热泵式溶液调湿空气处理装置的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
热泵驱动的溶液调湿空气处理装置具有不受气候条件和地域限制、应用方式灵活等优点,是目前最有可能大规模推广应用的一种溶液调湿型空气处理装置。在以往的研究工作中,尚缺乏对热泵式溶液调湿装置的结构流程设计、性能优化、送风参数控制调节方式、最佳运行策略等问题的系统研究,极大地制约了溶液调湿技术的应用推广。本文针对性地开展了以下主要研究工作:
     首先,以实验验证的热泵式溶液调湿装置模拟仿真平台为基础,对不同结构形式的溶液调湿装置的空气处理过程及机组性能进行了分析,提出热泵式溶液调湿装置的优化原则为:最佳的结构流程须使各级单元模块的换热量与其换热面积相匹配;级内循环溶液的流量应与所处理的空气流量相匹配,同时尽可能增加级间循环溶液热回收板换的换热面积,并在保证级间溶液正常循环的条件下,尽量减小级间循环溶液的流量。
     其次,就溶液与空气之间的焓差驱动力Δh和相对湿度差驱动力Δ?对送风参数的影响进行了分析,发现焓差驱动力不变时送风参数沿等焓线变化,而相对湿度差驱动力不变时送风参数沿等相对湿度线变化。由此得到送风参数的控制策略为:通过控制热泵制冷系统输出的冷量来调节溶液的焓值,进而控制送风焓值至设定值,然后通过控制再生单元的补水量来调节溶液的浓度,进而控制送风相对湿度至设定值。
     而后,提出了新风入口参数在焓湿图上的区域划分方法,通过不同区域的新风参数在不同运行模式下的能耗对比,得到热泵式溶液调湿新风机组全年的最佳运行策略,指出装置的性能与新风焓值之间存在直接关系,而且在高温潮湿的气候条件下具有更高的效率。
     最后,在上述理论及方法的指导下,介绍了热泵式溶液调湿空气处理装置的应用方式、机组性能和节能效果等实践情况。热泵式溶液调湿新风机组已经在国内50多个公建项目中应用,总面积超过162万m~2,实测运行能耗比常规空调系统节约30%以上。热泵式溶液调湿空气处理机组已经在国内20多个工艺性恒温恒湿空调项目中应用,应用面积近10万m~2,实测节能效果可达40%~70%。
Liquid desiccant air handing device driven by heat pump, which can be used without restiction of climatic conditions and geographical regions, is the most likely to promote in large-scale application. The lack of research on structure design, performance optimization, adjustment method of supply air prameters and the best operation strategy during the previous research, results in a greatly restricting of the expansion and application on liquid desiccant technology. This paper carried out the following studies:
     Firstly, based on the simulation platform program which was verificated by the experimental data, the air handling process parmaters and performance of different liquid desiccant device is analyzed The optimization principle of liquid desiccant air handing device driven by heat pump is proposed. The best structure of the liquid desiccant device must be the structure which can make the heat exchange of each unit matches its heat and mass transfer area. And, the solution flowrate of local cycle must match the flowrate of processed air. Meanwhile, the heat transfer area of the heat recovery plant exchanger should be maximizd as far as possible. The solution flowrate of main cycle must be minimized under the conditions of ensuring the normal condition of the main cycle.
     Secondly, the enthalpy difference driving forceΔh and the relative humidity difference driving forceΔ? between the desiccant solution and air have been analyzed. It is found that the supply air parameter changed along the constant enthalpy line when the enthalpy difference driving force was constant, and the supply air parameter changed along the constant relative humidity line when the relative humidity difference driving force was not changed. Then, the control strategy of supply air is concluded: the enthalpy of solution is adjusted by controlling the cooling capacity of the heat pump, thus the supply air enthalpy can be adjusted to the set value, and then by controlling the amount of water added to the regeneration unit to adjust the solution concentration, the relative humidity of supply air can be adjusted to the set value.
     Thirdly, the zone-divding method of outdoor air intet parameters in the psychrometric chart is proposed. Accroding to the energy consumption comparation of the outdoor air in different zones under different operation method, the best operation strategy of liquid desiccant air handling device driven by heat pump during whole year is concluded. The relationship between the performance of the air handling deviece and the enthalpy of the outdoor air is pointed out. And, the efficiency of the air handling device is much higher in hot and humid climate conditions.
