电力系统负荷及负荷率的可靠性影响模型
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电力系统可靠性性能受系统负荷、元件可靠性性能、元件电气特性和网络结构等的影响。这些因素中,系统负荷具有明显的分布特性,用单一负荷水平(比如:峰荷、平均负荷)进行系统可靠性评估,将难以真实地反映系统可靠性水平。通过需求侧管理、储能等手段,可实现系统负荷率的变化,这将对给定时段内系统的可靠性性能产生较大的影响。因此,研究系统可靠性随负荷、负荷率的变化规律,以实现系统可靠性的快速评估,优化系统运行策略,提高系统可靠性,具有重要的理论意义和工程价值。
     本文受国家自然科学基金项目“电力系统可靠性非同调机理及非同调元件辨识研究”(50777067)等的资助,对系统负荷、负荷率与电力系统可靠性之间的相互影响关系展开深入探讨,取得的成果如下:
     结合支撑向量回归法(SVR,Support Vector Regression)具有求解小样本、非线性、高维数、局部极小点等问题的优点,带扩展记忆的粒子群优化算法(PSOEM,Particle Swarm Optimization with Extended Memory)具有搜索方向明确、收敛快以及粒子个体经验积累等特点,建立短期负荷预测的PSOEM-SVR模型。深入分析ε不敏感损失函数、惩罚因子c等参数对SVR模型精度的影响,应用PSOEM方法实现模型参数的优化计算。将该模型应用于某城市电网进行负荷预测,结果表明:PSOEM-SVR模型的预测精度优于传统BP神经网络等模型,其夏季、冬季负荷预测的最大绝对百分误差分别为2.24%和2.29%。该模型可为负荷率调整策略的制订、可靠性随负荷率变化规律等分析提供负荷预测的基础。
     分析发电系统、发输电组合系统主要可靠性指标,如:失负荷概率(LOLP,loss of load probability)、失负荷频率(LOLF,loss of load frequency)、失电量期望(EENS,expected energy not supplied),随系统负荷的变化规律,以拟合的规律曲线连续、光滑等为目标,建立系统可靠性指标随系统负荷变化的三次样条插值模型。通过插值边界条件、插值点导数等信息,即可求解该模型。结合该模型,可建立电力系统可靠性预测估计模型,以避免负荷变化时可靠性的重复评估,可为负荷率变化对系统可靠性影响的分析提供快速计算的基础。将该模型应用于RBTS、IEEE-RTS79、IEEE-RTS96等系统。算例表明:系统可靠性随负荷呈非线性的变化规律;当负荷变化时,可直接应用该模型预测估计系统可靠性,其平均绝对百分误差约2.0%。
     基于削峰填谷和等比例调整等负荷率调整策略,提出调整策略对应的负荷调整算法;基于此,建立系统可靠性指标随系统负荷率变化的样条插值模型。两种负荷率调整策略均针对给定时段(如一年或一天)内,在满足负荷电能需求下,调整负荷谷峰差及负荷曲线,即在系统平均负荷不变的前提下改变系统最大负荷及其他时段负荷,以达到提高负荷率的目的。应用RBTS、IEEE-RTS79等系统验证了模型的有效性。算例表明:随着系统负荷率的提高,系统可靠性呈非线性上升规律,即提高系统负荷率可提高系统可靠性;但是,当负荷率提高到一定程度时,系统可靠性的提高会出现明显的饱和现象。
     随着负荷率的提高,电力系统可靠性将得到改善,但其通常以牺牲系统运行的经济性为代价。因此,应综合计入负荷率的调整成本、可靠性效益等因素,确定电力系统运行的最优负荷率,以提高系统的可靠性和经济性。鉴于此,挖掘负荷率调整过程中电力系统可靠性、经济性的变化规律,基于系统峰谷差电价、停电损失等因素,建立最优负荷率的非线性规划模型,并应用黄金分割算法求解该模型。应用该模型对RBTS、IEEE-RTS79等系统的负荷率进行了优化分析。算例表明:通过负荷率的优化,可取得较大的经济效益;负荷调整策略对最优负荷率有较大影响。
The reliability of power systems depend on the system load demands, electricalparameters of power system components and power system structure. Due to thedistribution characteristics of system load, it is nearly impossible to evaluate thereliability of a power system using a single system load level, such as the peak load andaverage load. The power system load rate will be changed when the demand sidemanagement is introduced to a power system, hence the reliability of power system willbe changed. Therefore, the studies on the relationship between the system reliability andthe system load rate is critical for power systems, in addition, the study on the fastevaluation method for the power system reliability is also important.
