原油水分含量测试技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
原油含水量是石油化工行业一个重要的参数,检测原油含水量是原油开采、脱水、处理、集输计量、储运销售及石油炼制等过程被普遍关注的问题。若原油含水量检测不准,将直接影响油井及油层动态分析,破坏电脱水器中电场,降低脱水效果,给原油集输造成很大能源浪费。但由于油水两相流流动体系极为复杂,致使水分含量测量难度较大,因此,原油含水率的实时准确测量成为油田亟待解决的问题。
     本文以含水原油为研究对象,在参阅国内外相关文献的基础上,对现有的几种原油含水率测试方法进行了归纳总结和比较,分析了各种测试方法的基本原理、应用范围和优缺点,并结合我国原油高粘度和高含水率的特点,选择了电磁波同轴相位法来测量原油含水率。应用电磁波在介质中传播时的相位常数会随介质的介电常数而变化的原理,采用同轴线作为传感器,使原油和水的混合物在传感器的内导体和外导体之间流过,通过测量传感器两端电磁波的相位变化实现了原油含水率的测量。设计了80MHz的高频电磁波产生和放大电路以及相位测量电路。应用单片机采集相位差测量电路输出的电压信号,并将数据送至上位机进行处理和显示。同时,设计了温度测量电路以消除温度变化对测量结果造成的不利影响。
     以10%为间隔点,对0~100%含水范围内的油水混合液进行了静态实验。实验结果表明,采用同轴线作为传感器,通过测量电磁波传播的相位变化来测量原油含水率的方法是可行的。应用该方法所设计的测量系统可以实现含水率的连续测量,在高含水率(70%~100%)阶段具有较好的线性度和准确度。
The water content of crude oil is a key parameter in petroleum industry. The water content directly affects the crude oil exploitation, dehydration, transportation, measure, sale, smelting etc. The inaccurate measure of the water content will affect directly oil well and oil layer dynamic analysis, destroy the electrical field in the electric dehydrator, lower the dewatering effect, result in energy waste. However, it is difficult to measure the water content owing to the inherent complexity of the oil-water two-phase flow. So the on-line and accurate measurement of the water content of crude oil is an imminent demand for petroleum industry.
     The measurement object of the research in this paper is the crude oil with water content. Through studying the domestic and international related documents, the existing several test methods of water content of crude oil are summarized and compared. The basic principle, application, merits and shortcomings are analyzed. According to the feature of high viscosity and high water content of our country's crude oil, the method of applying the phase difference of electromagnetic wave is selected to measure the water content in this paper. Because of the different dielectric property between oil and water, the phase constants are quite different when electromagnetic wave travels in them. The coaxial transmission line is taken as the sensor and oil/water mixture flow in the coaxial line. The water content can be measured through test the phase difference of the electromagnetic wave between two sides of the sensor. The circuits of producing and magnifying 80MHz signal and testing the phase difference are designed. The data sample and transport is realized by the single chip .And the PC processes the data and shows the results. At the same time, the temperature measurement circuit is designed to reduce the effect to results brought by the change of temperature.
     The experiments for measuring the water content from 0 to100% are accomplished. And the results are given taken 10% as a gap. The experiments prove the method of applying the phase difference of electromagnetic wave to measure water content in crude oil is feasible. And the system designed according to the method can realize the continuous measurement. The linearity and accuracy is better when the water content ranges from 70% to 100%.
引文
[1]朱立新,崔国立,马晓明等.便携式原油含水率快速测量仪表的设计.仪表技术与传感器,2003,(10):10-13.
    [2]王莉田,王玉田,史锦珊等.原油含水测量仪的研究.传感技术学报,2000,(1):44-47.
    [3]丁振杰.石油中含水量测量的可行性分析.化工自动化及仪表,2004,31(6):77-79.
    [4]杨联会,廖茂盛,郭宏伟.在线原油含水测量仪表中不可忽视的几个问题.石油仪器,2004,18(5):63-64.
    [5]胡永新.新型含水分析仪在原油含水测量中的应用.石油规划设计,2003,14(4):41-42.
    [6]王沛甫,李素贵,王建国.FSH-KS型原油含水监测仪在线运行误差因素分析.油气田地面工程,1998,17(3):45-48.
    [7]郝雪岩,姚彦秋,李雪松.原油低含水传感器的研制.信息技术,2002,(7):62-63.
    [8]李志茂.基于微波透射法测量油水两相流分相含率的实验研究:(硕士学位论文).杭州:浙江大学,2006.
    [9]Ng T S, Lawrence C J, Hewitt G F. Interface Shaped for Two-Phase Laminar Stratified Flow in a Circular Pipe. Int. J. Multiphase Flow, 2001,27:1301-1311.
    [10]Nadler M,Mewes D. Flow Induced Emulsification in the Flow of Two Immiscible Liquids in in Horizontal Pipes. Int. J.Multiphase Flow. 1997,23(1):55-68.
    [11]Brauner N,Moalem Maron. Flow Pattern Transitions in Two-Phase Liquid-Liquid Flow in Horizontal Tubes. Int. J. Multiphase Flow, 1992, 18(1):123-140.
    [12]Shi H, Cai J, Jepson W P. Oil-Water Two-Phase Flows in Large-diameter Pipelines. Transactions of the ASME, 2001,123(12):270-276.
