鸡白介素18在原核和真核中的表达与生物学活性的检测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
白细胞介素18是一种新发现的细胞因子,具有多种生物学功能,能够促进γ干扰素(IFN-γ)的产生,刺激淋巴细胞转化,增强NK细胞的杀伤活性,在介导细胞免疫、抵抗微生物感染方而具有重要的作用。同时,白细胞介素18在作为天然的免疫调节剂,在集约化畜禽养殖业中,是一种可以替代传统疗法的新型免疫调节剂,具有巨大的应用前景。目前国内外对IL-18的研究主要集中在人和鼠等哺乳动物,而对鸡IL-18的研究报道不多,为此,本试验应用已成功开发使用的原核大肠杆菌表达体系及酵母表达系统对鸡IL-18进行了表达,并对其表达产物的生物学活性分别进行了分析,为进一步研究鸡IL-18的作用机理及其在鸡体内的生物学功能奠定了基础。
     第一部分:鸡IL-18在大肠杆菌BL21-ChIL-18中的表达、纯化及体外生物活性检测首先对重组菌BL21-ChIL-18的遗传稳定性进行了分析,筛选出了其最佳诱导表达条件,然后用Sephadex G-100对目的蛋白进行纯化,并以牛血清白蛋白为标准蛋白质,用Bradford法检测了纯化的目的蛋白的浓度,对其进行了定量。最后分别用Western bloting、MTT和ELISA等方法在体外分析了其生物学活性。结果表明该重组工程菌能稳定地表达鸡IL-18,在诱导温度37℃时,IPTG浓度为0.6 mmol/L时,诱导4 h目的蛋白相对表达量最高。纯化后的体外活性检测试验表明,其表达的鸡白介素18具有刺激淋巴细胞转化和诱导其分泌γ干扰素的活性。
     第二部分:鸡IL-18在真核毕赤酵母的表达、纯化和体外生物学活性检测首先应用PCR技术从重组质粒pMD18-T-ChIL-18中扩增出鸡IL-18成熟肽基因,亚克隆于毕赤酵母表达载体pPICZαA上,构建重组质粒pPICZαA-ChIL-18。经酶切、PCR和测序鉴定正确后,电转化入毕赤酵母菌X-33中,筛选多拷贝单克隆进行诱导表达。表达产物用Western bloting鉴定正确后,对其遗传稳定性进行分析,并对其表达条件进行优化,然后再其最佳诱导条件下对重组工程菌进行大量诱导表达并用Sephadex G-100对目的蛋白进行纯化,并用Bradford法检测纯化目的蛋白的浓度,对其进行定量,最后分别用MTT和ELISA等方法在体外对其生物学活性进行分析。结果,成功构建了鸡IL-18真核酵母表达载体,且该重组工程菌能稳定地表达鸡IL-18。其在培养液pH6.0,甲醇诱导浓度1.5%,诱导温度为26℃的条件下诱导96 h,目的蛋白的表达量最高。纯化后的体外活性检测试验表明,其表达的鸡白介素18具有刺激淋巴细胞转化和诱导淋巴细胞分泌r干扰素的活性。
     第三部分:重组鸡IL-18对新城疫疫苗免疫免疫效果的影响0日龄300只鸡随机分为6组,每组50只鸡,即空白对照组,新城疫疫苗组,新城疫疫苗+原核IL-18组,新城疫疫苗+原核空载体对照组,新城疫疫苗+真核IL-18组,新城疫疫苗+真核空载体对照组。所有免疫组均于8日龄分别免疫接种相应疫苗,并分别于免疫后的第3 d,7 d,14 d,21 d,28 d和35 d各组鸡随即抽取4只,对其血清的抗体效价、γ干扰素含量、外周血的T淋巴细胞转化水平及其NO分泌和免疫器官指数进行测定,18天后各组随机取20只鸡用于动物攻毒保护试验,。结果表明重组鸡IL-18蛋白增强了新城疫疫苗的免疫效果,提高了血清中抗体水平和γ干扰素含量、提高了T淋巴细胞的转化水平和巨噬细胞分泌NO的水平,促进了鸡免疫器官的生长发育和成熟,升高了其各免疫器官指数,且部分指标差异达到显著(0.01﹤P﹤0.05)或极显著水平(P<0.01)。
     综上所述,本研究成功的在原核细胞大肠杆菌BL21及真核细胞毕赤酵母X-33中分别表达了鸡IL-18,表达量均较高,且纯化后都具有生物学活性,对新城疫疫苗都有免疫增强作用。
Interleukin-18(IL-18) is a novel cytokine,which has multiple biologicala ctivities including induction of IFN-γfromN Kcells and antigen-or mitogen-stimulated Thl cells,upregulation of IL-2R onT cells,enhancement of Fas ligand-mediated cytotoxicity of T-helper cells and augmentation of NKcell cytotoxicit。At the same time, IL-18, as natural mediators of the immune response,offer exciting alternatives to conventional therapeutics in control of diseases in intensive livestock and poultry industries.And it has great application prospect. Now the study of IL-18 is focused on mammals such as human and mouse in home and abroad, and there is a few about chicken IL-18.So this experiment has successfully used the prokaryotic expression system of E. coli and yeast expression system for chicken IL-18 expression,and has analyzed the biological activity of the expression products.This laid a foundation.for further study of mechanism of chicken IL-18 and its biological function in vivo chicken
     Part I: expression, purification and detection of biological activity in vitro of chicken IL-18 in E. coli BL21-ChIL-18 In this part ,we analyzed the genetic stability and selected the best conditions for inducible expression of recombinant strain BL21-ChIL-18,firstly.Then purify the target protein by Sephadex G-100 purification and. determine the concentration of interest protein by Bradford method.analyzed Last, analyzed its biological activity.of ChIL-18 in vitro by Western blot, MTT and ELISA.The results show that the recombinant bacteria can express chicken IL-18 stably. Under 37℃, induced the recombinant strain BL21-ChIL-18 4 h by 0.6mmol / L ,it can express the highest interest protein. After purified , the expressed chicken IL-18. could induce T lymphocytes to maturation and expressing IFN-γgene in vitro .