     Finally, based on the above studies, the application method, device performance and energy saving data in practical application is introduced. The liquid desiccant outdoor air handling device driven by heat pump has been used in more than 50 applications in the domestic public construction projects, with a total area of over 1.62 millon m~2, and the measured operating cost data shows that more than 30% energy consumption can be saved compared to the conventional air-conditioning system. The liquid desiccant air handling units driven by heat pump has been used in more than 20 projects in process of constant temperature and humidity air conditioning system, application area of nearly 100,000 m~2, the measured energy savings up to 40%~70%.
引文
[1]清华大学建筑节能研究中心.中国建筑节能年度发展研究报告2008.北京:中国建筑工业出版社, 2008: 3-46.
    [2]薛志峰.大型公共建筑节能研究[博士学位论文].北京:清华大学建筑学院, 2005.
    [3]陈晓阳,江亿,李震.湿度独立控制空调系统的工程实践[J].暖通空调. 2004, 34(11):103-109.
    [4]刘晓华,江亿.温湿度独立控制空调系统[M].北京:中国建筑工业出版社,2006.
    [5]张桂荣,李敏霞,郝长生.温湿度独立控制在医院建筑中的应用研究[J].建筑热能通风空调. 2008, 27(4):37-39.
    [6]崔文盈.温湿度独立控制溶液除湿空调系统的理论研究及技术方案论证[D].重庆:重庆大学, 2007.
    [7]段凯,康侍民,刘俊跃,等.辐射吊顶+热泵式溶液除湿系统在夏热冬暖地区的应用[J].制冷与空调. 2008, 22(1):58-61.
    [8]谢晓云.间接蒸发冷却式空调的研究[博士学位论文].北京:清华大学建筑学院, 2008.
    [9]江亿,谢晓云,于向阳.间接蒸发冷却技术——中国西北地区可再生干空气资源的高校应用.暖通空调, 2009, 39(9): 1-4.
    [10] B.Costelloe, D.Finn. Indirect evaporative cooling potential in air-water systems in temperature climates. Energy and Buildings, 2003, 35:573-591.
    [11]沈列丞,龙惟定.干盘管系统中关键技术的研究.制冷与空调, 2007, 7(1): 18-26.
    [12]刘明,唐学波.干盘管系统机组与直流无刷电机风机盘管的应用研究.制冷与空调, 2008, 8(增刊): 166-169.
    [13]孙琳,朱能,李涛.干工况风机盘管加新风空调系统的研究.煤气与热力, 2005,25(2): 27-31.
    [14]左涛,万嘉凤,许宏禊.独立新风加吊顶冷辐射板空调系统的节能性及与气候的相关性.暖通空调, 2008, 38(6): 150-152.
    [15]张立志.除湿技术.北京:化学工业出版社, 2005: 1-18.
    [16]铃木谦一郎,大矢信男.除湿设计.李先瑞,译.北京:中国建筑工业出版社, 1980: 120-138.
    [17] Fanger. PO. Thermal Comfort, Reprint Edition. Robert E. Krieger Publishing Company, USA, 1982.
    [18]何建平.中央空调系统对室内空气品质的影响及对策.制冷与空调(四川). 2009, 9(3):99-102.
    [19]江泽标.空调系统致病菌的分析及防治.贵州工业大学学报(自然科学版). 2001,X(1):55-59.
    [20]陈晓阳.溶液式空调系统的应用研究[硕士学位论文].北京:清华大学建筑学院, 2005.
    [21]刘拴强,江亿,刘昕,等.城市热网驱动的温湿度独立控制空调系统节能减排效果分析.暖通空调, 2009, 39(7): 5-8.
    [22] Kessling W, Laevemann E, Kapfhammer C. Energy storage for desiccant cooling systems component development. Solar Energy, 1998, 64(4-6): 209-221.
    [23]张小松,费秀峰.溶液除湿蒸发冷却系统及其蓄能特性初步研究.大连理工大学学报, 2001, 41(S1): 30-33.
    [24]吴凌浩,徐士鸣.开式蓄能除湿空调系统工作特性研究.暖通空调, 2006, 36(10): 2-7.
    [25]殷勇高.太阳能溶液蓄能空调系统的基础研究[硕士学位论文].南京:东南大学动力工程系, 2006.