     The thesis is supported in part by the Natural Science Foundation Project (No.50777067), which is titled “Recognizing the noncoherent mechanism and noncoherentcomponents of power systems”. The main achievements in this thesis are as follows:
     A novel method based on the Support Vector Regression (SVR) is presented in thepaper to forecast the short-term load, which can overcome the defects of the traditionalmethods, such as poor generalization capability, easy to fall into local minimum valueand slow convergence. The Particle Swarm Optimization with Extended Memory(PSOEM) has the following merits: a clearance of the searching direction, fastconvergence and particle accumulation of individual experience. A model based onSVM and PSOEM is proposed to forecast the short-term load of power system, inaddition, the influence on the accuracy of SVM caused by the insensitive loss function εand penalty factor c is investigate, finally optimization on the parameters is carried out.Then the model is used to forecast the short-term load in a Chinese city, and resultsindicated that the PSOEM-SVR model is more accurate than the traditional BP neutralnetwork method, and the calculated errors for the summer load and winter load are2.24%and2.29%respectively. The model can also be used to adjust the strategy ofsystem load rate and the forecast of system load.
     The rules between the reliability indices of power system, such as: LOLP (loss ofload probability), LOLF (loss of load frequency), EENS (expected energy not supplied),and the system load were analyzed. The relationship model between the power systemreliability and system load rate is modeled using the cubic splines, and the model can besolved according to the interpolation boundary conditions, the interpolation points and derivative information. Therefore, a fast evaluation technique based on the proposedmodel for the reliability of power systems can be obtained, which can avoid theduplication of reliability evaluation with multi load levels. The proposed model isapplied to the RBTS, IEEE-RTS79, and IEEE-RTS96system. Results indicate that therelationship between the system reliability and load rate is non-linear variation. Theaverage error for the evaluation on the reliability in these cases is about2.0%when theload changes.
     Load rate adjustment strategies based on reducing peak and filling valley and theproportion of load shifting are presented, and the algorithm for the load adjustment isalso presented. The relationship between the system reliability and the load rate ismodeled using the spline interpolation method. Both the two load rate adjustmentstrategies can adjust the load demand between the peak and valley periods, the systemload curve on the premise of satisfying the electricity demand for the peak load. In thisway the system load rate can be decreased. The proposed model and method are used tothe RBTS and IEEE-RTS79, and results indicate that with the increase of the systemload rates, the system reliability increase in a non-linear way, which also means thereliability performance of power systems can be improved by increase the system loadrate. However, when the loading rate increased to a certain extent, saturation will arisein the system reliability.
     With the increase of system load rate, the power system reliability will beimproved, which is usually associated with a higher cost of system expense. Therefore,the load rate adjustment cost and benefits of reliability improvement should be takeninto account in the model of optimizing the system load rate. The optimum load ratewith a high efficiency and low economic cost can be obtained. Based on the changingrules of the power system reliability and cost with the adjustment of system load rate, anon-linear model for the optimization of the system load rate is built, in which thedifference for the electricity price during the peak and valley, and the costs of load pointoutages have been considered. The golden section algorithm was used to solve theproposed model. Case studies on the RBTS, IEEE-RTS79indicate that great economicbenefits can be obtained by optimizing the system load rate, and the adjustment strategyfor the system load rate have a great influence on the optimum load rate.
引文
[1]周家启,蒋锦峰,孙渝江等.中华人民共和国电力行业标准DL/T861-2004:电力可靠性基本名词术语[S].中国电力出版社,2004.
    [2]朱兆霞,邹斌.市场环境下配电公司的风险模型及负荷率的影响分析[J].继电器,2007,35(12):56-60.
