限域空腔中钌联吡啶性能的研究及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米空腔材料是指含有纳米级空腔结构的纳米材料。纳米空腔材料为研究分子在受限空间中的性质提供了结构模型。另一方面,基于纳米空腔而构建的纳米限域材料会因为空间效应而展现出某些独特的性能。纳米限域材料的性能主要受到空腔材料的性质、受限分子与空腔材料的相互作用及受限分子的基本行为等因素的影响。本博士学位论文以钌联吡啶为模型分子,围绕稳定的纳米空腔材料的构建,纳米空腔材料的基本性质、钌联吡啶分子与纳米空腔材料的相互作用及其在纳米空腔内的基本性质研究等方面,开展了以下几个方面的工作:
     1.钉联吡啶/石墨烯复合物高效固相电化学发光免疫传感器的构建及其应用
     利用石墨烯构建了新型钌联吡啶-苝四羧酸(PTCA)/石墨烯(Ru-PTCA/G)高效固相电化学发光(ECL)免疫传感器。首先,采用一步法还原氧化石墨并负载PTCA,形成表面富含羧基的PTCA/G复合物。合成含有氨基的钌联吡啶(Ru(II)),并与石墨烯表面修饰的羧基发生共价反应,将钌联吡啶修饰到石墨烯的表面,制备了功能化的Ru-PTCA/G复合物,其中钌联吡啶的量子发光效率比物理吸附的高约21倍。使用该复合物构建的固相ECL传感器具有较高的稳定性,良好的电化学活性,能灵敏的检测三正丙胺(TPA)共反应物。将甲胎蛋白(AFP)抗体共价结合在Ru-PTCA/G修饰的电极上,构建了高灵敏检测AFP的ECL免疫传感器,检测范围在5pg·mL-1-10ng·mL-1,检测限为0.2pg-mL-1.
     2.钉联吡啶/水滑石层状限域纳米材料的制备及其应用
     提出了采用离子交换法将含有羧基的钌联吡啶阴离子引入水滑石(LDHs)的片层间,合成了钌联吡啶/水滑石复合物(Ru/LDHs),并研究了钌联吡啶分子在片层限域结构中的排布以及性质。实验结果表明,LDHs在保留层状结构的同时尺寸减小到100nm以下;而受LDHs片层间空腔的限制及片层表面基团的约束,组装的钌联吡啶呈单层分子排布,分子的热稳定性提高了70℃、光稳定性提高了3倍、激发态寿命延长了1倍、发光效率提高了1.7倍。基于荧光淬灭效应,构建了新型的TNT传感器,检测限达4.4μM。
     3.钌联吡啶/二氧化硅孔道限域纳米材料的制备与性质研究
     提出了通过修饰的菲啰啉合成了含有可缩合硅氧烷的菲啰啉配体,以表面活性剂为模板,采用共缩合法,制备了含有菲啰啉配体的不同孔径的分子筛。以分子筛的纳米通道为限域空腔,在孔道内通过配位作用生成钌联吡啶,制备了一系列钌联吡啶/介孔分子筛(Ru@SiO2)纳米材料,其孔径分别为2.64、5.15、7.42nm。以该分子为模型体系,研究了纳米通道限域的钌联吡啶分子的特殊性质。实验结果表明,钌联吡啶在孔道内的分布高度分散,发光效率、光稳定性得到明显提高,并随着孔径的不同而改变。
Nano-cavity material is a kind of nanomaterial containing nano-cavity structure. Nano-cavity material is considered as model materials for the study of atoms or molecules in confined space. On the other hand, nanomaterials built up based on nano-cavity material commonly exhibit the unique properties due to confinement effect. The performance of these nanomaterials is affected by the properties of nano-cavity materials, the interaction between nano-cavity materials and confined molecular, and the properties of confined molecular. As these issues to be addressed, the present thesis using Ru(bpy)32+as a model molecular focus on preparing the stable nano-cavity materials, exploring the interaction between nano-cavity material and confined Ru(bpy)32+molecular, and the properties of confined Ru(bpy)32+molecular. the following researches have been carried out.
     1. Ru(bpy)32+/graphene composites with enhanced solid-state electrochemiluminescent (ECL) efficiency for sensitive immunosensor
     This part of the work describes a novel strategy to fabricate a solid-state ECL immunosensor based on Ru(bpy)32+/3,4,9,10-perylenetetracarboxylic acid (PTCA)/graphene nanocomposites (Ru-PTCA/G). It is found that immobilization of PTCA and reduction of GO can be simultaneously achieved in one-pot synthesis method, forming PTCA/G nanocomposite. Further covalent attachment of derivative Ru(bpy)32+to the PTCA assembled on graphene sheets produces the functional Ru-PTCA/G nanocomposite which shows good electrochemical activity and ca.21times higher luminescence quantum efficiency than the adsorbed derivative Ru(bpy)32+. The Ru-PTCA/G nanocomposite based solid-state ECL sensor exhibits high stability toward the determination of tripropylamine (TPA) coreactant. In addition, a new ECL immunosensor based on steric hindrance effect is fabricated by cross-linking a-fetoprotein antibody (anti-AFP) with chitosan covered on Ru-PTCA/G composites modified electrode for detection of cancer biomarker AFP. The ECL immunosensor shows an extremely sensitive response to AFP in a linear range of5pg·mL-1-10ng-mL-1with a detection limit of0.2pg-mL-1.