    [26]张伟荣,曲凯阳,刘晓华,等.溶液除湿方式对室内空气品质影响的初步研究.暖通空调, 2004, 34(11): 114-117.
    [27]王师俊.氯化锂溶液除湿机.明胶科学与技术, 1984,3:134-137.
    [28]赵云.太阳能液体除湿空调系统的研究[博士学位论文].南京:东南大学动力工程系, 2002.
    [29] Chung T W, Ghosh T K, Hines A L. Comparison between random and structured packings for dehumidification of air by Lithium chloride solutions in a packed column and their heat and mass transfer correlations. Industrial and Engineering Chemistry Research, 1996, 35(1): 192-198.
    [30] Chung T W, Wu H. Mass transfer correlation for dehumidification of air in a packed absorber with an inverse U-shaped tunnel. Separation Science and Technology, 2000, 35(10): 1502-1514.
    [31]刘晓华,江亿,常晓敏,易晓勤.溶液除湿空调系统中叉流再生装置热质交换性能分析.暖通空调, 2005, 35(12): 10-15.
    [32] Liu X H, Zhang Y, Qu K Y, Jiang Y. Experimental study on mass transfer performances of cross flow dehumidifier using liquid desiccant. Energy Conversion and Management, 2006, 47(15-16): 2682-2692.
    [33]刘晓华.溶液调湿式空气处理过程中热湿耦合传递特性分析[博士学位论文].北京:清华大学建筑学院, 2007.
    [34] S.W. Peng, Z.M. Pan. Heat and mass transfer in liquid desiccant air-conditioning process at low flow conditions. Commun nonlinear sci numer simulat, 2009,14:3599-3607.
    [35] Yonggao Yin, Xiaosong Zhang, Donggen Peng, Xiuwei Li. Model validation and case study on internally cooled/heated dehumidifier/regenerator of liquid desiccant systems. International journal of thermal sciences , 2009, 48:1664–1671.
    [36]李秀伟,张小松,王庚,曹熔泉.溶液除湿能力强化.化工学报, 2008, 59(10):2442-2447.
    [37]江亿,李震,刘晓华,陈晓阳.一种气液直接接触式全热换热装置:中国, 03249068.2. 2004-10-20.
    [38]李震,江亿,陈晓阳,刘晓华.溶液除湿空调及热湿独立处理空调系统.暖通空调, 2003,33(6):26-30.
    [39] R. Kumar, P. L. Dhar, Sanjeev Jain, A. K. Asati. Multi absorber stand alone liquid desiccant air-conditioning systems for higher performance. Solar energy, 2009, 83:761-772.
    [40]梅林.紧凑式双级并联液体除湿器性能研究[硕士学位论文].上海:上海交通大学动力与机械学院, 2006.
    [41]熊珍琴,代彦军,王如竹.两级双溶液除湿系统性能研究.上海交通大学学报, 2009, 43(5):783-788.
    [42]张小松,殷勇高,曹毅然.蓄能型液体除湿冷却空调系统的建立与实验研究.工程热物理学报, 2004, 25(4): 546-549.
    [43] Khan A. Y. Cooling and dehumidification performance analysis of internally-cooled liquid desiccant absorbers. Applied Thermal Engineering, 1998, 18(5): 265-281.
    [44]吴安民,李春林,张鹤飞.内冷型液体除湿特性.石油化工设备, 2006, 35(6): 17-19.
    [45]常晓敏.内冷型溶液除湿装置研究与应用[硕士学位论文].北京:清华大学建筑学院, 2008.
    [46] G. O. G. Lof. Cooling with solar energy. Congress on solar energy, Tucson, AZ, 1955: 171-189.
    [47] N.R. Sheridan. Solar air conditioning. J.I.E Australia, 47-52 (1961).
    [48] P. Gandhidasan. Analysis of a solar space cooling system using liquid desiccants, J. Sol. energy Eng., Vol. 112 pp. 246-250,1990.
    [49] T. Katejanekarn, S. Chirarattananon, S. Kumar. An experimental study of a solar-regenerated liquid desiccant ventilation pre-conditioning system. Solar energy, 2009,83:920-933.
    [50]张小松,彭冬根,殷勇高.太阳能溶液除湿制冷技术研究进展.东南大学学报:自然科学版, 2008, 38 (6) : 1126-1132.
