基于智能过程总线技术的继电保护系统可靠性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
变电站是智能电网的关键节点,承担了电力系统电能传输和转换任务。继电保护是变电站最为重要的功能之一,是电力系统安全稳定运行的重要保障。我国第一代智能变电站通信网络构建以IEC61850标准为基础,采用过程总线通信,引入网络交换机,用简单的过程总线光纤网络取代传统变电站一、二次设备间繁多的电缆联接,并追加合并单元及智能终端对一次设备进行智能化处理,使得数字化保护在物理结构及功能运行方面与传统的继电保护存在一定区别,其可靠性有待进一步研究。另外,过程总线通信网络所固有的缺陷可能会对继电保护可靠性产生一定影响。准确评估过程总线网络性能,对保护系统可靠性分析及其网络方案优化设计具有十分重要意义。为了维持保护系统可靠性,需要对保护系统进行预防性检修。如何利用有限的维修资源使保护系统运行在最佳状态是一个值得研究的课题。
     本文对上述问题进行了深入研究,主要研究内容及创新成果如下:
     1)据交换式以太网的工作原理以及IEC61850定义的过程总线发布/订阅机制,提出了通信网络的最小空间模型。利用最小空间模型构建过程总线通信网络的最优交换空间模型。给出了交换空间模型的多播组划分方法,为过程总线网络的优化设计提供了理论依据。
     2)深入研究了过程总线的两种典型的数据阻塞模型(即,同步信号阻塞和非同步信号阻塞),针对QoS服务特性,推导以优先级为目标的数据传输延时计算公式。根据以太网的固有阻塞特性,提出了一种通过比较订阅端数据到达时间的过程总线网络时延评估算法。其特点是不需要同步时钟源,测量精度高,可作为过程总线网络性能的在线诊断工具。
     3)开发了过程总线数据流量生成器和接收器,搭建了继电保护数字化仿真平台,实验测试了某一典型变电站的2种过程总线方案的网络性能,验证了所提模型和方法的正确性。
     4)提出了过程总线通信故障模型,从安全性和信赖性两个方面,分析了通信故障对保护功能的影响。为了评估供电系统可靠性,建立了由通信故障引起的继电保护拒动模型。根据采样值传输特性,提出了过程总线通信故障的检测方法。
     5)根据国内继电保护设计准则和IEC61850-90-4组网工程设计导则,提出了几种典型过程总线组网方案。针对复杂系统可靠性分析,引入了改进简化割集算法,并对各种过程总线方案进行了可靠性分析。
     6)提出了分布式保护系统元件可靠性指标分配方法,建立了以系统可靠性和设计费用为目标的最优化分配模型,并采用评价函数法将多目标问题转化为单目标问题求解出系统的Pareto最优解。
     7)采用状态空间法建立了保护系统的维修模型,提出了保护系统的可维修性指标分配方法。该项研究对数字化保护系统的运行、检修、维护等工作的合理安排具有十分重要的指导意义。
Substations are key nodes of smart grid, deliver energy from remote generation to load centers. Protection relays play an important role in substation to ensure safety and stability of the power system. The IEC61850standard is applied in smart substation network communication, and the switched Ethernet based process bus is introduced to replace the miles of copper cables between the primary apparatus in the switchyard and secondary system in the control building. Compared to the traditional relay protection, the first generation of process bus based digital protection system differs in many ways such as the physical layouts and operating mechanism, so its reliability needs further study. Especially the inherent defect of Ethernet network (such as real-time performance and security problem) may decrease the reliability of protection function. Hence, the performance evaluation of process bus has very important significance for the reliability analysis and network optimal design of protection system. To maintain the reliability of protection system, the preventative maintenance is required. How to utilize limited resources to keep the best condition of protection system is a topic which is worth studying.