     2. Highly stable and luminescent Ru(bpy)32+/LDHs interlayer restricted nanospace materials for sensitive detection of TNT explosive
     In this part, layered double hydroxides (LDHs) intercalated with of the carboxyl groups derivative Ru(bpy)32+(Ru/LDHs) are prepared via ionic-exchange way. The resultant Ru/LDHs composites exhibit lower than100nm scale particles and retain high ordered layer state. The thermal stability of derivative Ru(bpy)32+increases largely by ca.70℃, its photo stability increases by ca.3times, luminescence luminescence quantum efficiency increases by ca.1.7times, and lifetime also increases by ca.1times. These results are probably due to protecting the intercalated derivative Ru(bpy)32+by the rigid host structure and the interaction between cationic layers and derivative Ru(bpy)32+anion via dominant electrostatic and hydrogen band. Combined with high surface area and good adsorption capacity of LDHs, a new platform based on fluorescence quenching effect is fabricated for high sensitive detection of TNT with a detection limit of4.4μM.
     3. Preparation and characterization of Ru(bpy)32+/SiO2nanopore/channel restricted nanospace materials
     Phenanthroline containing silicone group (Phen) was firstly synthesized. Using surfactant molecules as s template, different pore sizes of Phen-mesoporous silicas were prepared containing via co-condensation method. Further coordination reaction by Ru(bpy)2Cl2and Phen-mesoporous silicas produced a series of Ru(bpy)32+/Si02(Ru@SiO2) nanopore/channel materials, which pore sizes were2.64,5.15and7.42nm, respectively. The structures and morphologies of these materials were then characterized and specific behavior of Ru(bpy)32+were researched by using various analysis techniques. The experimental results show that Ru(bpy)32+molecules with uniform dispersion were decorated on the inner surfaces of the mesoporous silicas, its photo stability and luminescence quantum efficiency improved significantly, and changed with different pore size.
引文
1. A. S. Aricol, P. Bruce, B. Scrosati, J.-M. Tarascon, W. Schalkwijk, Nat. Mater. 2005,4,366.
    2. X. L. Pan, Z. L. Fan, W. Chen, Y. J. Ding, H. Y. Luo, X. H. Bao, Nat. Mater. 2007,6,507.
    3. R. P. Feynman, Eng.& Science,1960,23,22.
    4. F. Banhart, P. M. Ajayan, Adv. Mater.1997,9,3.
    5. M. S. Dresselhaus, G. Dresselhaus, Adv. Phys.2002,51,1,1.
    6. W. Riidorff, U. Hoffman, Z. Anorg. Allg. Chem.1938,238,1.
    7. G. M. T. Foley, C. Zeller, E. R. Falardeau, F. L. Vogel, Solid St. Commun.1977, 24,371.
    8. N. Akuzawa, Y. Amari, T. Nakajima, J. Mater. Res.1990,5,2849.
    9. T. E. Weller, M. Ellerby, S. S. Saxena, R. P. Smith, N. T. Skipper, Nat. Phys. 2005,1,39.
    10. G. Csanyi, P. B. Littlewood, A. H. Nevidomskyy, C. J. Pickard, B. D. Simons, Nat. Phys.2005,1,42.
    11. M. E. Makrini, D. Guerard, P. Lagrange, A. Herold, Carbon 1980,18,203.
    12. E. Frackowiak, K. Tatsumi, H. Shioyama, M. Crespin, F Beguin, Synth. Met. 1995,75,27.
    13. V. Gupta, R. B. Mathur, O. P. Bahl, A. Tressaud, S. Flandrois, Synth. Met.1995, 75,69.
    14. N. Watanabe, T. Nakajima, N. Ohsawa, Bull. Chem. Soc. Jpn.,1982,55,2029.
    15. 乌长斌,.北京矿冶研究总院学报,1993,2,4.
    16. B. C. Brodie, Philos. Trans. R. Soc. London,1859,149,249.
    17. L. Staudenmaier, Ber. Deutsch. Chem. Ges.1898,31,1481.
    18. W. Hummers, R. E. Offeman, J. Am. Chem. Soc.1958,80,1339.
    19. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, Science 2004,306,666.
    20. P. W. Sutter, J. I. Flege, E. A. Sutter, Nat. Mater.2008,7,406.
    21. X. S. Li, W. W. Cai, J. H. An, S. Kim, J. Nah, D. X. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, R. S. Ruoff, Science 2009,324,1312.
    22. S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T Nguyen, R. S. Ruoff, Carbon 2007,45,1558.
    23. H. L. Guo, X. F. Wang, Q. Y. Qian, F. B. Wang, X. H. Xia, ACS Nano 2009,3, 2653.
    24. M. Zhou, Y. L. Wang,Y. M. Zhai, J. F. Zhai, W. Ren, F. A. Wang, S. J. Dong, Chem.Eur.J.2009,15,6116.
    25. V. Georgakilas, M. Otyepka, A. B. Bourlinos, V. Chandra, N. Kim, K. C. Kemp, P. Hobza, R. Zboril, K. S. Kim, Chem. Rev.2012,112,6156.
    26. D. V. Kosynkin, A. L. Higginbotham, A. Sinitskii, J. R. Lomeda, A. Dimiev, B. K. Price, J. M. Tour, Nature 2009,458,872.