     Part II: Chicken IL-18 mature peptide gene was amplified from the recombinant plasmid pMD18-T-ChIL-18 by PCR ,and was subcloned into Pichia pastoris expression vector pPICZαA to construct the recombinant plasmid pPICZαA-ChIL-18. After identified by restriction enzymes digestion analysis、PCR and DNA sequencing, the recombinant plasmid was transformed into Pichia pastoris X-33 firstly.Then choosing the multi-copy recombinant strains to be induced for expression.Then analyzed the genetic stability and selected the best conditions for inducible expression of recombinant strain X-33-ChIL-18 after it has been ascertained by Western blot.Last, the bioactivity of rchIL-18 was analysed by ELISA and MTT after purified by Sephadex G-100 column. Results: The chicken IL-18 with the immunogenicity was secreted by Pichia pastoris stably.It could induce T lymphocytes to maturation and expression IFN-γgene in vitro.
     Part III: Eeffct of reeombinnat chichen IL-18 on NDV vaccine as immunopotentiator
     In the experiment,300 chichens were randomly divided into six groups(50 chichens each group):control group , NDV vaccine gorup , NDV vaecine+ IL-18 of prokaryotic expession(50ug/chichen)group,NDV vaeeine+prokaryotic black expession vector control group , NDV vaccine+IL-18 of Pichia pastoris expression(250ug)group and NDV vaceine+ Pichia pastoris black expession vector control .All groups were immunized by its vaceine respectively on the eighth day Then respectively at the third day, seventh day , 14th day , 21st day,28th day and every 35th day after immunization each group takes 4 chicknes randomly to detect antibody level and IFN-r concentration in seurm , T cell activity ratio and NO concentration in peripheral blood and indexes of immunity orgnas. Eighteenth day in the Immune scheduled time ,twenty chicknes of each group were used to challenge and proteetion test.The results indieated that rIL-18 could improve immune Protection for NDV vaccine and elevate antibody level and IFN-r concentration in seurm,T cell activity ratio and NO concentration in peripheral blood and indexes of immunity orgnas. And some of the difference was significant (0.01

     In conclusion, the chicken IL-18 were successfuly expressed in E. coli BL21 prokaryotic cells and eukaryotic cells Pichia pastoris X-33 respectively,in this study.And all the rchicken IL-18 has the biological activity .They can improve immune Protection for NDV vaccine.

引文
[1]侯亚琴,刘桂林.细胞因子的研究进展及其应用[J].动物科学与动物医学,2004,21(10):10-12.
    [2]窦永喜,景志忠,才学鹏.细胞因子及其应用的研究进展[J].中国兽医科技,2005,35(3):233-238.
    [3]马大龙.细胞因子抑制剂[J].中国免疫学杂志,1994,10(1):61-62.
    [4]Acres BG, Antzer MR, Emy C, et al. Fusokine interleukin-2/interleukin-18, a novel potentinnateand adaptive immune stimulator with decreased toxicity [J]. Cancer Res. 2005, 65 (20):9 536-46.
    [5]Tamachi T, Maezawa Y, Ikeda K, et al. Interleukin 25 in allergic airway inflammation [J]. Int Arch Allergy Immunol, 2006, 40(Suppl 1):59-62.
    [6]Moqbel R, Coughlin JJ. Differential secretion of cytokines [J]. Sci. STKE, 2006, 33 (8):26.
    [7]Anderson EJ, McGrath MA, Thalhamer T, et al. Interleukin-12 to interleukin infinity: the rationale for future therapeutic cytokine targeting [J]. Springer Semin Immunopathol,2006,27(4):425-442.
    [8]Beadling C,Slifka MK. Regulation of innate and adaptive immune responses by the related cytokines IL-12,IL-23,and IL-27 [J]. Arch Immunol Ther Exp (Warsz), 2006, 54 (1):15-24.
    [9]Okamura H, Tsutsi H, 1omatsu T, et al.Cloning of a new cytokine that induces IFN-gamma production by T cells [J]. Nature, 1995, 378(6552):88-91.
    [10]Ushio S, Namba M, Okura T, et al. Cloning of the cDNA for human IFN-gamma-inducing factor, expression in escherichia coli, and studies on the biologic activities of the protein [J]. J Immunol, 1996, 156(11):4274-4279.
    [11]Oem JK, Song HJ, Kang SW, et al. Cloning, sequencing and expression of porcine interleukin-18 in Escherichia coli [J]. Mol Cells, 2000, 10(3):343-347.
    [12]Muneta Y, Mori Y, Shimoji Y, et al. Porcine interleukin-18: cloning, characterization of the cDNA and expression with the baculovirus system. Cytokine, 2000, 12 (6): 566-572.
    [13]郑敏,金宁一,张洪勇等.猪白细胞介素18成熟蛋白基因的克隆及在大肠杆菌中的表达[J].中国兽医学报,2003,23(5):430-432.
    [14]景志忠,窦永喜,侯俊琳等.猪白介素18基因的克隆及其序列分析[J].中国兽医科技,2004,34(7):3-7.
    [15]Shoda LK, Zarlenga DS, Hirano A. Cloning of a cDNA encoding bovine Interleukin–18 and analysis of IL-18 expression in macrophages and its IFN--gamma-inducing activity [J]. Journal Interferon Cytokine Research, 1999, 19(10): 1169-1177.
