holloway S, Karimjee A, Akai M, et al. Carbon dioxide transport, injection and geological storage. In:IPCC Guidelines for National Greenhouse Gas Inventories. Paris, France, OECD,2006,5.1-5.32
    [193]Shekhawat D, Luebke D R, Pennline H W. A review of carbon dioxide selective membranes. A topical report. National Energy Technology Laboratory, United States Department of Energy,2003,4-7
    [194]Kusakabe K, Yoneshige S, Murata A, et al. Morphology and gas permeance of ZSM-5 type xeolite membrane gormed on a porous a-alumina support tube. Journal of Membrane Science,1996,116:39-46
    [195]Ochelata J H K, Kimble J B, Kubicek D H. Adsorption and desorption of carbon dioxide. US,1990,4937059
    [196]Kato M, Nakagawa K, Essaki K, et al. Novel CO2 absorbents using lithiumcontaining oxide. International Journal of Applied Ceramic Technology, 2005,2(6):467-475
    [197]Fauth D J, Frommell E A, Hoffman J S, et al. Eutectic salt promoted lithium zirconate:Novel high temperature sorbent for CO2 capture. Fuel Processing Technology,2005,86(14-15):1503-1521
    [198]Fang F, Li Z S, Cai N S. CO2 capture from flue gases using a fluidized bed reactor with limestone. Korean Journal of Chemical Engineering,2009,26(5): 1414-1421
    [199]费维扬,艾宁,陈健.温室气体的捕集和分离-分离技术面临的挑战与机遇. 化工进展,2005,24(1):1-4
    [200]Bounaceur R, Lape N, Roizard D, et al. Membrane processes for postcombustion carbon dioxide capture:A parametric study. Energy,2005,31: 2556-2570
    [201]周玮,马中义,石大川,等.环氧乙(丙)烷与二氧化碳环加成制备碳酸乙(丙)烯酯的催化剂研制进展.天然气化工,2009,34(2):70-78
    [202]Kasuga K, Kabata N. The fixation of carbon dioxide with 1,2-epoxypropane catalyzed by alkali-metal halide in the presence of a crown ether. Inorganica Chimica Acta,1997,257(2):277-278
    [203]Lu X B, Zhang Y J, Jin K, et al. Highly active electrophile-nucleophile catalyst system for the cycloaddition of CO2 to epoxides at ambient temperature. Journal of Catalysis,2004,227(2):537-541
    [204]Jing H, Nguyen S T. SnCl4-organic base:Highly efficient catalyst system for coupling reaction of CO2 and epoxides. Journal of Molecular Catalysis A: Chemical,2007,261(1):12-15
    [205]Xiao L F, Li F W, Peng J J, et al. Immobilized ionic liquid/zinc chloride: Heterogeneous catalyst for synthesis of cyclic carbonates from carbon dioxide and epoxides. Journal of Molecular Catalysis A:Chemical,2006,253(1-2): 265-269
    [206]Kim Y J, Varma R S. Tetrahaloindate(Ⅲ)-based ionic liquids in the coupling reaction of carbon dioxide and epoxides to generate cyclic carbonates: H-bonding and mechanistic studies. Journal of Organic Chemistry,2005,70(20): 7882-7891
    [207]Zhao Y, Tian J S, Qi X H, et al. Quaternary ammonium salt-functionalized chitosan:An easily recyclable catalyst for efficient synthesis of cyclic carbonates from epoxides and carbon dioxide. Journal of Molecular Catalysis A: Chemical,2007,271(1-2):284-289
    [208]Lu X B, Zhang Y J, Liang B, et al. Chemical fixation of carbon dioxide to cyclic carbonates under extremely mild conditions with highly active bifunctional catalysts. Journal of Molecular Catalysis A:Chemical,2004,210(1-2):31-34
    [209]Sun J M, Fujita S I, Zhao F Y, et al. A highly efficient catalyst system of ZnBr2/n-Bu4NI for the synthesis of styrene carbonate from styrene oxide and supercritical carbon dioxide. Applied Catalysis A:General,2005,287(2): 221-226
    [210]Xu Q. Metal carbonyl cations:generation, characterization and catalytic application. Coordination Chemistry Reviews,2002,231:83-108
    [211]Macchioni A. Ion Pairing in Transition-Metal Organometallic Chemistry. Chemical Reviews,2005,105(6):2039-2073
    [212]Zeimentz P M, Arndt S, Elvidge B R, et al. Cationic Organometallic Complexes of Scandium, Yttrium, and the Lanthanoids. Chemical Reviews,2006,106(6): 2404-2433
    [213]Suzuki H, Ikegami T, Matano Y. Bismuth in Organic Transformations. Synthesis, 1997, (3):249-267
    [214]Gaspard-Iloughmane H, Le Roux C. Bismuth(Ⅲ) triflate in Organic synthesis. European Journal of Organic Chemistry,2004, (12):2517-2532