    27. A. Sinitskii, A. Dimiev, D. A. Corley, A. A. Fursina, D. V. Kosynkin, J. M. Tour, ACS Nano 2010,4,1949.
    28. S. Niyogi, E. Bekyarova, M. E. Itkis, J. L. Mc Williams, M. A. Hamon, R. C. Haddon, Nano Lett.2010,10,4061.
    29. B. Y. Hua, J. Wang, K. Wang, X. Li, X. J. Zhu, X.H. Xia, Chem. Commun.2012, 48,2316.
    30. S. Niyogi, E. Bekyarova, M. E. Itkis, H. Zhang, K. Shepperd, J. Hicks, M. Sprinkle, C. Berger, C. Ning Lau, W. A. de Heer, E. H. Conrad, R. C. Haddon, J. Am. Chem. Soc.2006,128,7720.
    31. H. Yang, C. Shan, F. Li, D. Han, Q. Zhang, L. Niu, Chem. Commun.2009,3880.
    32. H. F. Yang, F. H. Li, C. S. Shan, D. X. Han, Q. X. Zhang, L. Niu, A. Ivaska, J. Mater. Chem.2009,19,4632.
    33. Y. X. Xu, H. Bai, G. W. Lu, C. Li, G. Q. Shi, J. Am. Chem. Soc.2008,130,5856.
    34. Q. Wu, Y. X. Xu, Z. Y. Yao, A. R. Liu, G. Q. Shi, ACS Nano 2010,4,1963.
    35. J. Wang, Y. Zhao, F. X. Ma, K. Wang, F. B. Wang, X. H. Xia, J. Mater. Chem. B 2013,1,1406.
    36. Q. Wang, D. O'Hare, Chem. Rev.2012,112,4124.
    37. D. P. Yan, J. Lu, M. Wei, D. G. Evans and X. Duan, J. Mater. Chem.2011,21, 13128.
    38. F. Li, X. Duan, Struct. Bond.2006,119,193.
    39. D. P. Yan, J. Lu, J. Ma, S. H. Qin, M. Wei, D. G. Evans, X. Duan, Angew. Chem. Int. Ed.2011,50,7037-7040.
    40. D. Yan, J. Lu, M. Wei, J. Ma, D. G Evans, X. Duan, Phys. Chem. Chem. Phys. 2009,11,9200.
    41. S. Gago, T. Costa, J. S. De Melo, I. S. Goncalves, M. Pillinger, J. Mater. Chem., 2008,18,894.
    42. D. P. Yan, J. Lu, M. Wei, D. G Evans and X. Duan, J. Phys. Chem. B 2009,113, 1381.
    43. C. Chakraborty, K. Dana, S. Malik,J. Phys. Chem. C 2011,115,1996.
    44. D. P. Yan, J. Lu, M. Wei, D. G. Evans and X. Duan, J. Phys. Chem. B 2009,113, 1381.
    45. D. P. Yan, J. Lu, J. Ma, M. Wei, D. G. Evans and X. Duan, Phys. Chem. Chem. Phys.2010,12,15085.
    46. IUPAC, Pure Appl. Chem.1972,31,578.
    47. C. T. Kresge, M. E. Leonowicz, W. J. Roth, Nature 1992,359,710.
    48. J. S. Beck, J. C. Vartuli, W. J. Roth, J. Am. Chem. Soc.1992,114,10834.
    49. P. T. Tanev, T. J. Pinnavaia, Science 1995,267,865.
    50. D. Y. Zhao, J. L. Huo, G. D. Stucky, Science 1998,279,548.
    51. G.J.de A. A. Soler-Illia, E. L. Crepaldi, D. Grosso, C. Sanchez, Curr. Opin. Colloid Interface Sci.2003,8,109.
    52. Q. Huo, D. I. Margolese, U. Ciesla, D. G. Demuth, P. Feng, T. E. Gier, P. Sieger, A. Firouzi, B. F. Chmelka, F. Schuth, G. D. Stucky, Chem. Mater.1994,6,1176.
    53. U. Junges, W. Jacobs, I. Voigt-Martin, B. Krutzsch, F. Schuth, J. Chem. Soc., Chem. Commun.1995,2283.
    54. M. Hartmann, A. Poppl, L. Kevan, J. Phys. Chem.1996,100,9906.
    55. J. Han, P. Fang, W. Jiang, L. Li, R. Guo, Langmuir 2012,28,4768.
    56. C. G. Wu, T. Bein, Science 1994,264,1757.
    57. M. Fang, Y. Wang, P. Zhang, J. Lumin.2000,91,67.
    58. P. Zhang, J. H. Guo, Y. Wang, Mater. Let.2002,53,400.
    59. W. Lisa, J. J. Victoria, J. B. J. Kenneth, J. Mol. Catal. B:Enzym.2000,10,453.
    60. S. Dai, M. C. Burleigh, Y. H. Ju, H. J. Gao, J. S. Lin, S. J. Pennycook, C. E. Barnes, Z. L. Xue, J. Am. Chem. Soc.2000,122,992.