    [16]Nagata T, Ishikawa S, Shimokawa E, et al. High level expression and purification of bioactive bovine interleukin-18 using a baculovirus system [J]. Vet Imm, 2002, 87:65-72.
    [17]Muneta Y, Yoshihara K, Minagawa Y, et al. Bovine IL-18 ELISA: detection of IL-18 in sera of pregnant cow and newborn calf, and in colostrums [J]. J Immuno assay Immunochem, 2005, 26(3):203-213.
    [18]刘文强,胡敬东,杨少华等.牛白细胞介素18成熟蛋白cDNA基因的克隆和表达[J].畜牧兽医学报,2005,39(9):873-876.
    [19]张林,金宁一,马鸣潇等.牛IL-18基因的克隆及遗传进化分析[J].中国免疫学杂志,2006,26(l):68-71.
    [20]Shi XJ, Wang M, et al. Immune enhancing effects of recombinant bovine IL-18 on foot-and-mouth disease vaccination in mice model [J]. Vaccine, 2007, 25(7): 1257-1264.
    [21]田兆菊,郑玉妹,胡敬东,赵宏坤.牛IL-18成熟蛋白基因在昆虫细胞中的表达及其活性[J].细胞与分子免疫学杂志,2007,23(3):277-279.
    [22]Argyle DJ, Gillivery MC, Nicolson L, et al. Cloning, sequencing, and characterization of dog interleukin-18 [J]. Immunogenetics, 1999, 49:541-543.
    [23]曹殿军,于立辉,闫丽辉等.犬脾细胞白介素-18(IL-18)基因的克隆与序列分析[J].中国预防兽医学报.2003,25(4):262-264.
    [24]袁慧君,扈荣良,包世俊等.犬IL-18 cDNA的克隆及免疫学特性[J].细胞与分子免疫学杂志,2004,20(5):526-529.
    [25]Schneider K, Puchler F, bacubrle D, et al. cDNA cloning of biologically active chicken interleukin-18 [J]. J. Interferon coytokine Res, 2000, 20:879-883.
    [26]潘蔚绮,刘胜旺,孔宪刚,等.编码鸡IL-18成熟蛋白基因的分子克隆与序列测定[J].中国预防兽医学报,2003,(25):114-117.
    [27]刘胜旺,潘蔚绮,孔宪刚等.鸡白细胞介素-18的原核表达和多克隆抗血清的制备[J].中国兽医学报,2003,(5):427-429.
    [28]张春杰,李银聚,吴庭才等.罗曼鸡胚脾细胞白介素-18基因的克隆与序列分析[J].中国兽医学报,2004,24(4):358-360.
    [29]张春杰,程相朝,李银聚等.鸡IL-18真核表达载体的构建及其对IBD灭活苗免疫增强作用的研究[J].中国免疫学杂志,2004,20(9):617-621.
    [30]程相朝,赵德明,吴庭才等.鸡IL-18真核表达载体的构建及其对新城疫疫苗增强作用的研究[J].畜牧兽医学报,2005,36(5):476-481.
    [31]曹素芳,黄青云.鸡IL-18对禽多杀性巴氏杆菌DNA疫苗的免疫佐剂作用[J].中国兽医科学,2007,37(12):1058-1061.
    [32]李宏梅,胡敬东,郭慧君等.重组鸡白细胞介素18(rChIL-18)对MDV感染SPF鸡细胞免疫的影响[J].中国兽医学报,2007,27(5):624-627.
    [33]许健,于涟,李龙等.鸡白介素18全长基因的克隆、表达及分子进化分析[J].科技通报,2007,23(1):53-57.
    [34]余夏萌,寿春波,章晓栋等.鸡IL-18对IBDV多聚蛋白DNA疫苗的免疫增强作用研究[J].浙江大学学报,2008,34 (1):13-18.
    [35]唐梦君,王红宁,周生等.IBV M基因与IL-18基因共表达DNA疫苗的免疫原性[J].中国兽医学报,2008,28(7):757-167.
    [36]Ishizaka T, Setoguchi A, Masuda K, et al. Molecular cloning of feline interferon-gamma-inducing factor (interleukin-18) and its expression in various tissues.[J] Vet Immunol Immunopathol, 2001, 79 (3-4):209-218.
    [37]Liu WQ, Zhao HK, Gao YD, et al. Cloning and expression of goat interleukin-18 gene [J]. J Vet Med Sci, 2005, 67(2):219-221.
    [38]陈红英,李新生,崔保安等.固始鸭白介素-18全基因克隆与分子进化分析[J].中国预防兽医学报,2007,29(9):677-679.
    [39]张海玲,罗国良,赵春霏等.貉白介素-18(IL-18)基因的克隆及序列分析[J].特产研究,2008,(3):20-24.
    [40]Okamura H, Nagata K, Komatsn T, et al. A novel co-stimulatory factor for gamma interferon induction found in the livers of mice causes endotoxic shock [J]. Infect Immun, 1995, 63(10):3966-3972.
    [41]B Siegmund. Interleukin-1βconverting enzyme (caspase-1) in intestinal inflammation [J].Biochemical Pharmacology, 2002, 64(1):1-8.
    [42]Xu J, Deng TL, Li L, et al. Nitric oxide inducing function and intracellular movement of chicken interleukin-18 in cultured cells [J]. Acta Biochim Biophys Sin, 2005, 37(10):688-693.
    [43]Kaiser P. Turkey and chicken interleukin-18 (IL18) share high sequence identity, but have different polyadenylation sites in their 3′-UTR [J]. Dev Comp Immunol, 2002, 26(8):681-687.
