江桥地区江37区块稠油脱水试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对江37区块稠油及稠油乳状液的黏温关系进行了拟合,稠油的析蜡点为50℃,析蜡点前后,在半对数坐标系中,黏温曲线分别为直线,回归系数较高。在半对数坐标系中,稠油乳状液的黏温曲线基本成直线关系,表明稠油乳状液的黏度与温度呈对数关系。
     对江37稠油进行热化学脱水实验,得出结论:江37稠油可以采用两段热化学脱水工艺进行脱水。一段热化学沉降脱水工艺参数:脱水温度为70℃;破乳剂型号为H012;加药量为150mg/L;沉降时间为24h;脱后油中含水率为20%;脱后水中含油为1000mg/L。鉴于沉降时间较长,稠油油气比很低,建议一段热化学沉降脱水采用常压立式沉降罐。二段热化学沉降脱水工艺参数:脱水温度为85℃;破乳剂型号为H012;加药量为150mg/L;沉降时间为48h;脱后油中含水率为1%;脱后水中含油为1000mg/L。鉴于沉降时间较长,稠油油气比很低,建议二段热化学沉降脱水采用常压立式沉降罐。
     对江37稠油进行了电化学脱水实验,建议开展二段电化学脱水现场试验,力争在下列条件下实现电化学脱水:采用竖挂电极结构;脱水温度为70℃;破乳剂型号为H012;加药量为50mg/L;电场脱水时间为30min;交流电场按200V/cm、直流电场强度按1500~2000V/cm;脱后油中含水率为1%;脱后水中含油为1000mg/L;电脱水器建议采用卧式压力容器。电脱水变压器和控制设备除保留原有功能外,建议增加自动调整加载电压功能。鉴于稠油中胶质含量较高,导电能力较强,加载困难,建议开展脉冲电场脱水试验。
Relationship between viscosity and temperature of heavy oil and heavy oil emulsion is matched. Wax precipitation point of heavy oil is 50℃. Up and down wax precipitation point, curves of viscosity-temperature are straight lines respectively under semilog coordination, and regression coefficient is high. Under semilog coordination, curve of viscosity-temperature of heavy oil emulsion generally has a linear relationship, showing that relationship between viscosity and temperature of heavy oil emulsion is logarithmic.
     Heating-demulsifier dehydration experiment is carried out using heavy oil emulsion of Jiang37 block. It shows that two stage heating-demulsifier dehydration technology can be used to dispose Jiang37 heavy oil emulsion. Technological parameters of first stage heating-demulsifier settling dehydration are that dehydrating temperature is 70℃, type of demulsifier is H012, dosage of demulsifier is 150mg/L, settling time is 24h, water cut of dehydrated oil is 20%, and concentration of oil in dehydrated water is 1000mg/L. Technological parameters of second stage heating-demulsifier settling dehydration are that dehydrating temperature is 85℃, type of demulsifier is H012, dosage of demulsifier is 150mg/L, settling time is 48h, water cut of dehydrated oil is 1%, and concentration of oil in dehydrated water is 1000mg/L. Whereas settling time is long, and gas-oil ratio is very low, it is suggested that heating-demulsifier settling dehydration is to use atmospheric vertical settling tank.
     electric-demulsifier dehydration experiment is carried out using heavy oil emulsion of Jiang37 block. It is suggested carrying out two-stage electric-demulsifier dehydration in-situ test, parameters of electric-demulsifier dehydration are that electrode is vertical, dehydrating temperature is 70℃, type of demulsifier is H012, dosage of demulsifier is 50mg/L, dehydrating time of electric field is 30min, alternating current electric field strength is 200V/cm, direct current electric field strength is 1500~2000V/cm, water cut of dehydrated oil is 1%, and concentration of oil in dehydrated water is 1000mg/L, and it is better to use vertical pressure vessel. It is better to make electric dehydration transformer regulate load voltage automatically. Whereas resin content is high in heavy oil, and loading is difficult due to strong conductive ability of resin, it is suggested to carry on pulse electric field dehydrating test.