     Based on above discussion, this dissertation has made a deeply study of the reliability of process bus based digital protection system. The main works and achievements are as follows:
     1) According to the working principle of switched Ethernet and the publisher/subscriber mechanism specified in IEC61850, the minimal space model of network is proposed to construct the optimal switch space of process bus. The multicast configuration method with respect to the switch space is presented which provides a theoretical basis of optimal design of process bus network.
     2) The block models of two types of process bus data (synchronous and non-synchronous data) are deeply studied. The transmission delay calculation formula for the certain priority message is derived for the QoS based communication. A message capture time based evaluation method of network latency which can work without the help of synchronous clock source and provide very high measurement precision is proposed. It can be used for the real-time monitoring and diagnosis of process bus network performance.
     3) A process bus simulation system is developed, including network traffic generator and capturer. The network performance of two process bus solutions for a typical substation is tested using the digital protection simulation system, which validates the availability of proposed models and methods.
     4) The communication failure of process bus is investigated. The influence of communication failure on protection function is analyzed from the aspects of safety and reliance. To assess the power supply reliability, the miss trip model of relay protection caused by communication failure is built. According to the transmission characteristic of sampled value, a method for detecting the fault of process bus is proposed.
     5) Several typical process bus network solutions are introduced considering the Chinese relay protection design criteria together with the redundancy protocols recommended by IEC61850-90-4Network Engineering Guidelines. For the reliability analysis of complicated network architecture, a reduced cut set method is presented and used to analyze the reliability of proposed process bus solutions.
     6) An optimal principle based reliability allocation method is presented for distributed protection system. The optimization model of reliability allocation is constructed to pursue two goals:the lowest totalcosts of system design and the highest reliability of protection system. The multi-objective problem is transformed into a single objective problem by means of the evaluation function method to solve Pareto optimal solutions.