    [44]Ghayur T, Banerjee S, Hugnin M, et al. Caspase-1 processes IFN-gamma-inducing factor and regulates LPS-induced IFN-gamma production [J]. Nature, 1997, 386:619-623.
    [45]Kim YM, Talanian RV, Li J, et al. Nitric oxide prevents IL-1 beta and IFN-gamma-inducing factor (IL-18) release from macrophages by inhibting Caspase-1 (IL-Ibeta-converting enzyme) [J]. J Immunol, 1998, 161(8):4122-4128.
    [46]Charles A, Dinarello. Interleukin-18, Methods, Bvirus DNA vaccine by plasmids co-expressing hepatits B surface antigen and interleukin2 [J]. J of Virology, 1999,1:169-170.
    [47]Murzin AG, Lesk AM, Chothia C. Beta-Trefoil fold. Patterns of structure and sequence in the Kunitz inhibitors interleukin-1βand 1αand fibroblast growth factor [J]. J Mol Biol, 1992, 223(2):531-543.
    [48]Skurk T, Kolb H, Muller-Scholze S, et al. The proatherogenic cytokine interleukin-18 is secreted by human adipocytes [J]. Eur J Endocrinol, 2005, 152(6):863-868.
    [49]Sugama S, Cho BP, Baker H, et al. Neurons of the superior nucleus of the medial habenula and ependymal cells express IL-18 in rat CNS [J]. Brain Res, 2002, 958 (1) : 1-9.
    [50]Culhane AC, Hall MD, Rothwell NJ, et al. Cloning of rat brain interleukin-18 cDNA [J]. Mol Psychiatry, 1998, 3(4):362-366.
    [51]Wang N, Sugama S, Conti B, et al. Interleukin-18 mRNA expression in the rat pituitary gland [J]. J Neuro immunol, 2006, 173(1/2):17-125.
    [52]Okmura H. IL-1 family (IL-l alpha/beta, IL-1Ra, IL-18), IL-16, IL-17 [J]. Nippon Rinsho, 2005, (Suppl 4):226-4233.
    [53]Fukushima K, Ikehara Y, Yamashita K. Functional role played by the glycosylphosp hatidylinositol anchor glycan of CD48 in interleukin-18-induced interferon-gamma production [J]. J Biol Chem, 2005, 280 (18) : 18056-18062.
    [54]Andre R, Wheeler RD, Collins PD, et al. Identification of a trun-cated IL-18R beta mRNA: a putative regulator of IL-18 expressed in rat brain [J]. J Neuro immunol, 2003, 145 (1/2) : 40-45.
    [55]Tsuji TK, Matsumoto S, Koide K, et al. 1997, Interleukin-18 induces activation and association of p56(1ck)and MAPK in a murine THl clone [J]. Biochem Biophys Res Commun, 1997, 237(1):126-130.
    [56]Suzuki N, Chen NJ, Millar DG, et al. IL-1 receptor-associated ki-nase 4 is essential for IL-18-mediated NK and Th1 cell responses [J]. J Immunol, 2003, 170 (8) : 4031-4035.
    [57]Chandrasekar B, Mummidi S, Mahimainathan L, et al. Interleukin-18-induced human coronary artery smooth muscle cell migration is dependent on NF-kappa B and AP-1-mediated matrix metalloprotei-nase-9 expression and is inhibited by atorvastatin [J]. J Biol Chem, 2006, 281 (22): 15099-15109.
    [58]Kataoka TR, Komazawa N, Morii E, et al. Involvement of connective tissue-type mast cells in Th1 immune responses via Stat expression [J]. Blood, 2005, 105 (3) : 1016-1020.
    [59]Baeuerle PA, Henkel T. Function and activation of NF-kB in the immune system [J]. Annu. Rev. Immunol., 1994, (12):141-179.
    [60]Yoshimoto T, Takeda K, Tanaka T, et al. IL-12 upregulates IL-18 receptor expression on T cells,Th1 cells and B cells: synergism with IL-18 for IFN-γproduction [J]. J. Immunol., 1998, (161):3400-3407.
    [61]Gǒbe1 TW, Schneider K, Schaerer B. IL-18 Stimulates the Proliferation and Release IFN-γrelease of CD4+T Cells in the Chicken:Conservation of a T hI-Like System in a Nonmammalian Species [J]. The Journal of Immunology, 2003, 171(4):1809-1815.
    [62]Yoshimoto T, Tsutsui H, Tominaga K, et al. IL-18, although antiallergic when administered with IL-12, stimulates IL-4 and histamine released by basophils [J]. Proc. Acad. Sci. USA, 1999, (96):13962-13966.
    [63]Muder M, Mallo M, Eichmann K, et al. Murine macrophages secrete interferon-γupon combined stimulation with interleukin-12 and IL-18: a novel pathway of autocrine macrophage activation[J]. J. Exp. Med, 1998, (187):2103-2108.
    [64]Puren AJ, Namaba M, Okura T, et al. Interleukin-18 induces IL-1βand IL-8 via TNF-αproduction from non CD14+ human blood mononuclear cells[J]. J. Clin. Invest, 1998, (101):711-724.
    [65]Hoshino T. Wiltrout RH, Young HA. IL-18 is a potent coinducer of IL-13 in NK and T cells:a new potential role for IL-18 in modulating the immune response[J]. J. Immunol.,1999,(162):5070-507.
    [66]Nakanishi K, Yoshimoto T, Tsutsui H, et al. Interleukin-18 is a unique cytokine that stimulates both Th1 and Th2 responses depending on its cytokine milieu [J].Cytokine and Growth Factor Rev., 2001, 12(1):53-72.