    [3]康重庆,周安石,王鹏等.短期负荷预测中实时气象因素的影响分析及其处理策略[J].电网技术,2006,30(7):5-10.
    [4]陈文高.配电系统可靠性实用基础[M].北京:中国电力出版社,1998.
    [5] R. Billinton, R.N. Allan. Reliability evaluation of engineering system: concepts10and techniques(second edition)[M]. New York and London: Plenum Press,1992.
    [6]11R. Billinton, Wenyuan Li. Reliability assessment of Electric Power System UsingMonte Carlo Methods [M]. Plenue Press,1994.
    [7]12周家启,黄雯莹,等译.工程系统可靠性评估[M].重庆:科学技术文献出版社重庆分社,1988.
    [8]13国家电力监管委员会电力可靠性管理中心.电力可靠性技术与管理培训教材[M].北京:中国电力出版社,1998.
    [9]14Wenyuan Li. Risk assessment of power system:modle,methods and application[M].2006.
    [10]15钟波.基于软计算理论的电力系统可靠性评估模型与算法研究[D].重庆:重庆大学,2004.
    [11]16陈文高.配电系统可靠性实用基础[M].北京:中国电力出版社,1998
    [12]17Billinton R, Allan R N. Reliability evaluation of power systems [M].2nd ed. NewYork: Plenum Press,1996.
    [13]18R.Billinton, R.N.Allan. Reliability Evaluation of power systems [M].1st ed.Pitman,1984.
    [14]刘洋.发输电系统可靠性评估的蒙特卡洛模型及算法研究[D].重庆:重庆大学,2003.
    [15]郭用基.可靠性工程原理[M].北京:清华大学出版社,2002
    [16] Billinton R., Medicherla T.K.P., Station originated multiple outage in the reliabilityanalysis of a composite generation and transmission system [J]. IEEE Transactionson Power Apparatus and Systems,1981,100(8):3870-3878.
    [17] Billinton R., Tatla J. Composite generation and transmission system adequacyevaluation including protection system failure models [J]. IEEE Transactions onPower Apparatus and Systems,1983,102:1823-1830.
    [18] Billinton.R. Composite System Reliability Evaluation [J]. IEEE Transactions onPower Apparatus and Systems,1969,88(1):276-281.
    [19] Billinton.R. Reliability Evaluation of power system [M]. New York and London:Plenue Press,1984
    [20] Billinton.R, Wenguan.L. Hybrid approach for reliability evaluation of CGTS usingMonte-Carlo simulation and enumeraion technique.1991,138(3):233-241.
    [21] Ring lee.R.J, Albert P,Allan.R.N, et al. Bulk power system reliability criteria andindices trends and future needs [J]. IEEE Transactions on Power System,1994,9(1):181-190.
    [22] Billinton.R, Zhang.W. Satate extension for adequacy evaluation of composite powersystem-application [J]. IEEE Transactions on Power System,2000,15(1):427-432.
    [23]别朝红,王锡凡.蒙特卡洛法在评估电力系统可靠性中的应用[J].电力系统自动化,1997,21(6):68-75.
    [24]丁明,张瑞华.发输电组合系统可靠性评估的蒙特卡罗模拟[J].电网技术,2000,24(3):68-75.
    [25]鲁宗相.电网复杂性及大停电事故的可靠性研究[J].电力系统自动化,2005,29(12):93-97.
    [26]王韶,周家启.计及输电线路相关停运的大电网可靠性评估[J].重庆大学学报,2005,28(3):30-34.
    [27]任震,梁振升,黄雯莹.考虑相关故障的双回输电线路可靠性评估[J].电力自动化设备,2005,25(6):14-17.
    [28]陈华,周家启.大型网络可靠性评估的增流减流交叉网流法[J].重庆大学学报,1990,13(4):2-6.
    [29]赵渊,周家启,谢开贵.基于网流规划的发输电组合系统可靠性评估模型研究[J].电网技术,2003,27(10):21-24.
    [30]陈万铭,周家启.发输电组合系统可靠性评估的交流潮流分析法[J].重庆大学学报,1992,15(3):37-42.