     7) Considering the condition-based and periodic maintenance, the maintenance model of protection system is constructed by means of the state space method. A novel maintainability allocation method of protection system is proposed to plan the operation and maintenance of digital protection system.
引文
[1]沈国荣,黄健.2002年国际大电网会议系列报道一通信技术是变电站自动化的关键[J].电力系统自动化,2001,25(5):1-5
    [2]Brunner C., Schimmel G., Schubert H.. Standardization of serial links replacing parallel wiring to transfer process data [C].34-209, CIGRE, Paris, France,2002:34-209
    [3]Gross R.. Substation control and protection systems for novel sensors[J]. CIGRE, Paris, Aug,2000
    [4]谭文恕.变电站通信网络和系统协议IEC 61850介绍[J].电网技术,2001,25(9):8-11,15
    [5]Andersson L., Brand K. P.. The benefits of the coming standard IEC61850 for communication in substation[J]. Southern African Coneference on Power System Proteetion, Johannebsugr,8, Nov, 2000
    [6]IEC, IEC 61850-1:Introduction and overiew,2002
    [7]IEC, IEC 61850-2:Glossary,2001
    [8]IEC, IEC 61850-3:General requirments,2002
    [9]IEC, IEC 61850-4:System and project management,2002
    [10]IEC, IEC 61850-5:Communication requirment for function and device,2003
    [11]IEC, IEC 61850-6:Configuration description language for communication in electrical subsations reliated to IEDs,2003
    [12]IEC, IEC 61850-7-1:Basic communication strcture for substation and feeder equipment-Principles and models,2003
    [13]IEC, IEC 61850-7-2:Basic communication strcture for substation and feeder equipment-Abstract communication severice interface (ACSI),2003
    [14]IEC, IEC 61850-7-3:Basic communication strcture for substation and feeder equipment-Common data classes,2003
    [15]IEC, IEC 61850-7-4:Basic communication strcture for substation and feeder equipment-Compatible logical node classes and data classes,2003
    [16]IEC, IEC 61850-8-1:Specific Communication Service Mapping (SCSM)-Mappings to MMS(ISO 9506-1 and ISO 9506-2) and to ISO/IEC 8802-3,2004
    [17]IEC, IEC 61850-9-1:Specific Communication Service Mapping (SCSM)-Sampled values over unidirectional multidrop point to point link,2003
    [18]IEC, IEC 61850-9-1:Specific Communication Service Mapping (SCSM)-Sampled values over ISO/IEC 8802-3,2004
    [19]IEC, IEC 61850-10:Conformance testing,2005
    [20]任雁铭,秦立军,杨奇逊.IEC 61850通信协议体系介绍和分析[J].电力系统自动化,2000,24(8):62-64
    [21]李永亮,李刚.IEC 61850第2版简介及其在智能电网中的应用展望[J].电网技术,2010,34(4):11-16
    [22]IEC 61850. Communication networks and systems in substation[S].2004
    [23]孙志祥,晋伟平,杨俊宏,等.110kV数字化变电站建设[J].云南电力技术,2007,35(3):44-45
    [24]Wong G., Brand K. P., Rudolph T.. Interoperatbility testing and validation of EC 61850 portective relays, Hanover Fair,2004