    [51]张小松,费秀峰.溶液除湿蒸发冷却系统及其蓄能特性的初步研究.大连理工大学学报, 2001, 41(S1) : 30-33.
    [52]殷勇高,张小松,李应林,等.蓄能型太阳能溶液除湿蒸发冷却空调系统的研究.东南大学报:自然科学版, 2005, 35 (1) : 73-76.
    [53] Novosel, D., Griffiths, W.C., 1988. Active humidity control through gas-fired desiccant humidity pump. Proceedings of the fifth annual symposium on improving building energy efficiency in hot and humid climates, Houston, Tex., 150-154.
    [54] Lowenstein A.I., Novosel D. The Seasonal Performance of a Liquid-Desiccant Air Conditioner. ASHRAE Transactions, Vol. 101 679-685, 1995.
    [55] Albers W. F., J.R Beckman. 1991. Method and apparatus for simultaneous heat and mass transfer. U.S. Patent 4982782.
    [56] W.F. Albers, J.R. Beckman, et al. Ambient pressure, liquid desiccant air conditioner, ASHRAE Trans, 1991, Vol.97, Part-II.
    [57]江亿,李震,陈晓阳,刘晓华.溶液式空调及其应用.暖通空调, 2005,34(11):80-97.
    [58]陈晓阳,江亿,李震.湿度独立控制空调系统的工程实践.暖通空调, 2004,34(11):103-109.
    [59]谢晓云,江亿,刘拴强,等.新型高效热驱动溶液除湿空调原理及应用.暖通空调, 2006,36 (S1) :96-100.
    [60] Y.K.Yadav. Vapor-compression and liquid desiccant hybrid solar space-conditioning system for energy conservation. Renewable energy, 2005,7(6):719-723.
    [61] Renato M. Lazzarin, Francesco Castellotti. A new heat pump desiccant dehumidifier for supermarket application. Energy and buildings, 2007,39:59~65
    [62] Y. J. Dai, R. Z. Wang, H. F. Zhang. Use of liquid desiccant cooling to improve the performance of vapor compression air conditioning. Applied thermal engineering, 2001, 21(12):1185-1202.
    [63]李震,刘晓华,江亿,等.带有溶液热回收器的新风空调机.暖通空调, 2003,33(S1):55-57.
    [64] S. Jaina, P.K. Bansa. Performance analysis of liquid desiccant dehumidification systems. International Journal of Refrigeration, 2007, 30:861-872.
    [65] T. Katejanekarn, S. Kumar. Performance of a solar-regenerated liquid desiccant ventilation pre-conditioning system. Energy and buildings, 2008, 40:1252–1267.
    [66]王顺林,裴清清,朱钟浩,韩俊召.夏热冬暖地区太阳能溶液除湿空调的应用分析.建筑热能通风空调. 2007, 26(4):17-20.
    [67] Min Tu, Cheng-Qin Ren, Long-Ai Zhang, Jian-Wei Shao. Simulation and analysis of a novel liquid desiccant air-conditioning system. Applied thermal engineering, 2009, 29:2417–2425.
    [68]刘雄,王春苗,程立娜.混合式溶液除湿蒸发冷却空调系统性能优化分析.西安建筑科技大学学报:自然科学版, 2009, 41(3):413-419.
    [69]刘守帅,张子平,张伟捷,邹嘉艳.溶液除湿空调在高湿环境中应用的理论分析.河北建筑科技学院学报. 2005, 22(4):8-11.
    [70]刘拴强,刘晓华,江亿.溶液除湿空调系统模拟方法及应用.中国勘察设计. 2005, (5):49-52.
    [71]丁照球.溶液除湿空调系统研究[硕士学位论文].武汉:武汉科技大学, 2007.
    [72]王瞩宇.溶液除湿技术在烘燥系统余热回收中的应用研究[硕士学位论文].上海:东华大学, 2009.
    [73]刘钧霞,李满峰.太阳能溶液除湿空调系统在工厂的应用分析.制冷空调与电力机械, 2007, 28(1):58-60.
    [74]李峰.夏热冬暖地区溶液除湿独立新风空调系统的运用实验研究.供热制冷, 2008, 12:52-56.
    [75]凌春雷.溶液除湿新风机组的性能研究[硕士学位论文].天津:天津大学环境学院, 2007.