    [31]谢开贵.基于交流潮流的电力系统可靠性评估模型与算法研究[D].重庆:重庆大学,2001.
    [32]吴开贵,吴中福.大电网可靠性计算中的负荷削减策略[J].重庆大学学报,2003,26(7):28-31.
    [33]吴易春,丁明,李生虎.风电场对发输电系统可靠性影响的评估[J].电工技术学报,2004,19(11):72-76.
    [34]刘洋,周家启.计及气候因素的大电力系统可靠性评估[J].电力自动化设备,2003,23(9):60-62.
    [35] Billinton.R. Incorporation of Weather Effect in Transmission System Models forComposite System Adequacy Evaluation [J]. IEE Proc,1986,133(6):319-327.
    [36]宋云亭,郭永基,张瑞华.电压骤降和瞬时供电中断概率评估的蒙特卡罗仿真[J].电力系统自动化,2003,27(18):47-51.
    [37]杨京燕,倪伟,肖湘宁,等.计及电压暂降的配网可靠性评估[J].中国电机工程学报[J].2005,25(18):28-33.
    [38] Bhavarju. M. P. Requirement for composite system reliability evaluation models[J].IEEE Transactions on Power System,1988,3(1):326-335.
    [39] Slavaderi L, Billinton R. A comparision between two fundementally differentapproaches to composite system reliability evaluation [J]. IEEE Transactions onPower Apparatus and Systems,1985,104(12):453-460.
    [40]刘洋,周家启.大电网可靠性计算中的最优负荷削减模型[J].重庆大学学报,2003,26(10):52-55.
    [41]赵渊,周家启,周念成,等.发输电系统可靠性评估的启发式就近负荷削减模型[J].电网技术,2005,29(23):34-39.
    [42] Li W Y, Zhou J Q, Xie K G, et al. Non-coherence in transmission linearrangements[C]. Proc. Int. Conf. Power System Technology, Chongqing, China,2006:2272-2277.
    [43] Radmer D T., Kuntz Paul A., Christie, et al. Predicting vegetation-related failurerates for overhead distribution feeders [J]. IEEE Transactions on Power Delivery.2002,17(4):1170-1175.
    [44] R.E.Brown, G.Frimpong, H.L.Willis. Failure rate modeling using equipmentinspection data [J]. IEEE Transactions on Power Systems.2004,19(2):782-787.
    [45] B. Retteratha, S.S. Venkatab, A.A. Chowdhuryc. Impact of time-varying failure rateson distribution reliability [J].2005(27):682–688.
    [46]刘海涛,程林,孙元章,等.基于实时运行条件的元件停运因素分析与停运率建模[J].电力系统自动化.2007,31(7):6-11,44.
    [47] Albrecht PF, Biggerstaff BE, Billion R. IEEE reliability test system [J]. IEEETransactions on Power Apparatus and Systems.1979,98(6):2047-2054.
    [48]赵渊,周念成,谢开贵,等.大电力系统可靠性评估的灵敏度分析[J].电网技术.2005,29(24):25-30,53.
    [49] Carreras B.A, Lynch V.E, Dobson.I, et al. Dynamics criticality and self-organizationin a model for blackouts in power transmission systems [C]. Proceedings of the35thAnnual Hawaii International Conference on System Sciences, Hawaii: January2002.
    [50] Dobson I, Chen J, Thorp J.S, et al. Examining criticality of blackouts in powersystem models with cascading events[C]. Proceedings of the35th Annual HawaiiInternational Conference on System Sciences, Hawaii: January2002.
    [51] Carreras B.A, Newman D.E, Dobson I, et al. Evidence for self-organized criticalityin a time series of electric power system blackouts [J]. IEEE Transactions on Circuitsand systems,2004,51(9):1733-1740.
    [52]陈星莺,蓝澜,邓立华.用蒙特卡罗模拟法分析配电网可靠性的影响因素[J].江苏电机工程,2005,24(4):41-43.
    [53]程林,何剑,孙元章.线路实时可靠性模型参数对电网运行可靠性评估的影响[J].电网技术,2006,30(13):8-13.