    61. B. P.Zhang, M. T. Janicke, W.H. Woodruff, J. A. Bailey, J. Phys. Chem. B 2005,109,19547.
    62. H. W. Kroto, J. R. Heath, S. C. Obrien, R. F. Curl, R. E. Smalley, Nature 1985, 318,162.
    63. W. Kratschmer, L. D. Lamb, K. Fostiropoulos, D. R. Huffman, Nature 1990, 347,354.
    64. J. Heath, S. C. O'Brien, Q. Zhang, Y. Liu, R. F. Curl, H. W. Kroto, F. K. Tittel, R. E. Smalley, J. Am. Chem. Soc.1985 107,7779.
    65. F. D. Weiss, J. L. Elkind, S. C. O'Brien, R. F. Curl, R. E. Smalley, J. Am. Chem. Soc.1988,110,4464.
    66. H. Shinohara, Rep. Prog. Phys.2000,63,843.
    67. R. D. Johnson, M. S. de Vries, J. Salem, D. S. Bethune, C. S. Yannoni, Nature 1992,355,239.
    68. J. H. Weaver, Y. Chai, G. H. Kroll, C. Gin, T. R. Ohno, R. E. Haufler, T. Guo, J. H. Alford, J. Conceicao, L. P. F. Chibante, A. Jain, G. Palmer, R. E. Smalley, Chem. Phys. Lett.1992,190,460.
    69. R. Andres, E. de Jesus, J. C. Flores, New J. Chem.2007,31,1161.
    70. D. A. Tomalia, H. Baker, J. Dewald, M. Hall, G. Kallos, S. Martin, J. Roeck, J. Ryder, P. Smith, Polym. J.1985,17,117.
    71. G. R. Newkome, Z. Yao, G.R. Baker, V.K. Gupta, J. Org. Chem.1985,50,2003.
    72. R. W. J. Scott, O. M. Wilson, R. M. Crooks, J. Phys. Chem. B 2005,109,692.
    73. R. M. Crooks, M. Q. Zhao, L. Sun, V. Chechik, L. K. Yeung, Acc. Chem. Res. 2001,34,3.
    74. M. Q. Zhao, L. Sun, R. M. Crooks, J. Am. Chem. Soc.1998,120,4877.
    75. M. Q. Zhao, R. M. Crooks, Angew. Chem. Int. Ed.1999,38,3.
    76. R. W. J. Scott, H. Ye, R. R. Henriquez, R. M. Crooks, Chem. Mater.2003,15, 3873.
    77. M. Q. Zhao, R. M. Crooks, Chem. Mater.1999,11,3379
    78. K. Sooklal, L. H. Hanus, H. J. Ploehn, C. J. Murphy, Adv. Mater.1998,10, 1083.
    79. B. I. Lemon, R. M. Crooks, J. Am. Chem. Soc.2000,122,12886.
    80. 杨华,博士毕业论文,浙江大学,2009,12.
    81. X. L. Pan, X. H. Bao, Acc. Chem. Res.2011,44,553.
    82. L. J. Li, A. N. Khlobystov, J. G. Wiltshire, G. A. D. Briggs, R. J. Nicholas, Nat. Mater.2005,4,481.
    83. H. Shiozawa, T. Pichler, A. Griineis, R. Pfeiffer, H. Kuzmany, Z. Liu, K. Suenaga, H. Kataura, Adv. Mater.2008,20,1443.
    84. S. Guo, X. Pan, H. Gao, Z. Yang, J. Zhao, X. H. Bao, Chem. Eur. J.2010,16, 5379.
    85. W. Chen, Z. L. Fan, X. L. Pan, X. H. Bao, J. Am. Chem. Soc.2008,130,9414.
    86. K. Takagi, H. Usami, H. Fukuya, Y. Sawaki, J. Chem. Soc., Chem. Commun. 1989,1174.
    87. K. Takagi, T. Shichi, H. Usami, Y Sawaki, J. Am. Chem. Soc.1993,115,4339.
    88. I. Y. Park, K. Kuroda, C. Kato, Chem. Lett.1989,2057.
    89. L. Liu, B. Jiang, E. Zhou, Polymer 1996,37,3937.
    90. B. R. Chapman, M. W. Hamersky, J. M. Milhaupt, C. Kostelecky, T. P. Lodge, E. D. von Meerwall, S. D. Smith, Macromolecules 1998,31,4562.
    91. J. A. Forrest, K. Dalnoki-Veress, J. R. Stevens, J. R. Dutcher, Phys. Rev. Lett. 1996,77,2002.
    92. G. Dosseh, Y. Xia, C. Alba-Simionesco, J. Phys. Chem. B 2003,107,6445.
    93. R. Ravindra, S. Zhao, H. Gies, R. Winter, J. Am. Chem. Soc.2004,126,12224.
    94. C. J. Fecko, J. D. Eaves, J. J. Loparo, A. Tokmakoff, P. L. Geissler, Science 2003,301,1698.
    95. Ph. Wernet, D. Nordlund,U. Bergmann, M. Cavalleri, M. Odelius, H. Ogasawar a, L. A. Naslund, T. K. Hirsch, L. Ojamae, P. Glatzel, L. G. M. Pettersson, A. Nilsson, Science 2004,304,995.
    96. G. Hummer, J. C. Rasaiah, J. P. Noworyta, Nature 2001,414,188.
    97. J. K. Holt, H. G. Park, Y. Wang, M. Stadermann, A. B. Artyukhin, C. P. Grigoropoulos, A. Noy, O. Bakajin, Science 2006,312,1034.