    [13]Angeli P, Hewitt G F. Flow Structure in Horizontal Oil-Water Flows. Int. J.Multiphase Flow, 1998,24:l183-1203.
    [14]徐平,侯海岭,屈传堂,许丹.原油含水率测量系统.仪表技术与传感器,2004,17(7):22-24.
    [15]朱立新,丁源涛,晏太来等.原油含水率自动监测仪表的系统设计.仪器仪表,2000,15(6):11-14.
    [16]Kouba G E, Shoham O, Brill J P. A Non-Intrusive Flow Metering Method for Use in Two-Phase Intermittent Flow in Horizontal Pipes, SPE62nd Annual meeting, paper No. SPE[668],Dallas, Texas, September, 1987:27-30.
    [17]王宝峰.原油含水在线监测技术.油气田地面工程,2005,24(3):40-41.
    [18]王得志,甘金颖,王德毓.短波比较型原油含水测量仪.辽宁工程技术大学学报,2004,23(3):365-367.
    [19]赵千锁,徐伟.短波原油含水监测仪及其应用.化工自动化及仪表,1996,23(1):60-62.
    [20]李俊,王铁生,周凯.便携式油罐参数测试仪的研制.油气地面工程,1997,16(1):43—45.
    [21]孟庆鼎.微波非电量的测量技术.合肥工业大学学报(自然科学版),1994,17(1):31-36.
    [22]Kraszewski A, Microwave instrumentation for moisture content measurement. Microwave Power, 1973,8(4):323-336.
    [23]Brown E R, McMahon O B, Murphy T J, et al. Wide-Band Radiometry for Remote Sensing of 0il Films on Water. IEEE Transactions on Microwave Theory And Techniques. 1998, 46 (12):1989-1996.
    [24]沈明新.智能化石油含水测量仪.自动化仪表,1995,10(3):7-10.
    [25]陈敏,杨欣荣.测量油品含水量的电容式传感器机理.传感器技术,2002,21(7):15-17.
    [26]马世勇.原油含水率的在线测量.仪器仪表用户,2003(5):30-31.
    [27]Strizzolo C N, Converti J. Capacitance Sensors for Measurement of Phase Volume Fraction in Two-Phase Pipelines. IEEE Transactions on Instrumentation and Measurment. 1993, 42 (3): 726-729.
    [28]马世勇.射频电容式传感器的研究与应用.传感器技术,2001,20(2):43-45.
    [29]凌玉华,杨欣荣,孙克辉等.射频法重油含水率测量仪的研究.仪器仪表学报,1999,20(4):380—382.
    [30]Huangm S M, Feklden J, Green R G, et al.A New Capacitance Transducer for Industrial Applications. J. phys. E:Sci. Instrum. 1988, (21):251-256.
    [31]Matsumoto H, Watanabe K. A Switched-Capacitor Digital Capacitance Meter. IEEE Transactions on Instrumentation and Measurement. 1986,35(4):555-559.
    [32]Daniele M,Emilio S, Andrea T.Measurement of Small Capacitance Variations. IEEE Transactions on Instrumentation and Measurement. 1991, 40 (2):426-428.
    [33]王进旗,张锡富,于英华.基于相位法原油含水率仪的实验研究.仪表学报,2004,25(4):366-368.
    [34]韩亚彬,王广忠,陈庆新等.超高频电磁波找水技术.大庆石油地质与开发,2003,22(2):64-66.
    [35]吴锡令,赵亮,刘迪军.多相流动电磁波成像测井基础研究.石油勘探与开发,2000,27(2):79-81.
    [36]吴锡令.波导测量方法及其可行性研究.测井技术,1998,22(6):416-418.
    [37]王进旗,张锡富.新型油井含水率测量仪的研制.仪表技术与传感器,2003,(7):15-17.
    [38]焦其祥.电磁场与电磁波.北京:北京邮电大学出版社,2004.
    [39]庄海军,刘兴斌.温度、矿化度对高频电容法测持水率的影响.测井技术,1996,20(1):21-27.
    [40]戴敬.充放电电容检测电路中电荷注入影响的补偿[J].沈阳工业学院学报.2000,19(4):16-20.
    [41]罗海清.基于msp430的原油含水率测量:(硕士学位论文).大连:大连理工大学,2003.
    [42]黄正华.油水混合介质相对介电常数的研究.油气田地面工程,2000,19(2):8-10.
    [43]Lamkaouchi K,Ellison W J,Moreau J M.Water:A Dielectric Reference.Journal of Molecular Liquids,1996,68(2):171-279.
    [44]孟祥军,王进旗.同轴线传感器优化设计.大庆石油学院学报,2005,29(4):76-78.
    [45]王进旗,强锡富.新型油井含水率测量仪的研制.仪表技术与传感器,2003,(7):10-11.
    [46]仝志民.同轴线相位法含水率计解释方法的研究:(硕士学位论文).大庆:大庆石油学院,2003.
    [47]吴栋,朱日宏,陈磊等.移相干涉仪环境微扰的外差检测及信号处理.光电工程,2004,31(9):53-56.
    [48]李农.FPGA与DS18B20型温度传感器通信的实现.国外电子元器件,2006,(2):48—51.
    [49]耿德根,宋建国,马潮.AVR高速嵌入式单片机原理与应用.北京:北京航空航天大学出社,2000.
    [50]范逸之.Visual Basic与分布式监控系统-RS232/485串行通信.北京:清华大学出版社,2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700