    [54]刘洋,周家启.计及气候因素的大电力系统可靠性评估[J].电力自动化设备.2003,23(9):60-62.
    [55] Lu M.L., Kieloch Z. Accuracy of Transmission Line Modeling Based on AerialLiDAR Survey [J]. IEEE Transactions on Power Delivery,2008,23(3):1655-1663.
    [56] Weekes T., Molinski T., Swift G. Transient transformer overload ratings andprotection [J]. IEEE Electrical Insulation Magazine,2004,20(2):32-35.
    [57] P Jouni K. P., Kirsi Nousiainen, Pekka V. Studies to Utilize Loading Guides andANN for Oil-Immersed Distribution Transformer Condition Monitoring[J]. IEEETransactions on Power Delivery,2007,22(1):201-207.
    [58] Wangdee Wijarn, Billinton Roy. Reliability performance index probabilitydistribution analysis of bulk electricity systems[C]. Canadian Conference onElectrical and Computer Engineering,2005:445-449.
    [59]韩卫恒,刘俊勇,张建明,等.冰冻灾害下计入地形及冰厚影响的分时段电网可靠性分析[J].电力系统保护与控制.2010,38(15):81-86.
    [60]董雷,李佳.考虑时变因素的配电系统可靠性分析[J].电力系统保护与控制.2009,37(12):6-10.
    [61]陈永进,任震,黄雯莹.考虑天气变化的可靠性评估模型与分析[J].电力系统自动化.2004,28(21):17-21.
    [62]刘洋,周家启.计及气候因素的大电力系统可靠性评估[J].电力自动化设备.2003,23(9):60-62.
    [63]赵德应,李胜洪,张巧霞.气温变化对用电负荷和电网运行影响的初步探讨[J].电网技术.2000,24(1):55-58.
    [64]王建学,高卫恒,别朝红.冲击负荷对电力系统可靠性影响的分析[J].中国电机工程学报,2001,31(10):59-65.
    [65]赵渊,张夏菲,周家启.电网可靠性评估的非参数多变量核密度估计负荷模型研究[J].中国电机工程学报,2009,29(31):27-33.
    [66]陈华,周家启,唐能敏.计及负荷模型的发输电组合系统可靠性评估[J].重庆大学学报,1990,13(2):49-54.
    [67]叶俊.考虑电力需求侧管理的发输电系统可靠性研究[D].保定:华北电力大学,2008.
    [68]王磊,王秋莎.考虑负荷不确定性的输电系统可靠性评估[J].广东电力,2010,23(10):6-8,74.
    [69]梁冰冰.适用于电力系统可靠性分析的负荷模型[J].农村电气化,2009(1):7-9.
    [70]洪梅,丁明,戴仁昶,徐先勇.组合系统可靠性评估中的混合负荷模型[J].合肥工业大学学报(自然科学版),1996,19(2):14-18.
    [71] Wenyuan Li, Jiaqi Zhou, Kaigui Xie, and Xiaofu Xiong. Power System RiskAssessment Using a Hybrid Method of Fuzzy Set and Monte Carlo Simulation [J].IEEE Transactions on power systems,2008,23(2):336-343.
    [72]欧阳稳,谢开贵,王小波,等.发电系统可靠性随可靠性参数和电气参数变化规律建模[J].电力自动化设备,2009,1(4):41-45.
    [73]孙凤杰,尹国龙.电动汽车对配电网负荷率影响的探讨[J].科技创新导报,2011(13):42-43,214.
    [74]高峰.电力系统日负荷率的改善与电能储存技术[J].中州建筑,1997(4):52-56.
    [75]张育.负荷率对配电网线损的影响[C].2006中国电力系统保护与控制学术研讨会论文集,2006:712-715.
    [76]朱连波,孙松强,常磊,等.负荷率与线损的定量关系及其在分时电价成本效益分析中的应用[J].电力系统保护与控制,2010,38(17):44-46,52.
    [77] Brown R.E., Hanson A.P., Marshall M.W., et al. Reliability and capacity: a spatialload forecasting method for a performance based regulatory environment[C]. IEEEPower Industry Computer Applications Conference,1999:139-144.