    98. W. Chen, Z. Q. Wu, X. H. Xia, J. J. Xu, H. Y. Chen, Angew. Chem. Int. Ed. 2010, 49,7943.
    99. M. H. Huang, A. Choudrey, P. Yang, Chem. Commun.2000,12,1063.
    100. L. H. Guan, K. Suenaga, T. Okazaki, Z. Shi, Z. Gu, S. Iijima, J. Am. Chem. Soc. 2007,129,29,8954.
    101. L. H. Guan, K. Suenaga, S. Okubo, T. Okazaki, S. Iijima, J. Am. Chem. Soc. 2007,129,29,8954.
    102. X. Xu, F. Z. Zhang, S. L. Xu, J. He, L. Y. Wang, D. G. Evans, X. Duan, Chem. Commun.2009,0,7533.
    103. W Chen, Z Fan, X Pan, X Bao, J. Am. Chem. Soc.2008,130,9414.
    104. K. Kobayashi, M. Kuwano, K. Sueki, K. Kikuchi, Y. Achiba, H. Nakahara, N. Kananishi, M. Watanabe, K. Tomura, J. Radioanal. Nucl. Chem.1995,192,81.
    105. D. W. Cagle, S. J. Kennel, S. Mirzadeh, J. M. Alford, L. J. Wilson, Proc. Natl. Acad. Sci.1999,96,5182.
    106. M. D. Shultz, J. D. Wilson, C. Y. Shu, J. C. Ge, J. Y. Zhang, H. W. Gibson, H. L. Fillmore, J. I. Hirsch, H. C. Dorn, P. P. Fatouros, J. Am. Chem. Soc.2010,132, 4980.
    107. M. Mikawa, H. Kato, M. Okumura, M. Narazaki, Y. Kanazawa, N.Miwa, H. Shi nohara, Bioconjugate Chem.2001,12,510.
    108. G. M. Xing, H. Yuan, R. He, X. Y. Gao, L. Jing, F. Zhao, Z. F. Chai, Y. L. Zhao, J. Phys. Chem. B 2008,112,6288.
    109. J. L. Meinershagen, T. Bein, J. Am. Chem. Soc.1999,121,448.
    110. K. Sakamoto, K. Obata, H. Hirata, M. Nakajima, H. Sakurai, J. Am. Chem. Soc. 1989,111,7641.
    111. J. Choi, M. Tsapatsis, J. Am. Chem. Soc.2010,132,448.
    112. M. Wells, R. M. Crooks, J. Am. Chem. Soc.1996,118,3988.
    113. Y. J. Han, G. D. Stucky, A. Butler, J. Am. Chem. Soc.1999,121,9897.
    114. J.Clarke, H. C. Wu, L. Jayasinghe, A. Patel, S. Reid, H. Bayley, Nat. Nanotechnol.2009,4,265.
    115. A. Schlossbauer, D. Schaffert, J. Kecht, E. Wagner, T. Bein,J. Am. Chem. Soc. 2008,130,12558.
    116. L. Z. Hu, G. B. Xu, Chem. Soc. Rev.2010,39,3275.
    117. X. T. Tao, H. Suzuki, T. Wada, S. Miyata, H. Sasabe, J. Am. Chem. Soc.1999, 121,9447. D. M. Hercules, F. E. Lytle, J. Am. Chem. Soc.1966,88,4745.