    [25]Schubert, H. Haude, J. Janz. A pilot project for testing the standard drafts for open communication in substations-first experiences with the future standard EEC 61850[C]. CIGRE, Paris,2000
    [26]Brunner C.. IEC 61850 in ABB[C]. CIGRE Paris,2002
    [27]贺春,张冉.IEC 61850国际互操作实验经验总结[J].电力系统自动化,2012,36(2):5-10
    [28]何卫,王永福,缪文贵,等.IEC 61850深层次互操作试验方案[J].电力系统自动化,2007,31(6):103-107
    [29]陈炯聪,高新华,潘璠.IEC 61850互操作测试分析[J].电力系统保护与控制,2009,37(15):121-123,127
    [30]谭文恕.IEC 61850和IEC60870-6(TASE.2)的比较[J].电网技术,2001,25(10):1-4
    [31]谭文恕.对变电站自动化系统通信网络的要求及通信网络标准化的动态[J].电网技术,1999,22(12): 1-5
    [32]辛耀中.电力系统数据通信协议体现[J].电力系统自动化,1999,23(1):40-44
    [33]徐立子.IEC 61850对变电站自动化系统报文性能的要求[J].电网技术,2002,26(11):1-3,19
    [34]李永亮,袁志雄,陈斌,等.对基于TCP/IP的IEC 61850特定通信服务映射MMS的分析与实现[J].电网技术,2004,28(24):33-38,42
    [35]任雁铭,操丰梅,秦立军,等.MMS技术及其在电力系统通信协议中的应用[J].电力系统自动化,2000,24(10):66-68
    [36]张结.IEC 61850的结构化模型分析[J].电力系统自动化,2004,28(9):90-93
    [37]张结.自动化理论在IEC 61850中的应用[J].电网技术,2004,28(18):34-38
    [38]张结.IEC 61850的语义空间研究[J].电力系统自动化,2004,28(11):45-48
    [39]张结.应用标准与IEC 61850的引用和兼容关系[J].电力系统自动化,2004,28(19):88-91
    [40]汪可友,张沛超,郁惟镛,等.应用IEC 61850通信协议的新一代故障信息处理系统[J].电网技术,2004,28(5):55-58
    [41]章坚民,朱炳铨,赵舫,等.基于IEC 61850的变电站子站系统建模与实现[J].电力系统自动化,2004,28(21):43-48
    [42]段斌,王键.变电站自动化信息交换安全认证体系[J].电力系统自动化,2005,29(9):55-59
    [43]殷志良,刘万顺,杨奇逊,等.基于IEC 61850标准的采样值传输模型构建及映射实现[J].电力系统自动化,2004,28(11):35-42
    [44]殷志良,刘万顺,杨奇逊,等.基于IEC 61850标准的过程总线通信研究与实现[J].中国电机工程学报,2005,25(8):64-69
    [45]曾庆禹.变电站自动化技术的未来发展(一)[J].电力系统自动化,2000,24(19):1-4,34
    [46]罗苏南,叶妙元,徐雁.光纤电压互感器稳定性的分析[J].中国电机工程学报,2000,20(12):15-19
    [47]罗苏南,田朝勃,赵希才.空心线圈电流互感器性能分析[J].中国电机工程学报,2004,24(3): 108-113
    [48]张可畏,王宁,段雄英,等.用于电子式电流互感器的数字积分器[J].中国电机工程学报,2004,24(12):108-113
    [49]蔡月明,李惠宇,何胜利.智能开关控制装置关键技术研究[J].智能开关控制装置关键技术研究,2011,39(11):129-132
    [50]GE. Hard Fiber Process Bus System [R]. GE HardFiber Reference Manual,2008
    [51]Tengdin J. T., Simon M. S., Sufana C. R.. LAN congestion scenario and performance evaluation. In Proceedings of IEEE Power Engineering Society 1999 Winter Meeting, Vol 2. New York:1999. 919-924
    [52]Skeie T., Johannessen S., Brunner C. Ethernet in Substation Automation. IEEE Control Systems Magazine,2002,22(3):43-51
    [53]孙军平,盛万兴,王孙安.新一代变电站自动化网络通信系统研究[J].中国电机工程学报,2003,23(3):16-19
    [54]辛建波,段献忠.基于优先级标签的变电站信息网络综合传输方案[J].电网技术,2004,28(22):26-30,47
    [55]韩小涛,聂一雄,尹项根.基于OPNET的变电站二次回路通信系统仿真研究[J].电网技术,2005,29(6):67-71
    [56]吴在军,胡敏强,杜炎森.变电站通信网络实时性能仿真分析[J].电力系统自动化,2005,29(8):45-49
    [57]董楠,朱林,段献忠.基于OPNET的变电站过程层网络的仿真研究[J].继电器,2006,34(21):41-45
    [58]李勇军,蔡皖东,王伟,等.基于端到端报文丢失的网络拓扑推测算法研究[J].通信学报,2007,28(10):85-91