    [67]Scapigliati G, Buonocore F, Mazzini M. Biological activity of cytokines: an evolutionary perspective [J] . Curr Pharm Des, 2006, 12 (24):3071-3081.
    [68]T Osaki, JM Peron, Q Cai, et al. IFN-γ-Inducing Factor/IL-18 Administration Mediates IFN-γ- and IL-12-Independent Antitumor Effects [J]. J Immunoly, 1998, 160: 1742-1749.
    [69]T Yoshimoto, K Torigoe, M Kurimoto, et al. IL-12 synergizes with IL-18 or IL-1? for IFN-γproduction from human T cells [J]. International Immunology, 2000,12(2):151-160.
    [70]Charles A, Dinarello CA, Denver C. IL-18: a TH-1 inducing,proinflammatory cytokine and new member of the IL-1 family [J]. J.Allergy Clin.Immuno., 1999, 101(1):11-24.
    [71]Matsumoto S, Tsuji-Takayama K, Aizawa Y, et al. Interleukin-18 activates NFkappa B in murine T helper type cells [J]. Blochem biophys Res commun, 1997, 234(2):454-457.
    [72]Sareneva T, Julkunen I, M atikaninen S. IFN-γand IL-12 induce IL-18 receptor gene expression in human NK and T cells [J]. J Immunol, 2000, 165: 1933-1938.
    [73]Magram J, Connaughton SE, Warrier RR, et al. IL-12 deficient mice are defective in IFN-γproduction and type 1 cytokine responses [J]. Immunity, 1996, (4):471-481.
    [74]Takeda K, Tsutsui H,Yoshimoto T, et al. Defective NK cell activity and Th1 response in IL-18-deficient mice[J]. Immunity, 1998, 8(3):383-390.
    [75]Hoshino K, Kashiwamura S, Kuribayashi K, et al. The absence of interleukin receptor-related T1:ST2 does not affect T helper cell type 2 developments and its efector function[J]. J Exp Med, 1999, 190:1541-1547.
    [76]Yoshimoto T, Okamura H, Tagawa Y. et al. Interleukin 18 together with Interleukin 12 inhibits IgE production by induction of interferongamma production from activated B cells[J]. Proc Natl Acad Sci USA, 1997, 94(8):3948-3953.
    [77]Tsutsui H, Matsui K, Kawad N, et al. IL-18 accounts for both TNF-αand Fas ligand mediated hepatotoxic pathways in endotoxin-induced liver injury in mice[J]. J. Immunol. 1997, 159(8):3961-3967.
    [78]Gracie JA, Robertson SE, McInnes IB. Interleukin-18.J Leukoc Biol, 2003, 73(2):213-224.
    [79]U Kalina, D Kauschat, N Koyama, et al. IL-18 Activates STAT3 in the Natural Killer Cell Line 92, Augments Cytotoxic Activity, and Mediates IFN-γProduction by the Stress Kinase p38 and by the Extracellular Regulated Kinases p44erk-1 and p42erk-21[J]. The Journal of Immunology, 2000, 165: 1307-1313.
    [80]Rochel N, Cowan J. A. Dependence of the lytic activity of the N-terminal domain if human perforin on membrane lipid composition:Implications for T cell self-preservation[J]. Eur J Biochem, 1997, 249(1):223-231.
    [81]Hyod Y,Matsui K,Hayashi N,et al. IL-18 up-regulates perforin-mediated NK activity without increasing perforin messenger RNA expression by binding to constitutively expressed IL-18 receptor[J]. J Immunol, 1999, 162: 1662-1668.
    [82]Dao T, Mehal WZ, Crispe IN, et al. IL-18 augments perfor in-dependent cytotoxicity of liver NK-T cells[J]. J Immunol, 1998, 161:2217-2222.
    [83]Tomura M, Zhou XY, Maruo S, et al. A critical role for IL-18 in the proliferation and activation of Nk1. 1+CD3-cells[J]. J Immunol, 1998, 160(10): 4738-4746.
    [84]Tsutsui H, Matsui K, Okamura H, et al, 2000, Pathophysiological roles of interleukin-18 in inflammatory liver diseases. Immunol Rev. 174(1):192-209.
    [85]Sugawara I, Yamada H, Kaneko H, et al. Role of interleukin-18(IL-18) in mycobacterial infection in IL-18-gene-disrupted mice[J]. Infect. Immun, 1999, (67):2585-2589.
    [86]Bohn E, Sing A, Zumbihl R, et al. IL-18(IFN- inducing factor)regulates early cytokine production in and promotes resolution of bacterial infection in mice[J]. J . Immunol, 1998, (160):299-307.
    [87]Swaggerty CL, Kogut MH, Ferro PJ, et al. Differential cytokine mRNA expression in heterophils isolated from Salmonella-resistant and-susceptible chickens[J]. Immunology, 2004, 113(1):139-148.
    [88]Rebel JM, Balk FR, Boersma WJ. Cytokine responses in broiler lines that differ in susceptibility to malabsorption syndrome[J]. Br Poult Sci, 2005, 46(6):679-686.
    [89]Lu H, Shen C, Brunham RC. Chlamydia trachomatis infection of epithelial cells induces the activation of caspade-1 and release of mature IL-18[J]. J. Immunol, 2000, (165):1463-1469.
    [90]Kawakami K, Koguchi Y, Iwakura Y, et al. IL-18 contributes to host resistance against infection with Cryptococcus neoformans in mice with defective IL-12 synthesis through induction of IFN-γproduction by NK cells[J]. J. Immunol, 2000, (165):941-947.
    [91]Zhang T, Kawakami K, Qureshi MH, et al. Interleukin-12(IL-12) and IL-18 synergistically induce the fungicidal activity of murine peritoneal exudate cells against cryptococcus neoformans through production of gamma interferon by natural killer cells. Infect Immun, 1997, 65(9):3594.