    118. S. Campagna, F. Puntoriero, F. Nastasi, G. Bergamini and V. Balzani, Top. Curr. Chem.2007,280,117.
    119. N. E. Tokel, A. J. Bard, J. Am. Chem. Soc.1972,94,2862.
    120. I. Rubinstcin, A. J. Bard. J. Am. Chem. Soc.1981,103,512.
    121. W. J. Miao, J. P. Choi, A. J. Bard, J. Am. Chem. Soc.2002,124,14478.
    122. H. S. White, A. J. Bard. J. Am. Chem. Soc.1982,104,6891.
    123. W. DeWilde, G. Peeters, J. H. Lunsford, J. Phys. Chem.1980,84,2306.
    124. P. K. Dutta, W. Turbeville, J. Phys. Chem.1992,96,9410.
    125. P. Laine, M. Lanz, G. Calzaferri, Inorg. Chem.1996,35,3514.
    126. M. Alvaro, J. F. Cabeza, D. Fabuel, A. Corma, H. Garcia, Chem. Eur. J.2007, 13,3733.
    127. M. Ogawa, T. Nakamura, J. Mori, K. Kuroda, J. Phys. Chem. B 2000,104, 8554.
    128. M. Sohmiya, Y. Sugahara, M. Ogawa, J. Phys. Chem. B 2007,111,8836.
    129. E. Bottinelli, I. Miletto, G. Caputo, S. Coluccia, E. Gianotti, J. Fluoresc.2011, 21,901.
    130. I. Rubinstein, A. J. Bard, J. Am. Chem. Soc.1980,102,6641.
    131. L. B. Zhang, J. Li, Y. H. Xu, Y. M. Zhai, Y. H. Li, E. K. Wang, Talanta 2009, 79,454.
    132. X. Yang, R. Yuan, Y. Q. Chai, Y. Zhuo, L. Mao, Z.Y. Liu, H. L. Su, S. R. Yuan, Electroanalysis 2009,21,1636.
    133. H. N. Choi, S. H. Cho, W. Y. Lee, Anal. Chem.2003,75,425.
    134. H. Y. Wang, G. B. Xu, S. J. Dong, Anal. Chim. Acta 2003,480,285.
    135. Y. Du, B. Qi, X. R. Yang, E. K. Wang, J. Phys. Chem. B 2006,110,21662.
    136. S. Glazier, J. A. Barron, N. Morales, A. M. Ruschak, P. L. Houston, H. D. Abruna, Macromolecules 2003,36,1272.
    137. P. Perez-Tejeda, R. Prado-Gotor, E. M. Grueso, Inorg. Chem.2012,51,10825.
    138. M. F. Traynor, M. M. Mortland, T. J. Pinnavaia, Clays Clay Miner.1978,26, 318.
    139. P. K. Ghosh, A. J. Bard, J. Phys. Chem.1984,88,5519.
    140. M. Ogawa, K. Kuroda, Chem. Rev.1995,95,399.
    141. D. P. Vliers, D. Collin, R. A. Schoonheydt, F. C. D. Schryver, Langmuir 1986,2, 165.
    142. A. A. Marti, J. L. Colon, Inorg. Chem.2003,42,2830.
    143. A. A. Marti, J. L. Colon, Inorg. Chem.2010,49,7298.
    144. E. Brunet, M. Alonso, C. Cerro, O. Juanes, J. C. Rodriguez-Ubis, A. E. Kaifer, Adv. Funct. Mater.2007,17,1603.
    145. J. G. Yu, F. R. F. Fan, S. Pan, V. M. Lynch, K. M. Omer, A. J. Bard, J. Am. Chem. Soc.2008,130,7196.
    146. Q. Li, J. Y. Zheng, Y. Yan, Y. S. Zhao, J. N. Yao, Adv. Mater.2012,24,4745.
    147. X. P. Sun, Y. Du, L. X. Zhang, S. J. Dong, E. K. Wang, Anal. Chem.2007,79, 2588.
    1. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, 1. V. Grigorieva, A. A. Firsov, Science 2004,306,666.
    2. A. K. Geim, K. S. Novoselov, Nat. Mater.2007,6,183.
    3. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, A. A. Firsov, Nature 2005,438,197.
    4. M. J. Allen, V. C. Tung, R. B. Kaner, Chem. Rev.2010,110,132.
    5. Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts, R. S. Ruoff, Adv. Mater. 2010,22,3906.
    6. S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, R. S. Ruoff, Nature 2006,442,282.
    7. Y. Ohno, K. Maehashi, Y. Yamashiro, K. Matsumoto, Nano Lett.2009,9,3318.
    8. H. A. Becerril, J. Mao, Z. F. Liu, R. M. Stoltenberg, Z. N. Bao, Y. S. Chen, ACS Nano 2008,2,463.
    9. X. L. Li, G. Y. Zhang, X. D. Bai, X. M. Sun, X. R. Wang, E. Wang, H. J. Dai, Nat. Nanotechnol.2008,3,538.
    10. P. W. Sutter, J. I. Flege, E. A. Sutter, Nat. Mater.2008,7,406.
    11. X. S. Li, W. W. Cai, J. H. An, S. Kim, J. Nah, D. X. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, R. S. Ruoff, Science 2009,324,1312.