    [78] Eua-Arporn B., Karunanoon A. Reliability evaluation in electrical power generationwith uncertainty modeling by fuzzy number[C]. Procdeedings of the IEEE PowerEngineering Society Transmission and Distribution Conference,2000,4:2051-2056.
    [79] Wang Zheng, Xie Liyang. Dynamic reliability model of components under randomload [J]. IEEE Transactions on reliability,2008,57(3):474-479.
    [80] Nazarko J, Zalewski W. An application of the fuzzy regression analysis to theelectrical load estimation[C].8th Mediterranean Electrotechnical Conference(MELECON1996),1996(3):1563-1566.
    [81] W. Charytoniuk, M.S. Chen, P. Van Olinda. Nonparametric regression basedshort-term load forecasting [J]. IEEE Transactions on Power Systems,1998,13(3):725-730.
    [82] Song, Kyung-Bin; Baek, Young-Sik; Hong, Dug Hun; Jang, Gilsoo. Short-term loadforecasting for the holidays using fuzzy linear regression method [J], IEEETransactions on Power Systems, v20, n1, p96-101, February2005.
    [83]康重庆,夏清,刘梅,相年德.应用于负荷预测中的回归分析的特殊问题[J].电力系统自动化,1998,22(10):38-41.
    [84]侯志坚.电力系统短期负荷预报的几种改进手段[J].电力系统自动化,1996,20(7):27-31.
    [85]康重庆,夏清,张伯明.电力系统负荷预测研究综述与发展方向的探讨[J].电力系统自动化,200428(17):1-11.
    [86] N. Amjady. Short-term hourly load forecasting using time-series modeling with peakload estimation capability [J]. IEEE Trans. Power Systems2005,20(3):1622-1630.
    [87] Amjady N.Short-Term Hourly Load Forecasting Using Time-Series Modeling withPeak Load Estimation Capability[J]. IEEE Trans on Power Systems,2001,16(4):498-505.
    [88] Huang S J, Shih K R. Short-Term Load Forecasting via ARMA Model IdentificationIncluding Non-Gaussian Process Considerations[J]. IEEE Trans on Power Systems,2003,18(19):673~679.
    [89]侯志坚.电力系统短期负荷预报的几种改进手段[J].电力系统自动化,1996,20(7):27-31.
    [90]陆海峰,单渊达电力系统的递推自适应超短期负荷预报[J].电网技术,2000,24(3):28-31.
    [91]叶瑰昀,罗耀华,刘勇,金鸿章基于ARMA模型的电力系统负荷预测方法研究信息技术,2002,(6):74-76.
    [92]牛东晓,曹树华等.电力负荷预测技术及其应用[M].北京:中国电力出版社,1998.
    [93] Huang S J, Shih K R. Short-Term Load Forecasting via ARMA Model IdentificationIncluding Non-Gaussian Process Considerations[J]. IEEE Trans on Power Systems,2003,18(19):673-679.
    [94] Gastaldi M, Lamedica R, Nardecchia A, et al. Short-term forecasting of municipalload through a Kalman filtering based approach[C].2004IEEE PES Power SystemsConference and Exposition,2004(3):1453-1458.
    [95]李明干,孙健利,刘沛.基于卡尔曼滤波的电力系统短期负荷预测[J].继电器,2004,32(4):9-12.
    [96] D.C.Park, M.A.El-Sharkawi, R.J.Marks, etal. Electric Load Forecasting Using anArtificial Neural Network [J]. IEEE Trans on Power System,1991,6(2):442-449.
    [97]王智迪.基于BP神经网络的电力系统负荷预测研究[J].科技创新导报.2011,27:90-91.
    [98]郭华安,加玛力汗·库马什,常喜强,姚秀萍.电力系统短期负荷预测方法与预测精度综述[J].电气技术.2011,10:20-23.
    [99]曹安照,田丽.基于RBF神经网络的短期电力负荷预测[J].电子科技大学学报.2006,35(4):507-509.
