矩形波交流原油脱水电源的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着油田开发进入高含水开采阶段,原有脱水电源效率很难再进一步提高,针对目前国内外原油脱水电源的现状,从提高原油脱水效率的角度出发,设计了矩形波交流原油脱水电源。
     矩形波交流原油脱水电源包括主电路和控制电路两部分。电源的主电路包括硬件设计和参数选择,主电路采用全桥式逆变结构,硬件电路包括整流电路、滤波电路、调压电路、逆变电路和升压电路,阐述了其工作原理,并对全桥整流电路的二极管、IGBT功率器件和变压器等进行了参数计算。
     控制电路主要由TL494芯片和AT89C51单片机组成,形成闭环控制系统。控制IGBT器件的PWM波由以TL494为核心的PWM控制电路产生;驱动电路选用IGBT专用驱动模块2SD315A进行控制信号的放大;保护电路包括过压保护、过流保护、短路保护。软件部分对以AT89C51单片机为核心的防偏磁控制电路进行了初始化参数的设计和单片机的编程。进行防偏磁电路的软硬件设计是本文控制电路设计的重点。
     最后,对电源进行了实验并对实验结果进行了分析,实验室实验中电源输出波形基本为交流矩形波,与设想的基本一致;现场试验是对脱水效果的试验,矩形波交流原油脱水电源脱水效果良好,完全符合国家标准。
Considering the present situation of electric dehydration power resource of crude oil ,an electric dehydration power resource of crude oil which can output great power is designed from the angle of energy conservation and the performance-cost ratio.
     In this paper, the electric dehydration power resource is designed in the hardware and software part. The hardware part is made of main circuit, drive circuit, control circuit and protection circuit. The full bridge structure is used in the design of main circuit. The function of main circuit is presented, and the parameters of IGBT power components and transformer are calculated. The control circuit are mainly composed of the TL494 module and the AT89C51 single-chip processor,which forms a closed loop control system. The PWM waves controlling IGBT components are generated by PWM control circuit which is mainly composed of the TL494 module. The IGBT drive circuit uses the special-purpose 2SD315A module to carry on the amplification of control signal. Protection circuit includes over voltage protection, over current protection, short-circuit protection. The software part designs the initialization parameters separately according to anti-biasing controlling circuit which is mainly composed of AT89C51 single-chip processor and does the programming of micro controlled unit. The experimental results indicate that the output waveform meets the requirement of the theoretical design parameters basically and the system can work reliably and control well.
     Finally, the tests and analysis of the electric dehydration power resource are done, which proves the reasonability of the circuits.
引文
[1] 张鸿仁.油田原油脱水[M].北京:石油工业出版社,1990:1~195.
    [2] 牛俊邦,巩春伟.新型逆变式原油电脱水仪的研制[J].油气田地面工程,2003,22(9):93~94.
    [3] 戴静君,毛炳生,张联盟.海上油气水处理工艺及设备[M].武汉:武汉理工大学出版社,2002:82~93.
    [4] 于建,倪文俊,赵玉强等.铁电畴反转机理的研究[J] .人工晶体学,2000, 29(2):122~125.
    [5] 陈洪斌.调制器型加速器前沿锐化(D).成都:电子科技大学,2000.
    [6] 李祥臣.大功率电源模块的散热设计与优化[J].科技咨询导报.2006,(18):61~62.
    [7] 侯慧,游大海,尹项根.轻型高压直流输电技术的发展与应用[J].电力建设.2005,26(11):28~30.
    [8] 薛永毅,王淑英,何希才.新型电源电路应用实例[M].北京:电子工业出版社,2001:45~47.
    [9] 何希才,姜余祥.变压器设计原理[M].北京:力学出版社,2003:2~46.
    [10] 马志强.变压器直流偏磁的原理性仿真[J].广东电力,2004,17(2):5~9.
    [11] 张乃国.电源技术[M].北京:中国电力出版社,1998:67~80.