    12. S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T Nguyen, R. S. Ruoff, Carbon 2007,45,1558.
    13. H. L. Guo, X. F. Wang, Q. Y. Qian, F. B. Wang, X. H. Xia, ACS Nano 2009,3, 2653.
    14. M. Zhou, Y. L. Wang,Y M. Zhai, J. F. Zhai, W. Ren, F. A. Wang, S. J. Dong, Chem. Eur. J.2009,15,3347.
    15. J. Wang, Y. Zhao, F. X. Ma, K. Wang, F. B. Wang, X. H. Xia, J. Mater. Chem. B 2013,1,1406.
    16. R. Voggu, B. Das, C. S. Routt, C. N. R. Rao, J. Phys.:Condens. Matter.2008,20, 472204.
    17. S. Stankovich, R. D. Piner, X. Q. Chen, N. Q. Wu, S. T. Nguyen, R. S. Ruoff, J. Mater. Chem.2006,16,155.
    18. J. Liu, S. Fu, B. Yuan, Y. Li, Z. Deng, J. Am. Chem. Soc.2010,132,7279.
    19. L. L. Zhang, J. Ma, X. S. Zhao, Chem. Comm.2010,6099.
    20. J. T. Zhang, Z. G. Xiong, X. S. Zhao, J. Mater. Chem.2011,21,3634.
    21. C. Nethravathi, T. Nisha, N. Ravishankar, C. Shivakumara, M. Rajamathi, Carbon 2009,47,2054.
    22. L. R. Faulkner, A. J. Bard. Electroanalytical Chemistry, ed. A. J. Bard, Marcel Dekker:New York,1977,10,1.
    23. M. Richter, Chem. Rev.2004,104,3003.
    24. X. B. Yin, S. J. Dong, E. K. Wang, Trends Anal. Chem.2004,23,432.
    25. W. J. Miao, Chem. Rev.2008,108,2506.
    26. L. Z. Hu, G. B. Xu, Chem. Soc. Rev.2010,39,3275.
    27. I. Rubinstein, A. J. Bard, J. Am. Chem. Soc.1980,102,6641.
    28. Y. S. Obeng, A. J. Bard, Langmuir 1991,7,195.
    29. H. N. Choi, S. H. Cho, W. Y. Lee, Anal. Chem.2003,75,4250.
    30. G. Greenway, A. Greenwood, P. Watts, C. Wiles, Chem. Comm.2006,1,85.
    31. L. Qian, X. R. Yang, Adv. Funct. Mater.2007,17,1353.
    32. Z. Guo, Y. Shen, F. Zhao, M. Wang, S. Dong, Analyst 2004,129,657.
    33. W. Gao, X. H. Xia, J. J. Xu, H. Y. Chen, J. Phys. Chem. C 2007,111,12213.
    34. Y. Li, H. L. Qi, F. Fang, C. X. Zhang, Talanta 2007,72,1704.
    35. J. Li, L. R. Guo, W. Gao, X. H. Xia, L. M. Zheng, Chem. Commun.2009,48, 7545.
    36. Y. L. Yuan, H. J. Li, S. Han, L. Z. Hu, S. Parveen, H. R. Cai, G. B. Xu, Anal. Chim.Acta 2012,720,38.
    37. X. M. Chen, G. H. Wu, J. M. Chen, Y. Q. Jiang, G. N. Chen, M. Oyama, X. Chen, X. R. Wang, Biosens. Bioelectron.2010,26,872.
    38. G. F. Chen, S. Y Zhai, Y. L. Zhai, K. Zhang, Q. L. Yue, L. Wang, J. S. Zhao, H. S. Wang, J. F. Liu, J. B. Jia, Biosens. Bioelectron.2011,26,3136.
    39. H. J. Li, J. Chen, S. Han, W. X. Niu, X. Q. Liu, G B. Xu, Talanta 2009,79,165.
    40. D. S. Chen, J. L. Sung, Cancer 1977,40,779.
    41. M. Wang, F. N. Xiao, K. Wang, F. B. Wang, X. H. Xia, J. Electroanal. Chem. 2013,668,304.
    42. W. S. Hummers, Jr., R. E. Offeman, J. Am. Chem. Soc.1958,80,1339.
    43. N. I. Kovtyukhova, P. J. Ollivier, B. R. Martin, T. E. Mallouk, S. A. Chizhik, E. V. Buzaneva, A. D. Gorchinskiy, Chem. Mater.1999,11,771.
    44. A. Lerf, H. He, M. Forster, J. Klinowski, J. Phys. Chem. B 1998,102,4477.
    45. X. B. Fan, W. C. Peng, Y. Li, X. Y. Li, S. L. Wang, G. L. Zhang, F. B. Zhang, Adv. Mater.2008,20,4490.
    46. D. Li, M. B. Muller, S. Gilje, R. B. Kaner, G. G. Wallace, Nat. Nanotechnol.2008, 3,101.
    47. Y. Zhou, Q. L. Bao, L. A. L. Tang, Y. Zhong, K. P. Loh, Chem. Mater.2009,21, 2950.
    48. Z. S. Wang, C. H. Huang, F. Y. Li, S. F. Weng, K. Ibrahim, F. Q. Liu, J. Phys. Chem.B 2001,105,4230.
    49. Y. X. Xu, H. Bai, G. W. Lu, C. Li, G. Q. Shi, J. Am. Chem. Soc.2008,130,5856.
    50. B. P. Sullive, D. J. Salmon, T. J. Meyer, Inorg. Chem.1978,17,3334.
    51. M. Slim, H. F. Sleiman, Bioconjugate Chem.2004,15,949.
    52. C. Kumar, Z. J. Williams,J. Phys. Chem.1995,99,17632.
    53. D. Baskaran, J. W. Mays, X. P. Zhang, M. S. Bratcher, J. Am. Chem. Soc.2005, 127,6916.
    54. C. R. Bock, J. A. Connor, A. R. Gutierrez, T. J. Meyer, D. G. Whitten, B. P. Sullivan, J. K. Nagle, J. Am. Chem. Soc.1979,101,4815.