    [215]Frank W, Weber J, Fuchs E. [CHaC6H5BiCl2][AlCl4] and [(CH3)6C6BiCl2] [A1Cl4]-Compounds containing η6-Arene-Complexed BiCl2 Units. Angewandte Chemie International Edition in English,1987,26 (1):74-75
    [216]Carmalt C J, Norman N C, Orpen A G, et al. A cationic, four-coordinate, ten-electron bismuth(Ⅲ) complex:Synthesis and structure of [BiPh2(HMPA)2]-[BF4] (HMPA=hexamethylphosphoramide). Journal of Organometallic Chemistry,1993,460:C22-C24
    [217]Carmalt C J, Farrugia L J, Norman N C. Cation, Arylbismuth(Ⅲ) Complexes of the from BiRaL2+ and BiRL42+ Where L is a Neutral Two-electron Donorligand. Journal of the Chemical Society. Dalton transactions,1996,4:443-454
    [218]Sitzmann H, Wolmershauser G, Boese R. et al. Synthesis and Structure of dimeric Chloro(cyclopentadienyl)bismuthenium Cations. Zeitschrift fuer Anorganische und Allgemeine Chemie,1999,625:2103-2107
    [219]Steele W V. The standard enthalpies of formation of the triphenyl compounds of the Group V elements 2. Triphenylbismuth and the Ph---Bi mean bond-dissociation energy. The Journal of Chemical Thermodynamics,1979,11: 187-192
    [220]Bao M, Hayashi T, Shimada S. Cationic Organobismuth Complex with 5,6,7,12-Tetrahydrodibenz[c,f][1,5]azabismocine Framework and Its Coordination Complexes with Neutral Molecules. Organometallics,2007,26: 1816-1822
    [221]范云双,马永祥.路易斯酸促进烯丙基锡化合物与醛、亚胺加成反应的进展.化学试剂,2000,22(1):23-26
    [222]Bellucci C, Cozzi P G, Ronchi A U. Catalytic allylation of imines promoted by lanthanide triflates. Tetrahedron Letters,1995,36(40):7289-7292
    [223]Keck G E, Abbott D E. Stereochemical consequences for the Lewis acid mediated additions of allyl and crotyltri-nbutylstannane to chiral β-hydroxyaldehyde derivatives. Tetrahedron Letters,1984,25(18):1883-1886
    [224]Marshall J A. Chiral Allylic and Allenic Stannanes as Reagents for Asymmetric Synthesis. Chemical Reviews,1996,96(1):31-48
    [225]Minakata, S., Komatsu, Mitsuo. Organic Reactions on Silica in Water. Chemical Reviews,2009,109(2):711-724
    [226]McNeill A H, Thomas E J.1,5-Asymmetric induction in reactions between δ-alkoxyallylstannanes and aldehydes induced by tin (Ⅳ) chloride. Tetrahedron Letters,1990,31:6239-6242
    [227]Yanagisawa A, Inoue H, Morodome M, et al. Highly chemoselective allylation of carbonyl compounds with tetraallyltin in acidic aqueous media. Journal of the American Chemical Society,1993,115:10356-10357
    [228]Leitch S K, McCluskey A. A High Yielding One-Pot Synthesis of Allylic-Vinylic Alcohols:The Adducts of Tetraallylstannane and a, β-Unsaturated Carbonyl Compounds. Synletters,2003,(5):699-701
    [229]Gordon C M, Ritchie C. Indium and tin-mediated allylation in ionic liquids. Green Chemistry,2002,4:124-128
    [230]Law M C, Wong K Y, Chan T H. Metal mediated allylation of carbonyl compounds in ionic liquids. Green Chemistry,2002,4:161-164
    [231]Mannich C, Krosche W. Ueber ein Kondensationsprodukt aus Formaldehyd, Ammoniak und Antipyrin. Archiv der Pharmazie,1912,250:647-667
    [232]Kobayashi S, Manabe K. Stable Lewis Acids in Water. Development of Novel Lewis Acid Catalysts for Selective Organic Reactions in Aqueous Media. Accounts of Chemical Research,2002,35:209-217
    [233]Hisashi Y. Lewis Acids in Organic Synthesis,2 Volume Set. Weinheim: Wiley-VCH,2000,560-579
    [234]Postel M, Dunach E. Bismuth derivatives for the oxidation of organic compounds. Coordination Chemistry Reviews,1996,155:127-144
    [235]Hua R M. Recent Advances in Bismuth-Catalyzed Organic Synthesis. Current Organic Synthesis,2008,5(1):1-27
    [236]Soran A, Breunig H J, Lippolis V, et al. Syntheses, solid-state structures, solution behavior of hypervalent organobismuth(III) compounds [2-(Et2NCH2)-C6H4]nBiX3-n and DFT characterization of [2-(Me2NCH2)C6H4]n-BiX3-n [X=Cl, Br, I; n=1-3]. Journal of Organometallic Chemistry,2010,695:850-862