引文
[1] Sunil Kokal. Crude Oil Emulsions: A State-Of-The-Art Review, SPE 77497, 2002
    [2] Kokal, S.L., “crude Oil Emulsions” in Petroleum Engineers Handbook, SPE(2003)
    [3] Schramm, L.L (Ed.), Emulsions: Fundamentals and Applications in the Petroleum Industry, Adv. Chem. Ser. Monogragh Series 231, Am. Chem. Soc, Washington DC(1992)
    [4] Jones, T.J., Neustadter, E.L., and Wittingham, K.P., “Water-in-Crude Oil Emulsion Stability and Emulsion Destabilization by Chemical Demulsifiers”, J. Petrol. Can. Technol., pp 100~108, April-June (1978)
    [5] Strassner, J.E., “Effect of pH on Interfacial Films and Stability of Crude Oil-Water Emulsions”, J. petrol. Technol., pp 303~312, March (1968)
    [6] Kimbler, O.K., Reed, R.L., and Siberberg, I.H., “Physical Characteristics of Natural Films at the Crude Oil-Water Interfaces”, J. Petrol. Technol., pp 153~165, June(1966)
    [7] Bobra, M., “A Study of the Formation of Water-in-Oil Emulsions”, Proc. of the 1990 Arctic and Marine Oil Spill Program Tech. Seminar, Edmonton, Canada (1990)
    [8] Eley., D. D., Hey, M.J., and Symonds, J.D., “emulsions of Water in Asphaltene Containing Oils”, Coll. & Surf., vol 32, pp 87~103 (1988)
    [9] Kokal, S.L. and Sayegh, S.G., “Asphaltenes: The Cholesterol of Petroleum”, SPE29787 paper presented at the 6th Middle East Oil Show, Bahrain, March (1995)
    [10] Salager, J.L., “The Fundamental Basis for the Action of a Chemical Dehydrant: Influence of Physical and Chemical Formulation on the stability of an Emulsion”, Int. Chem. Engg., vol 30(1), pp 103~116 (1990)
    [11] Tambe, D.E. and Sharma, M.M., “Factors Controlling the Stability of Colloid-Stabilized Emulsions”, J. Coll. Int. Sci., vol 157, pp 244~253 (1993)
    [12] Levine, S. and Sanford, E., “Stabilization of Emulsion Droplets by Fine Powders”, Can. J. Chem. Engg., vol 62, pp258~268 (1985)
    [13] Kokal, S.L. and Al-Juraid, J.I., “Reducing Emulsion Problems By Controlling Asphaltene Solubility and Precipitation”, paper SPE 48995 presented at the 1998 SPE annual Technical Conference and Exhibition, New Orleans (1998)
    [14] Coppel, C.P., “Factors Causing Emulsion Upsets in Surface Facilities Following Acid Stimulation”, J. Petrol. Technol., pp 1060~1066 (1975)
    [15] Ali, S.A., Durham, D.K. and Elphingstone, E. A., “Test Identifies Acidizing Fluid/Crude Compatibility Problems”, Oil Gas J., pp 47~51, March (1994)
    [16] Moore, E.W., Crowe, L.W., and Hendrickson, A.R., “Formation, Effects and Prevention of Asphaltene Sludges During Stimulation Treatments”, J. Petrol. Technol., pp 1023~1028 (1965)
    [17] Einstein, A., “Theory of Brownian Movement”, Ann. Phys., German 19, 289, 1906
    [18] Einstein, A., “Elementary Consideration of the Thermal Conductivity of Dielectric Solids”, Ann. Phys., German 34, 591, 1911
    [19] Taylor, G.L., “The Viscosity of a Fluid Containing Small Drops of Another Liquid”, Proc. R. Sco., A 138, 41~48, 1932
    [20] Choi, S.J., Schowater, W.R., “Rheological Properties of Nondilute Suspensions of Deformable Particles”, Phys. Fluids 18, 420~427, 1975
    [21] Yaron, I., Gal-Or, B., “On Viscous Flow and Effective Viscosity of Concentrated Suspensions and Emulsions”, Rheol. Acta 11, 241~252, 1972