    [92]Tanaka-Kataoka M, Kunidata T, Takauama S, et al. In vivo antiviral effect of interleukin 18 in a mouse model of vaccinia virus infection[J]. Cytokine, 1999, (11):593-599.
    [93]Lian H, Jin N, Li X, et al. Induction of an effective anttumor immune response and tumor regression by combined administration of IL-18 and Apoptin[J]. Cancer Immunol Immunother, 2007, 56(2):181-192.
    [94]Xiang J, Chen Z, Huang H, et al. Regression of engineered myeloma cells secreting interferon-gamma-inducing factor is mediated by both CD4(+)/CD8(+) T and natural killer cells[J]. Leuk Res, 2001, 25(10):909-915.
    [95]Osaki T, Peron JM, CaiQ, et al. IFN-gamma-inducing factor/IL-18 administration mediates IFN-gamma and IL-12-independent antitumor effects [J]. J Immunol, 1998, 160(4):1742-1749.
    [96]Osaki T, Reron JM, Cai Q, et al. IFN-inducing factor/IL-18 administration mediates IFN-γand IL-12-independent antitumor effect[J]. J. Immunol, 1998, (160):1742-1753.
    [97]陈建忠,朱海红,刘克州,等.小鼠IL-18基因注射对小鼠免疫功能的影响[J].浙江预防医学2003,(11):005.
    [98]degen WG, Van Zuilekom HI, Scholtes NC, et al. Potentiation of humoral immune responses to vaccine antigens by recombinant chicken IL-18(rChIL-18) [J]. Vaccine, 2005, 23(33):4212-4218.
    [99]Mingxiao M, Ningyi J, Zhenguo W, et al. Construction and immunogenicity of recombinant fowlpox vaccines coexpressing HA of AIV H5N1 and chicken IL-18[J]. Vaccine, 2006, 24(20):4304-4311.
    [100]Ding X, Lillehoj HS, Quiroz MA, et al. Protective immunity against Eimeria acervulina following in ovo immunization with a recombinant subunit vaccine and cytokine genes[J]. Infect Immun, 2004, 72(12): 6939 - 6944.
    [100]韩宗玺,刘胜旺,孔宪刚,等.饲喂重组鸡白细胞介素18蛋白增加肉仔鸡体重的初步研究[J].中国生物工程杂志,2005,25(3):60-64.
    [101]Struhl K, Cameron JR, Davis RW. Functional genetic expression of eukaryotic DNA in Escherichia coli [J]. Proc Natl Acad Sci USA, 1976, 73(5): 1471-1475.
    [102]Vapnek D, Hautala JA, Jacobson JW, et al. Expression in Escherichia coli K-12 of the structural gene for catabolic dehydroquinase of Neurospora crassa [J]. Proc Natl Acad Sci USA, 1977,7 4(8): 3508-13512.
    [103]Chang JC, Poon R, Neumann KH,et al. The nucleotide sequence of the 5' untranslated region of human gamma-globin Mrna [J]. Nucleic Acids Res. 1978, 5(10): 3515-3522.
    [104]Guarante L, Roberts TM, Ptashne M. A technique for expressing eukaryotic genes in bacteria [J]. Biotechnology. 1992, 24: 261-263.
    [105]Nuc P, Nuc K. Recombinant protein production in Escherichia coli [J]. Postepy Biochem, 2006, 52(4): 448-456.
    [106]Dong X, Tang B, Li J, et al. Expression and Purification of Intact and Functional Soybean (Glycine max) Seed Ferritin Complex in Escherichia coli [J]. J Microbiol Biotechnol, 2008, 18(2): 299-307.
    [107]Jonasson P, Liljeqvist S, Nygren PA, et al. Genetic design for facilitated production and recovery of recombinant proteins in Escherichiacoli [J]. Biotechnology and Applied Biochemistry, 2002, 35(2): 91-105.
    [108]Chadd HE, Chamow SM. Therapeutic antibody expression technology [J]. Curr Opin Biotechnol, 2001, 12: 188-194.
    [109]Terpe K. Overview of bacterial expression systems for heterologous protein production: from molecular and biochemical fundamentals to commercial systems [J]. Appl Microbiol Biotechnol, 2006, 72(2): 211-222.
    [110]Yun CH, Yim SK, Kim DH, et al. Functional expression of human cytochrome P450 enzymes in Escherichia coli [J]. Curr Drug Metab, 2006, 7(4): 411-429.
    [111]Wilson CJ, Zhan H, Swint Kruse, et al. The lactose repressor system: paradigms for regulation, allosteric behavior and protein folding [J]. Cell Mol Life Sci, 2007, 64(1): 3-16.
    [112]Bowers LM, Lapoint K, Ant hony L, et al. Bacterial expression system with tightly regulated gene expression and plasmid copy number [J]. Gene, 2004, 340(1): 11-18.
    [113]Hoffman SK, Susani M, Ferreira F, et al. High-level expression and purification of the major birch pollen allergen, BetV [J]. Protein Expr Purif, 1997, 9(1): 33-39.
    [114]Kang Y, Son MS, Hoang TT.One step engineering of T7 expression strains for protein production: increasing the host-range of the T7 expression system [J]. Protein Expr Purif, 2007, 55(2): 325-333.
    [115]Arnau J, Lauritzen C, Petersen GE, et al. Current strategies for the use of affinity tags and tag removal for the purification of recombinant proteins [J]. Protein Expr Purif, 2006, 48(1): 1-13.
    [116]Georgiou G, Segatori L. Preparative expression of secreted proteins in bacteria: status report and future prospects [J]. Curr Opin Biotechnol, 2005, 16(5): 538-545.