    [12] 何希才,张明莉.新型稳压电源及应用实例[M].北京:电子工业出版社,2004:3~8,31~32.
    [13] 徐德高,金刚.脉宽调制变压器型稳压电源[M].北京:科学出版社,1983:22~234.
    [14] 陈长江.IGBT 逆变式手弧焊电源主电路[J].武汉船舶职业技术学院学报,2004,23(2):8~10.
    [15] 顾公兵.IGBT全桥式CO2逆变焊接电源主电路的设计[J].电焊机,2003,33(11):18~22.
    [16] 李宏,周继华,李治典.全桥逆变电路抗偏磁应用研究[J].电力电子技术,1998,13(3):61~63.
    [17] 张微,柳梁.TL494及其在开关稳压电源中的应用[J].仪表技术,2000,(4):40~41.
    [18] 赵家瑞.逆变焊接与切割电源[M].北京:机械工业出版社,1996:10~62.
    [19] 周乃军,胡立峰.弧焊电源用全桥逆变电路的偏磁控制及仿真[J].电焊机,1998,28(5):21~23.
    [20] 孙丽云.矩形波交流脉冲电源的控制系统设计与分析[J].北京石油化工学院学报,2004,12(3):23~26.
    [21] Xu-Chunyun, Chen Guocheng Control Strategy of a Soft-switching Three-phase PWM Inverter Electric Technology Transaction, 2000, 15(6):23~27.
    [22] Guo cheng Chen,Qinli zhou.Reanalyzing of the Current Wave Distortion for Inverter.Electric Driver,1995,12(6):22~26.
    [23] 叶强,修吉平.0~10 kV连续可调PWM稳压开关电源的设计[J].通信电源技术,2003, (3):19~22.
    [24] Roberto C.Callarti.Circuital modeling from electronic devices to oil production.Fourth IEEE International Caracas conference on devices, circuits and systems, Aruba, 2002. April Page (s):17~19.2002.
    [25] 张迎新.单片微型计算机原理、应用及接口技术[M].第 2 版.北京:国防工业出版社,2004.
    [26] 康华光,陈大钦.电子技术基础[M].北京:高等教育出版社,1999.1~15.
    [27] 林渭勋.现代电力电子电路[M].浙江大学出版社,2002.103~108.
    [28] 李锡雄.脉宽调制技术[M].华中理工大学出版社,1996
    [29] 康劲松.IGBT 集成驱动模块的应用研究[J].应用与交流,2000,5(1):36~38.
    [30] 刘燕.大功率 IGBT 模块的驱动电路及参数选择[J].兰州工业高等专科学校学报,2003,10(2):32~35.
    [31] 孙强,陶健.新型 IGBT 驱动模块 2SD315A 应用研究[J].现代电力,2003,20(3):79~83.
    [32] 苏玉刚,陈渝光.电力电子技术[M].重庆:重庆大学出版社,2003.
    [33] 张玉峰.PWM 直流调速系统的研究[J].沈阳工业大学报,2001,23(3):240~243.
    [34] Praveen K.Jain,Jose R.Espinoza,Shashi B, Self-Starte Voltage-Source Series-Resonant Converter for High-Power Induction Heating and Melting Application. IEEE Transactions on industry applications, VOL.34:5/6, 1998Page(s) :518~525.
    [35] 潘闻.串行EEPROM AT93C46芯片原理及其与DSP的接口应用[J].电子质量.2004,25(12):68~69.
    [36] 闵次凡,熊茂华.串行E2PROM AT93C46在单片机上的扩展[J].计算机与现代化,1999,15(4):57~60.
    [37] 李晖,曾洁.经济实用的串行.EEPROM-AT93C46 的基本应用[J].仪器仪表用户,2005,12(1):45~46.
    [38] 甘剑华,吴敏志.智能式灰量积算仪的原理与设计.电子与自动化[J],1995,24(2):19~22.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700