    [22] Phan-Thien, Pham, D.C., “Differential Multiphase Models for Poly-dispersed Suspensions and Particulate Solids”, J.Non-Newton. Fluid Mech. 72, 305~318, 1997
    [23] Krieger, I.M., Dougherty, T.J., “A Mechanism for Non-Newtonian Flow in Suspensions of Rigid Spheres”, Trans.Soc. Theol. 3, 137~152, 1959
    [24] Pal, R., “A Novel Method to Correlate Emulsion Viscosity Data”, Colloids Surf., A Physicochem. Eng. Asp. 137, 275~286, 1998
    [25] Pal, R., “Evaluation of Theoretical Viscosity Models for Concentrated Emulsions at Low Capillary Numbers”, J. Chem. Eng. 81, 15~21, 2001
    [26] Ronningsen, H.P., “Correlations for Predicting Viscosity of w/o Emulsions Based on North Sea Crude Oils”, Proc. SPE Int. Symp., Oil Field Chem., SPE 28968, Houston, Texas, 1995
    [27] Richardson, E.G., “The Formation and Flow of Emulsion”, J.Colloid Sci. 5, 1950,404
    [28] Walther, C., “The Evaluation of Viscosity Data”, Erdol and Teer 7, 1931, 382~384
    [29] 卢东风, 张夏泽, 姜海峰. 聚合物驱油井采出液流变性管输水力的计算[J]. 油气田地面工程, 1999, 18(2): 14~16
    [30] 黄建春, 李光正, 莫乃榕. 油-水乳状液流过弯管的局部阻力特性研究[J]. 华中科技大学学报, 2001, 29(7):10~12
    [31] 马文辉, 刘宪红, 梁梦兰, 袁红, 杨承志. 耐低温稠油乳化剂及其 O/W 型乳状液流变性研究[J]. 齐齐哈尔大学学报, 2002, 18(1):98~100
    [32] 魏国晟,张宗愚. 原油破乳剂的研究与应用[J].油气田地面工程, 1995, 14(6): 24~26
    [33] 杜新媛, 胡冬妮, 蓝利生. 多元复合原油破乳剂的研究和应用[J].化学研究与应用,1996,8(3): 469~471
    [34] 刘启瑞,张谋真,郭立民, 崔花莉. 原油破乳剂-破乳剂复配的筛选[J].化学研究与应用,2004,16(2):270~271
    [35] Christine Dalmazzone. Christine No?k, “Development of New ‘green’ Demulsifiers for Oil Production”, SPE 65041, 2001
    [36] Schramm, Laurier L: Surfactants: Fundamentals and Applications in the Petroleum Industry, first edition, Cambridge University Press, Cambridge, UK(2000), 56
    [37] Janaka. B. Paulis, Mukul. M. Sharma. “A New Family of Demulsifiers for Treating Oilfield Emulsions”, SPE 37269, 1997
    [38] 康万利,单希林,龙安厚, 李俊刚. 破乳剂对复合驱乳状液的破乳机理研究[J].高等学校化学学报, 1999,20(5):759~761
    [39] 夏立新,曹国英,陆世维, 张路, 俞稼镛. 原油乳状液稳定性和破乳研究进展[J].化学研究与应用,2002, 14(6):623~627
    [40] 朱红,赵丰, 唐季安, 李津如, 李兴长, 江龙. 油/水界面层膨胀流变特性的实验研究[J]. 科学通报,2002,47(8):584~587
    [41] 王宜阳,张路, 孙涛垒, 方洪波, 赵濉, 俞稼镛. 不同结构破乳剂油水界面扩张黏弹性研究[J].物理化学学报,2003,19(4): 297~301
    [42] Ch.No?k, Ch.Dalmazzone. “Mechanism Of Crude Oil/Water Interface Destabilization By Silicone Demulsifiers”, SPE 80241, 2003
    [43] Abdullah AL-Ghamdi, Sunil Kokal. “Investigation of Causes of Tight Emulsions in Gas Oil Separation Plants”, SPE 81508, 2003
    [44] 康万利,张红艳,李道山, 吴肇亮, 李明远, 高慧梅. 破乳剂对油水界面膜作用机理研究[J].物理化学学报, 2004, 20(2): 194~198
    [45] 石英,黄世海. 原油破乳界面特性的研究[J].工业科技,2004,33(1):47 )
    [46] 孙保江,严大椿,乔文孝.乳化原油的超声波脱水研究[J].声学学报, 1999, 24(3): 327~331
    [47] 李可彬.一种乳状液破乳的新方法-涡旋电场法[J].环境科学学报,1996,16(4): 482~487
    [48] Kathryn Jand Steve J Hill. Analyst, 1998,123:103
    [49] 李淑贞. 试产原油脱水方案研究[J]. 油田化学, 1995, 12(1):47~50
    [50] 刘寺意, 武玉双, 袁占勇. 高矿化度和高黏度原油的脱水试验[J]. 油气田地面工程, 1998, 17(6): 23~24
    [51] 武本成, 朱建华. 刘红研, 李宗强, 杨树华. 辽河超稠油电化学脱水实验研究[J]. 石油化工高等学校学报, 2004, 17(1):46~51
    [52] 韩洪升. 大庆萨南油田低温高含水原油流变性研究[J]. 油气储运, 1993, 11(3): 42~46
    [53] 宁甲清, 李泽勤, 宋迎来. 曙一区超稠原油室内脱水工艺技术[J]. 油气田地面工程, 1997, 16 (6) :34 ~ 37

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700