    [76] Y. T. Li, H. X. Yang. Investigation on solar desiccant dehumidification process for energy conservation of central air-conditioning systems. Applied thermal engineering, 2008, 28:1118–1126.
    [77]刘晓华,易晓勤,谢晓云,常晓敏.基于溶液除湿方式的温湿度独立控制空调系统性能分析.中国科技论文在线, 2008, 3(7):469-476.
    [78]崔文盈.温湿度独立控制溶液除湿空调系统的理论研究及技术方案论证[硕士学位论文].重庆:重庆大学城市建设与环境工程学院, 2007.
    [79]段凯.吊顶冷盘管与热泵式溶液除湿型新风机组温湿度独立控制空调系统应用研究[硕士学位论文].重庆:重庆大学城市建设与环境工程学院, 2007.
    [80]马玉奇,刘学来,李永安,等.基于溶液除湿的地源热泵毛细管顶板空调系统.制冷与空调, 2008, 8(4):85-87.
    [81]李震.湿空气处理过程热力学分析方法及其在溶液除湿空调中应用[博士学位论文].北京:清华大学建筑学院, 2004.
    [82]刘晓华,李震,江亿.溶液全热回收装置与热泵系统结合的新风机组.暖通空调, 2004, 34(11): 98-102.
    [83]刘拴强,江亿,刘晓华,等.热泵驱动的双级溶液调湿新风机组原理及性能测试.暖通空调, 2008, 38(1): 54-63.
    [84]刘晓华,刘拴强,李震,江亿.溶液全热回收装置及其优化分析.太阳能学报, 2007, 28(7):762-768.
    [85] Factor H M, Grossman G. A packed bed dehumidifier/regenerator for solar air conditioning with liquid desiccants. Solar energy, 1980, 24(6): 541-550.
    [86] Gandhidasan P, Kettleborough C F, Ullah M R. Calculation of heat and mass transfer coefficients in a packed tower operating with a desiccant-air contact system. Journal of solar energy engineering, 1986, 108(2): 123-128.
    [87] Radhwan A M, Gari H N, Elsayed M M. Parametric study of a packed bed dehumidifier/regenerator using CaCl2 liquid desiccant. Renewable energy, 1993, 3(1): 49-60.
    [88] Stevens D I, Braun J E, Klein S A. An effectiveness model of liquid-desiccant system heat/mass exchangers. Solar energy, 1989, 42(6): 449-455.
    [89] X.H. Liu, Y. Jiang, K.Y. Qu. Heat and mass transfer model of cross flow liquid desiccant air dehumidifier/regenerator. Energy conversion and management, 48 (2007) 546–554.
    [90]路则锋,陈沛霖,张旭.逆流填料式液体除湿系统传热传质过程解析解.同济大学学报, 2000, 28(3): 342-347.
    [91] Khan A Y. Sensitivity analysis and component modeling of a packed-type liquid desiccant system at partial load operating-conditions. International Journal of Energy Research, 1994, 18(7): 643-655.
    [92] Y. Kaita. Thermodynamic properties of lithium bromide-water solutions at high temperatures. International Journal of Refrigeration, 24(2001):374-390.
    [93] J. Martin Wimby, Thore S. Berntsson. Viscosity and density of aqueous solutions of LiBr, LiCl, ZnBr2, CaCl2, and LiNO3. 1. Single Salt Solutions. J. Chem. Eng. Data, (1994):68-72.
    [94] K. R Patil, A. D. Tripathi, G. Pathak, S. S. Katti. Thermodynamic properties of qqueous electrolyte Solutions. 1. vapor pressure of aqueous solutions of LiCl, LiBr, and LiI. J. Chem. Eng. Data, 35, (1990):166-168.
    [95]夏建军. VRF空调系统优化控制研究[博士学位论文].北京:清华大学建筑学院, 2005.
    [96]姚俊,马松辉. Simulink建模与仿真.西安:西安电子科技大学出版社, 2002.
    [97]过增元,李志信,周森泉,等.换热器中的温差场均匀性原则.中国科学, 1996, 26(1):25-31.
    [98]陆耀庆.实用供热通风空调设计手册.第2版.北京:中国建筑工业出版社, 2008.
    [99]刘拴强,杨海波.招商地产三洋3#厂房改造工程温湿度独立调节空调系统应用介绍[J].供热制冷, 2008, 7:27-30.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700