    [100] Ning Lu, Jianzhong Zhou. Particle Swarm Optimization-Based RBF NeuralNetwork Load Forecasting Model [J].IEEE Conference publications on Power andEnergy Engineering Conference,2009:1-4.
    [101]李永坚,胡鹤宇.电力系统短期负荷预测的级联网络模型研究.继电器,2004,32(10):14-18.
    [102]王雪峰,邬建华,冯英浚,王建元.运用样本更新的实时神经网络进行短期电力负荷预测.系统工程理论与实践,2003():95-99.
    [103] I.Orezga, S.Rahman. Input Variable Selection for ANN-Based Short-Term LoadForecasting. IEEE Trans on Power Systems,1998,13(4):1238-1244.
    [104]杨靖研,杜德生.一种电力系统短期负荷预测的新方法.控制理论与应用,2004,23(2):14-17.
    [105] Yu-Jun He,You-Chen Zhu,Dong-Xing Duan. Application of Neural Network ModelBased on Combination of Fuzzy Classification and Input Selection in Short TermLoad forecasting[C], Proceedings of the Fifth International Conference onMachine Learning and Cybernetics, Dalian,13-16August2006.
    [106] Chengqun Yin, Lifeng Kang, Wei Sun. Hybrid Neural Network Model forShort-Term Load Forecasting[C]. IEEE, computer society,Third InternationalConference on Natural Computation,2007.
    [107]谢宏,程浩忠,张国立.基于粗糙集理论建立短期电力负荷神经网络预测模型.中国电机工程学报,2003,23(11):1-4.
    [108]张海涛,陈宗海,朱六璋.基于改进FLN的短期电力负荷预测算法.电工技术学报,2004,19(5):92-96.
    [109] Li Yuancheng, Li Bo, Fang Tingjian. Short-term load forecast based on fuzzywavelet support vector machines[C]. Proceedings of the World Congress onIntelligent Control and Automation (WCICA),2004(6):5194-5198.
    [110] Ye Bin, Guo Chuangxin, Cao Yijia. Short-term load forecasting using a new fuzzymodeling strategy[C]. Proceedings of the World Congress on Intelligent Controland Automation (WCICA),2004(6):5045-5049.
    [111] A.M. Al-Kandari, S.A. Soliman, M.E. El-Hawary. Fuzzy systems application toelectric short-term load forecasting. II. Computational results [C].2003LargeEngineering Systems Conference on Power Engineering,2003:131-137.
    [112]姜勇.基于模糊聚类的神经网络短期负荷预测方法.电网技术.2003,Vol.27,No.2:45-49.
    [113]杨桦.小波分析及其在电力系统中的应用[D].重庆:重庆大学,1997.
    [114]谢宏,陈志业,牛晓东,等.基于小波分解与气象因素影响的电力系统日负荷预测模型研究[J].中国电机工程学报,2001,21(5):5-10.
    [115]邰能灵,侯志俭,李涛,等.基于小波分析的电力系统短期负荷预测方法[J].中国电机工程学报,2003,23(1):45-49.
    [116]高山,单渊达.小波奇异性检测在负荷数据纠错和平滑处理中的应用[J].中国电机工程学报,2001,21(11):105-108.
    [117] Ying Chen, Peter B.Luh, Stephen J.Rourke Short-term load forecasting:similarday-based wavelet neural networks[C], IEEE Proceedings of the7th WorldCongress on Intelligent Control and Automation,2008.
    [118]李鹰,赵振江,吴松涛.灰色模型在普通日短期电力负荷预测中的应用[J].长沙电力学院学报(自然科学版),2003,18(1):15-17.
    [119]康重庆,夏清,相年德.灰色系统参数估计与不良数据辨识[J].清华大学学报(自然科学版),1997,37(4):72-75.
    [120]周平,杨岚,周家启.电力系统负荷灰色预测的新方法[J].电力系统及其自动化,1998,10(3):45-50.
    [121]夏道止,王锡凡,周琳,等.基于RBF神经网络和专家系统的短期负荷预测方法[J].西安交通大学学报,2001,35(4):331-334.
    [122]俞集辉,李春燕,谢开贵.基于遗传算法的短期负荷组合预测模型[J].电网技术,2001,25(8):20-23.