    [117]Grosjean H, Fiers W. Preferential Condon Usage in prokaryotic genes : the optimal Condon-anticodon interaction energy and the selective codon usage in efficiently expressed genes [J]. Gene. 1982, 18: 199-209.
    [118]罗辽复,李晓琴. tRNA丰度是影响蛋白质二级结构形成的一个因素[J].内蒙古大学学报,2003,34(5):519-529.
    [119]Gross G. RNase E cleavage in the atpE leader region of atpE/interferon-beta hybrid transcripts in Escherichia coli causes enhanced rates of mRNA decay [J]. J Biol Chem, 1991, 266(27): 17880-17884.
    [120]Wood HB, Ward SJ, Morriss-Kay GM. Effects of all-trans-retinoic acid on skeletal pattern, 5'HoxD gene expression, and RAR beta 2/beta 4 promoter activity in embryonic mouse limbs [J]. Dev Genet, 1996, 19(1): 74-84.
    [121]Yoon H, Hong J, Ryu S. Effects of Chaperones on mRNA Stability and Gene Expression in Escherichia coli [J]. J Microbiol Biotechnol, 2008, 18(2): 228-233.
    [122]Cereghino LJ, Cregg JM. Heterologous protein expression in the methylotrophic yeast pichia pastoris, Fems Microbiol Rev, 2000, 24(1): 45-66.
    [123]余祖华,王红宁.利用巴斯德毕赤酵母表达外源蛋白的研究进展[J].生物技术通讯,2004,15(6):614.
    [124]李晶,赵晓祥,沙长青,等.甲醇酵母基因表达系统的研究进展[J].生物工程进展,1999,19(2):17-20.
    [125]欧阳立明,张惠展,张嗣同.巴斯德毕赤酵母的基因表达系统研究进展[J].生物化学与生物物理进展,2000,27(2):151-154.
    [126]Peng Y, Buw, kang LY. Methy lotrophic yeast system [J]. Biotechnol Information, 2000, 1:38.
    [128]Higgins DR, Cregg JM. Introduction to pichia pastoris Methods Molbiol, 1998, 103: 1-15.
    [129]Gemmill TR, Trimble RB. Overview of N and O linked oligo saccharide structures found in various yeast species, Biochim Biophys Acta, 1999, 30(3): 193-200.
    [130]张显升,王少杰,张凤英,等.巴斯德毕赤酵母表达系统及其在医学领域的应用[J].山东科学,2005,18(4):26-30.
    [131]王清路,李悄悄,薛金艳,等.巴斯德毕赤酵母表达系统的特点及应用[J].生物技术通讯,2006,17(4):640-643.
    [132]郑立运,方先珍.酵母表达系统最新研究进展[J].郑州牧业工程高等专科学校学报,2005,25(4):250-253.
    [133]杨湘越,蓝小鹏.巴斯德毕赤酵母真核蛋白表达系统的研究进展[J].福建医药杂志,2003,25(4):177:180.
    [134]Sreekrishna K, Brankamp RG, Kropp KE, et al. Strategies for optimal synthesis and secretion of heterologous proteins in the methylotrophic yeast Pichia pastoris [J]. Gene, 1997, 190(1): 55-62.
    [135]李洪钊,李亮助,孙强明,等.巴斯德毕赤酵母表达系统优化策略[J].微生物学报,2003,43(2):288-292.
    [136]Sreekrishna K, Barr KA, Hoard SA, et al. Expression of human serum albumin in Pichia pastoris[J]. Yeast, 1990, 6( special issue): 447.
    [137]赵翔,霍克克,李育阳,等.毕赤酵母的密码子用法分析[J].生物工程学报,2000,16(3):208-211.
    [138]Clare JJ, Rayment FB, Ballantine SP, et al. High-level expression of tetaus toxin fragment C in Pichia pastoris strains containing multi pletandem integrations of the gene [J]. Bio? Technology. 1991, 9: 455.
    [139]Sharp PM, Tuohy TM, Mosurski KR, Codon usage in yeast: cluster analysis clearly differentiates highly and lowly expressed genes [J]. Nucleic Acids Res. 1986, 14(13): 5125.
    [140]姚斌,张春义.高效表达具有生物学活性的植酸酶的毕赤酵母[J].中国科学,1998,28(3):237-243.
    [141]Izard JW, Doughty MB, Kendall DA. Physical and conformational properties of synthetic idealized signal sequences parallel their biological function [J]. Biochem istry, 1995, 34 (31): 9904.
    [142]杨运桂,徐克宁,胡泰山,等.信号肽疏水性的提高促进青霉素G酰化酶分泌[J].生物化学与生物物理学报,2000,32(2):163.
    [143]郑斌,詹希美.信号肽序列及其在蛋白质表达中的应用[J].生物技术通讯,2005,16(3):296-298.
    [144]Kang HA, Sohn JH, Choi ES, et a1. Glycosylation of human alpha1-antitrypsin in Saccharomyces cerevisiae and methylotrophic yeasts [J]. Yeast, 1998, 14(4):371-381.
    [145]张惠堂,颜志强,蔡兴锋,等.人睫状神经营养因子在大肠杆菌和毕赤酵母中的表达和生物活性测定[J].中国生物化学与分子生物学报,2005,21(3):427-430
    [146]温红玲,王志玉,宋艳艳,等.风疹病毒JR23株糖蛋白E1在毕赤酵母表达系统中的表达和抗原性分析[J].中华微生物学和免疫学杂志,2005,25(3):190-193.
    [147]Liang Wei-feng, Zhang Zhao-chun, Yang Xi-cai. Construction of a new multi-copy pichia expression vector and expression of human brain derived neurotrophic factor gene [J]. Acta Microbiologica Sinica, 2005, 45(1): 34-37.