    [237]Qiu R, Xu X, Li Y, et al. Synthesis and structure of air-stable Lewis acidic binuclear complex of zirconocene pentafluorophenylsulfonate and its catalytic application in the allylation of carbonyl compounds with tetraallyltin. Chemical Communications,2009,13:1679-1681
    [238]Qiu R, Zhang G, Zhu Y et al. Synthesis and structure of an extremely air-stable binuclear hafnocene perfluorooctanesulfonate complex and its use in lewis acid-catalyzed reactions. Chemistry A European Journal,2009,15:6488-6494
    [239]An D, Peng Z, Orita A, et al. Organotin Perfluorooctanesulfonates as Air-Stable Lewis Acid Catalysts:Synthesis, Characterization, and Catalysis. Chemistry A European Journal,2006,12:1642-1647
    [240]Hammett L P, Deyrup A J. Hammett acidity function. Journal of the American Chemical Society,1932,54:2721-2739
    [241]Hasimito K, Masuda T, Matoyama H. Method for measuring acid strength distribution on solid acid catalysts by use of chemisorption isotherms of Hammett indicators. Industrial & Engineering Chemistry Product Research and Development.1986,25:243-250
    [242]Louer M, Le Roux C, Dubac J. Initio Structure Determination from X-ray Powder Diffraction Data of Tetraaquabismuth(Ⅲ) Triflate Obtained from the Nonahydrate. Chemistry of Materials,1997,9:3012-3016
    [243]Ollevier T, Li Z Y. Bismuth Triflate Catalyzed Allylation of Aldehydes with Allylstannane under Microwave Assistance. Europe Journal of Organic Chemistry,2007,34:5665-5668
    [244]Cokley T M, Harvey P J, Marshall R L, et al. Solvent-Mediated Allylation of Carbonyl Compounds with Allylic Stannanes. Journal of Organic Chemistry, 1997,62:1961-1964
    [245]Lingaiah B V, Ezikiel G, Yakaiah T, et al. Gadolinium(Ⅲ) chloride:a novel and an efficient reagent for the synthesis of homoallylic alcohols. Tetrahedron Letters,2006,47:4315-4318
    [246]Ogawa C, Kobayashi S. Organic Reactions in Water, U.M. Lindstrom, ed. Oxford:Blackwell,2007,60
    [247]Akiyama T, Matsuda K, Fuchibe K. Catalyzed Stereoselective Mannich Reaction in H2O-SDS System. Synletters,2005,2:322-324
    [248]Akiyama T, Itoh J, Fuchibe K. Mannich-type Reaction Catalyzed by HBF4 in Water:Effect of the Loading of Surfactant. Synletters,2002,8:1269-1272
    [249]Loh T P, Chen S L. InCl3- Catalyzed Three-component Asymmetric Mannich-type reaction in Methanol. Organic Letters,2002,4(21):3647-3650
    [250]Zhang C X, Dong J C. Cheng T M, et al. Y(OTf)3-catalyzed novel Mannich Reaction of N-alkoxycarbonylpyrroles, Formaldehyde and Primary Amine Hydrochlorides. Tetrahedron Letters,2001,42(3):461-463
    [251]王利民,韩建伟,盛佳,等.Yb(OTf)3催化苯乙酮、芳香醛和芳香胺的Mannich反应:三组分“一锅法”合成β-氨基酮衍生物.有机化学,2005,25(5):591-594
    [252]Ranu B C, Samanta S, Guchhait S K. Zinc Tetrafluoroborate Catalyzed Mannich-type Reaction of Aldimines and Silyl Enol Ethers in Aqueous Medium. Tetrahedron,2002,58(5):983-988
    [253]Iimura S, Nobutou D, Manabe K. Mannich-type reactions in water using a hydrophobic polymer-supported sulfonic acid catalyst. Chemical Communications,2003,14:1644-1645
    [254]Azizi N, Torkiyan L, Saidi M R. Highly efficient one-pot three-component Mannich reaction in water catalyzed by heteropoly acids. Organic Letters,2006, 8:2079-2082
    [255]Wang R, Li B G, Huang T K. NbCl5-Catalyzed one-pot Mannich-type Reaction: Three Component Synthesis of β-amino Carbonyl Compounds. Tetrahedron Letters,2007,48(12):2071-2073
    [256]Bigdeli M A, Nemati F, Mahdavinia G H. HC104-SiO2 Catalyzed Stereoselective Synthesis of (3-amino Ketones via a Direct Mannich-type Reaction. Tetrahedron Letters,2007,48(38):6801-6804
    [257]Repichet S, Zwick A, Vendier L. A practical, cheap and environmentally friendly preparation of bismuth(Ⅲ) trifluoromethanesulfonate. Tetrahedron Letters,2002,43(6):993-995
    [258]Ollevier T, Nadeau E, Guay-Begin A A. Direct-type Catalytic Three-component Mannich Reaction in Aqueous Media. Tetrahedron Letters,2006,47:8351-8354

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700