    [59]Sidhu T.S., Yin Y. J.. Modeling and simulation for performance evaluation of IEC 61850-based substation communication systems[J]. IEEE Transactions on Power Delivery,2007,22(3): 1482-1489
    [60]辛建波,上官帖.基于漏桶和服务分类机制的数字化变电站信息传输方法[J].电网技术,2007,31(15):86-90
    [61]朱林,段献忠.基于过程总线的母线保护通信体系结构[J].电力系统自动化,2008,32(21):7-13
    [62]丁力,王晓茹,童晓阳.基于EPOCHS平台的IEC 61850采样值传输仿真[J].电力系统自动化,2008,32(20):67-72
    [63]窦晓波,胡敏强,吴在军,等.数字化变电站网络性能分析[J].电网技术,2008,32(17):98-104
    [64]黄忠胜,王晓茹,童晓阳.基于EPOCHS的数字化变电站通信网络仿真分析[J].电力系统自动化,2009,33(21):77-80
    [65]童晓阳,廖晨淞,周立龙,等.基于IEC 61850-9-2的变电站通信网络仿真[J].电力系统自动化,2010,34(2):69-73
    [66]张志丹,黄小庆,曹一家,等.基于虚拟局域网的变电站综合数据流分析与通信网络仿真[J].电网技术,2011,35(5):204-209
    [67]CIGRE Report. An international survey of the present status and the perspective of long-term dynamics in power systems[R]. CIGRE Task Force,1995
    [68]尹项根,陈德树.主设备保护运行情况评价方法的讨论[J].电力自动化设备,1996,60(4):17-19
    [69]张胜宝,王钢,丁茂生,等.保护系统可靠性与保护动作可靠性[J].继电器,2006,34(15):1-4,9
    [70]陈德树.继电保护运行状况评价方法的探讨[J].电网技术,2000,24(3):1-2,65
    [71]丁茂生,王钢,贺文.基于可靠性经济分析的继电保护最优检修间隔时间[J].中国电机工程学报,2007,27(25):44-47
    [72]贺家李,郭征,杨晓军,等.继电保护的可靠性与动态性能仿真[J].电网技术,2004,28(9):18-22
    [73]王钢,丁茂生,李晓华,等.数字继电保护装置可靠性研究[J].中国电机工程学报,2004,24(7):47-52
    [74]Bilintor R., Tatla J.. Composite generation and transmission system adequacy evaluation including protection system failure modes[J]. IEEE Trans on Power Apparatus and Systems,1983,102(6): 1823-1830
    [75]Billinton R., Allan R.. Reliability evaluation of engineering systems:concepts and techniques[M]. Second edition. New York:Plenum Press,1992
    [76]Anderson P., Agarwal S.. An improved model for protective-system reliability[J]. IEEE Transactions on Reliability,1992,41(3):422-426
    [77]Anderson P.. An improved reliability model for redundant protective system-Markov models[J]. IEEE Transactions on Power Systems,1997,12(2):573-578
    [78]Castro L. R., Crossley P. A.. Reliability evaluation of substation control system[J]. IEE Pro-Gener, Tram and Distrib,1999,146(6):626-632
    [79]李永丽,李致中,杨维.继电保护装置可靠性及其最佳检修周期的研究[J].中国电机工程学报,2001,21(6):63-65,71
    [80]陆志峰,阳少华,陈希英,等.多元件备用系统可靠性计算研究[J].中国电机工程学报,2002,22(6):52-55,61
    [81]王树春.双重化继电保护系统可靠性分析的数学模型田[J].继电器,2005,33(18):6-10,14
    [82]孙福寿,汪雄海.一种分析继电保护系统可靠性的算法[J].电力系统自动化,2006,30(16):32-35,76
    [83]陈少华,马碧燕,雷宇,等.综合定量计算继电保护系统可靠性[J].电力系统自动化,2007,31(15):111-115
    [84]熊小伏,欧阳前方,周家启,等.继电保护系统正确切除故障的概率模型[J].电力系统自动化,2007,31(7):12-15
    [85]张雪松,王超,程晓东.基于马尔可夫状态空间法的超高压电网继电保护系统可靠性分析模型[J].电网技术,2008(13):94-99
    [86]冯豆,李生虎,崔芳.继电保护系统最优检修周期的优化算法[J].电力系统保护与控制,2011,31(21):60-65,69
    [87]郑涛,王方,金乃正.双重化继电保护系统确定最佳检修周期新方法[J].电力系统自动化,2010,34(10):67-70
    [88]洪梅,丁明,戴仁赦.保护系统的概率模型及其对组合系统可靠性的影响[J].电网技术,1997,21(8):44-48
    [89]周家启,任震译,徐国禹,等.电力系统可靠性评估[M].科学技术文献出版社重庆分社,1986