    [123]牛东晓,赵海青.负荷预测的交叉式自适应优选组合预测模型[J].华北电力大学学报,200027(4):13-17.
    [124] N. Amjady.“Short-term bus load forecasting of power systems by a new hybridmethod [J]. IEEE Transactions on Power Systems,2007,22(1):333-341.
    [125] Hiroyuki Mori, Shouichi Urano. Short-Term Load Forevasting with Chaos TimeSeries Analysis,1998,20(6):133-137.
    [126]张智晟,孙雅明,王兆峰,等.优化相空间近邻点与递归神经网络融合的短期负荷预测[J].中国电机工程学报,2003,23(8):44-49.
    [127]吕金虎,张锁春.加权一阶局域法在电力系统短期负荷预测中的应用[J].控制理论与应用,2002,19(5):767-770.
    [128]王孙安,盛万兴,尤勇.一种新型短期负荷预测模型的研究及应用[J].中国电机工程学报,2002,22(09):15-18.
    [129]邓乃杨,田英杰.数据挖掘中的新方法-支持向量机[M].北京:科学出版社,2004.
    [130]瓦普尼克著,张学工译.统计学习理论[M].北京:电子工业出版社,2004
    [131]高超,程浩忠,李宏仲,等.大容量冲击负荷对地区电网暂态稳定性的影响[J].电网技术.2008,32(1):31-35.
    [132] Dai Min, Marwali Mohammad N., Jung in-Woo, et al. Power flow control of asingle distributed generation unit with nonlinear local load[C].2004IEEE PESPower Systems Conference and Exposition,2004(1):398-403.
    [133]阿姆斯塔特(B·L·Amstadter).可靠性数学[M].科学出版社,1978.
    [134]李文沉,孙洪波,周家启.大型发输电组合系统可靠性评估的Monte-Carlo法[J].重庆大学学报,1989,12(3):92-95.
    [135]宋晓通.基于蒙特卡罗方法的电力系统可靠性评估[D].济南:山东大学,2008.
    [136]王强.三次保形有理插值[J].合肥工业大学学报(自然科学版).2005,28(11):1461-1464.
    [137] Jieqing Tan, Yi Fang. Newton-Thiele’s rational interpolants [J]. NumericalAlgorithms,2000,24(1):141-157.
    [138]朱立勋.三次样条插值的收敛性及一类三次广义样条插值的误差估计[D],长春:吉林大学,2006.
    [139] Oliveira Ricardo Gorini, Mauricio Tiomno Tolmasquim. Regulatory performanceanalysis case study: Britain’s electricity industry [J]. Energy Policy.2004,32(11):1261-1276.
    [140]王蓉蓉.可中断负荷管理的激励机制研究[D].北京:北京交通大学,2008.
    [141]程诚,刘璐.浅析电力市场需求侧响应机制[J].中国电力教育.2010(S1):39-40,44.
    [142]孙旭,任震.市场环境下电网优化规划的研究[J].电网技术.2006,30(3):41-44.
    [143]谢传胜,魏秀梅.可靠性保险在中国电力市场中的应用模式[J].电网技术.2005,29(18):63-69.
    [144]高赐威,程浩忠.电力市场环境下电网规划的若干问题研究[J].华东电力.2005,33(3):5-10.
    [145]赵儆,康重庆,夏清,等.电力市场中可靠性问题的研究现状与发展前景[J].电力系统自动化.2004,28(5):6-10.
    [146]谢敏.电力市场环境下输电网规划建模及求解方法研究[D].武汉:华中科技大学,2005.
    [147]周平.电力市场运营的可靠性和经济性研究[D].重庆:重庆大学,2004.
    [148]何晓阳.电力市场环境下基于成本-效益分析的电网规划[D].河北:华北电力大学,2005.
    [149]宋巨龙,钱富才.基于黄金分割的全局最优化方法[J].计算机工程与应用.2005(4):94-95,130.
    [150]王松.黄金分割法在制冷与采暖中的应用(Ⅱ)[J].中南民族大学学报(自然科学版).2003,22(增刊):13-14.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700