    [148]吴丽娟,蒋建新,朱佩芳,等.重组人A20蛋白在巴斯德毕赤酵母GS115中的表达[J].第三军医大学学报,2006,28(3):201-204.
    [149]刘堰,苏畅,胡应,等.巴斯德毕赤酵母表达的突变型人白细胞介素-2的发酵条件与纯化研究[J].生物工程学报,2005,21(3):430-434.
    [150]邱荣德,朱建蓓,王垒等.人p53蛋白在巴斯德毕赤酵母中的表达[J].生物工程学报,1999,15(4):477-481.
    [151]窦烨,王清路,李俏俏.毕赤酵母工程菌发酵条件的优化[J].食品工业科技,2008,29(6):168-171.
    [152]Wegner M, Eugene H. Biochemical conversions by yeast fermentation at high cell densities [P]. US Patent, 1983,4414329
    [153]Jahic M, Wallberg F, Bollok M, et al. Temperature limited fed-batch technique for control of proteolysis in Pichia pastoris bioreactor cultures [J]. Microb Cell Fact, 2003, 2(1):6-9.
    [154]史琪琪,郝玉有,吴康华,等.诱导相温度对毕赤酵母表达重组人复合α干扰素聚合的影响[J].生物工程学报,2006,22(2): 311-315.
    [155]Hilt W, Wolf DH. Stress-induced proteolysis in yeast[J]. Mol Microbiol. 1992, 6(17):2437-2442.
    [156]Zhou X, ZhangY. Decrease of proteolytic degradation of recombinant hirudin produced by Pichia pastoris by controlling the specific growth rate [J]. biotechnol lett, 2002, 24:1449-1453.
    [157]Jahic M, Jcr M, Hult K, et al. Modeling of growth and energy metabolism of Pichia pastoris producing a fusion protein[J].Bioproc Biosys En-gin, 2002, 24:385-393.
    [158]Sinha J, Plantz BA, Inan M, et al. Causes of proteolytic degradation of secreted recombinant proteins produced in methylotrophic yeast Pichia pastoris:Case study with recombinant ovine interferon-tau [J]. Biotechnol Bioeng, 2005, 89(1):102-112.
    [159]Jahic M, Gustavsson M, Jansen AK, et al. Analysis and control of proteolysis of afusion protein in Pichia pastoris fed-batch processes [J]. J Biotechnol, 2003, 102(1):45-53.
    [160]刘一尘,张春杰,程相朝,等.鸡IL-18成熟蛋白基因原核表达载体的构建及多克隆抗体的制备[J].河南农业科学,2009,(2):110-113.
    [161]吴乃虎.基因工程原理[M].北京:科学出版社,1998.
    [162]杨莉莉,魏枫,刘虹,等重组人白介素18在毕赤酵母中的高效分泌表达[J].细胞与分子免疫学杂志,2008,24(11):1040-1043.
    [163] Sychrova H. Yeast as a model organism to Study Transport and Homeostasis of alkali metal cations [J]. Physiol Res. 2004, 53(Suppl.1):91-98.
    [164]Cregg M J, Cereghino L J, Shi J, et al. Higgins R D recombinant protein expression in Picha pastoris [J]. Molecular Biotechnology, 2000, 16:23-52
    [165]宋世斌,陈国华,王颖,等.猪IL-18在毕赤酵母中分泌表达条件的优化[J].甘肃农业大学学报,2008,43(1):38-42.
    [166]彭毅,杨希才,康良仪.影响甲醇酵母中外源蛋白表达的因素[J].生物技术通报,2000,(4):33-36.
    [167]Khatrin K, Hoffmann F. Impact of methanol concentration on secreted protein production in oxygen-limited cultures of recombinant Pichia pastoris [J]. Biotechnol Bioeng, 2006, 93(5):871-879
    [168]Schmidit O I, Morganti-kossman M C, Heyde C E,et al. Tumor Necrosis Factor-mediated Inhibition of Interlenkin-18 in the Braina clinical and Experimental study in head-injured patients and in a murine model of closed Head injury [J]. J Neuroinflamm, 2004, 28(1):13.
    [169]Mattanovich D, Gasser B, Hohenblum H, et al.Stress in recombinant protein producing yeasts [J].Journal of Biotechnology, 2004, 113:121-135
    [170]Zhou X, Zhang Y. Decrease of proteolytic degradation of recombinant hirudin produced by Pichia pastoris by controlling the specific growth rate [J].Biotechnol lett, 2002, 24:1449-1453.
    [171]Alexander DJ. Newcastle Disease In OIE Manual of Standards for Diagnostic [J].Test and Vaccines, 2000, 221-232
    [172]Tanaka H, Narita M, Teramoto S, et al. Role of interleukin-18 and T-helper type 1 cytokines in the development of Mycoplasma pneumoniae pneumonia in adults [J].Chest, 2002, 121(5):1493-1497.
    [173]Marshall DJ, Rudnick KA, McCarthy SG, et al. Interleukin-18 enhances Th1 immunity and tumor protection of a DNA vaccine [J].Vaccine, 2006, 24(3):244-253.
    [174]Alfred D, Eaton D, Amox U, et al.Administration of exogenous interleukin-18 and interleukin-12 prevents the induction of oral tolerance [J].Immunologe.2003, 108:196-203.
    [175]Gu Y, Kuida K, Tsutsui H , et al..Activation of interferon-γ, inducing factor mediated by interleukin-1βconverting enzyme [J].Science,1997,275:206~209.
    [176]殷震,刘景华.动物病毒学(第2版)[M].北京:科学出版社,1997.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700