    [90]Singh C., Pation A. D.. Protection system rellabillty modeling:un-readiness probability and mean duration of undetected faults[J]. IEEETrans,1989
    [91]张沛.基于概率的可靠性评估方法[J].电力系统自动化,2005,29(4):92-96
    [92]韩小涛,尹项根,张哲.故障树分析法在变电站通信系统可靠性分析中的应用[J].电网技术,2004,28(1):56-59
    [93]郑远德.基于动态故障树的继电保护可靠性建模及应用[D].硕士学位论文,北京:华北电力大学,2012
    [94]戴志辉,王增平,焦彦军.基于动态故障树与蒙特卡罗仿真的保护系统动态可靠性评估[J].中国电机工程学报,2011,31(19):105-112
    [95]王超,高鹏,徐政,等.GO法在继电保护可靠性评估中的初步应用[J].电力系统自动化,2007,31(24):52-56,85
    [96]沈祖培,黄祥瑞.GO法原理及应用[M].北京:清华大学出版社,2004
    [97]高翔,张沛超.数字化变电站主要特征和关键技术[J].电网技术,2006,30(23):67-71
    [98]张沛超,高翔.全数字化保护系统的可靠性及元件重要度分析[J].中国电机工程学报,2008,28(1): 77-82
    [99]朱林,陈金富,段献忠.数字化变电站冗余体系结构的改进及其可靠性和经济性评估[J].电工技术学报,2009,24(10):147-151
    [100]杨丽,赵建国,Peter A. C.数字化变电站继电保护系统过程总线结构研究[J].电力自动化设备,2010,30(8):111-115
    [101]候伟宏,张沛超,胡炎,等.基于高可用自动化网络的保护系统及其可靠性分析[J].电力系统保护与控制,2010,38(18):44-48,53
    [102]Andersson L., Brand K.P., Brunner C., et al. Reliability investigations for SA communication architectures based on IEC 61850. in Proc. IEEE Power Tech., Aug.2005
    [103]Kanabar M., Sidhu T.. Reliability and Availability Analysis of IEC 61850 Based Substation Communication Architectures, in The 2009 IEEE PES General Meeting, Calgary, Canada, July 2009
    [104]Jiang K., Singh C.. Reliability modeling of ALL-Digital Protection System Including Impact of Repair. IEEE Trans. Power Del.,2010,25(2):579-586
    [105]李锋,谢俊,赵银凤,等.基于IEC 61850的智能变电站交换机lED信息模型[J].电力系统自动化,2012,36(7):76-80
    [106]张小建,吴军民.智能变电站网络交换机信息模型及映射实现[J].电力系统保护与控制,2013,41(10):134-139
    [107]黄灿,肖驰夫,方毅,等.智能变电站中采样值传输延时的处理[J].电网技术,2011,35(1):5-10
    [108]李晶,段斌,周江龙,等.基于GMRP的变电站发布/订阅通信模型设计[J].电网技术,2008,32(16):16-21
    [109]Ingram D. M. E., Steinhauser F., Marinescu C. et al. Direct evaluation of IEC 61850-9-2 process bus network performance [J]. IEEE Transactions on Smart Grid,2012,3(4):1853-1854
    [110]李晓朋,赵成功,李刚,等.基于IEC 61850的数字化继电保护GOOSE功能测试[J].继电器,2008,36(7):59-61
    [111]李洪涛,张巍,刘忠战.220kV组合电子式互感器原理结构及挂网试验[J].高压电器,2011,47(8):112-116
    [112]高社生,张玲霞.可靠性理论与工程应用[M].北京:国防工业出版社,2002
    [113]王蓬,王锡吉.可靠性指标工程加权分配法[J].电子产品可靠性与环境试验,2002(5):18-21
    [114]罗辉,周建平,王德群.某新型火箭炮发射系统的可靠性分析[J].四川兵工学报,2008,29(1):63-65
    [115]李建军.发射装置可靠性指标分配方法研究及其应用[J].舰船科学技术,2009,31(5):102-104
    [116]吕修东,周建平,程志高.基于工程加权分配法的某新型火箭炮可靠性指标分配[J].四川兵工学报,2010,31(4):19-20
    [117]王健,黄德武,王伟.小口径弹药可靠性指标分配及应用[J].弹箭与制导学报,2011,31(2):108-110,126
    [118]解可新,韩健,林友联.最优化方法[M].天津:天津大学出版社,2004
    [119]杨支吉.基于可靠性的继电保护状态检修研究[D].南京:南京理工大学,2012
    [120]孙思培,徐习东.继电保护装置状态检修的可靠性研究[J].机电工程,2012,29(4):450-453
    [121]于永利,朱小冬,郝建平,等.系统维修性建模理论与方法[M].北京:国防工业出版社,2007

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700