    55. J. Park, J. Ahn, C. Lee, J. Photochem. Photobiol. A:Chem.1995,86,89.
    56. S. Glazier, J. A. Barron, N. Morales, A. M. Ruschak, P. L. Houston, H. D. Abruna, Macromolecules 2003,36,1272.
    57. S. R. Yuan, R. Yuan, Y. Q. Chai, L. Mao, X. Yang, Y. L. Yuan, H. Niu, Talanta 2010,82,1468.
    58. X. Y. Yang, Y. S. Guo, S. Bi, S. S. Zhang, Biosens. Bioelectron.2009,24,2707.
    1. Q. Wang, D. O'Hare, Chem. Rev.2012,112,4124.
    2. D. P. Yan, J. Lu, M. Wei, D. G. Evans and X. Duan, J. Mater Chem.2011,21, 13128.
    3. V. Balzani, A. Juris, Coord. Chem. Rev.2001,211,97.
    4. S. Campagna, F. Puntoriero, F. Nastasi, G. Bergamini and V. Balzani, Top. Curr. Chem.2007,280,117.
    5. C. H. Lyons, E. D. Abbas, J. K. Lee, M. F. Rubner, J. Am. Chem. Soc.1998,120, 12100.
    6. F. G. Gao, A. J. Bard, J. Am. Chem. Soc.2000,122,7426.
    7. H. Ozawa, M. A. Haga, K. Sakai, J. Am. Chem. Soc.2006,128,4926.
    8. X. B. Yin, S. J. Dong, E. K. Wang, Trends Anal. Chem.2004,23,432.
    9. L. Z. Hu, G. B. Xu, Chem. Soc. Rev.2010,39,3275.
    10. W. Gao, X. H. Xia, J. J. Xu, H. Y. Chen, J. Phys. Chem. C 2007,111,12213.
    11. E. R. Carraway, J. N. Demas, B. A. DeGraff, J. R. Bacon, Anal. Chem.1991,63, 337.
    12. A. E. Friedman, J. C. Chambron, J. P. Sauvage, N. J. Turro, J. K. Barton, J. Am. Chem. Soc.1990,112,4960.
    13. B. O'Regan, M. Gratzel, Nature 1991,335,737.
    14. D. P. Yan, J. Lu, J. Ma, S. H. Qin, M. Wei, D. G. Evans, X. Duan, Angew. Chem. Int. Ed.2011,50,7037.
    15. M. D. K. Nazeeruddin, K. Kalyanasundaram, M. Gratzel, B. P. Sullivan, K. Morris, Inorganic Syntheses, Wiley, New York,1998,32,181.
    16. Q. Z. Yang, D. J. Sun, C. G. Zhang, X. J. Wang and W. A. Zhao, Langmuir 2003, 19,5570.
    17. M. F. Traynor, M. M. Mortland, T. J. Pinnavaia, Clays Clay Miner.1978,26,318.
    18. M. E. Hagerman, S. J. Salamone, R. W. Herbst, A. L. Payeur, Chem. Mater.2003, 15,443.
    19. M. Ogawa, Langmuir 2000,16,4202.
    20. S. Abdo, P. Canessan, M. Cruz, J. J. Fripiat, H. Van Damme, J. Phys. Chem. 1981,85,797.
    21. P. X. Lei, M. Hedlund, R. Lomoth, H. Rensmo, O. Johansson, L. Hammarstrom, J. Am. Chem. Soc.2008,130,26.
    22. M. D. K. Nazeeruddin, S. M. Zakeeruddin, R. Humphry-Baker, M. Jirousek, P. Liska, N. Vlachopoulos, V. Shklover, C. H. Fischer, M. Gratzel, Inorg. Chem. 1999,38,6298.
    23. M. D. K. Nazeeruddin, K. Kalyanasundaram, M. Gratzel, B. P. Sullivan, Kevin Morris, Inorganic Syntheses, Wiley, New York,1998,32,181.
    24. J. Liu, G. Chen, J. Yang, Polymer 2008,49,3923.
    25. J. Wang, M. Wei, G. Y. Rao, D. G. Evans, X. Duan, J. Solid State Chem.2004, 177,366.
    26. J. Park, J. Ahn, C. Lee, J. Photochem. Photobiol. A:Chem.1995,86,89.
    27. R. A. Della Guardia, J. K. Thomas, J. Phys. Chem.1983,87,990.
    28. B. R. Venugopal, N. Ravishankar, C. R. Perrey, C. Shivakumara, M. Rajamathi, J. Phys. Chem. B 2006,110,772.
    29. K. Mori, M. Kawashima, K. Kagohara, H. Yamashita, J. Phys. Chem. C 2008, 112,19449.
    30. J. W. Park, M. H. Kim, S. H. Ko, Y. H. Paik, J. Phys. Chem.1993,97,5424.
    31. L. Qian, X. R. Yang, Adv. Funct. Mater. 2007,17,1353.
    32. J. Wheeler, J. K. Thomas, J. Phys. Chem.1982,86,4540.
    33. D. Meisel, M. S. Matheson, J. Rabani, J. Am. Chem. Soc.1978,100,117.
    34. K. Mori, M. Kawashima, K. Kagohara, H. Yamashita, J. Phys. Chem. C 2008, 112,19449.
    35. D. Yan, J. Lu, M. Wei, J. Ma, D. G. Evans, X Duan, Phys. Chem. Chem. Phys. 2009,11,9200.
    36. J. Bauer, P. Behrens, M. Speckbacher and H. Langhals, Adv. Funct. Mater.2003, 13,241.
    37. C. Chakraborty, K. Dana, S. Malik, J. Phys. Chem. C 2011,115,1996.
    38. X. L. Liu, M. Wei, Z. L. Wang, D. G. Evans, X. Duan, J. Phys. Chem. C 2008, 112,17517.
    39. H. B. Kim, N. Kitamura, Y. Kawanishi, S. Tazuke, J. Phys. Chem.1989,93, 5151.
    40. C. R. Bock, J. A. Connor, A. R. Gutierrez, T. J. Meyer, D. G. Whitten, B. P. Sullivan, J. K. Nagle, J. Am. Chem. Soc.1979,101,4815.
    41. S. Glazier, J. A. Barron, N. Morales, A. M. Ruschak, P. L. Houston, H. D. Abruna, Macromolecules 2003,36,1272.
    1. C. T. Kresge, M. E. Leonowicz, W. J. Roth, Nature 1992,359,710.
    2. J. S. Beck, J. C. Vartuli, W. J. Roth, J. Am. Chem. Soc.1992,114,10834.
    3. P. T. Tanev, T. J. Pinnavaia, Science 1995,267,865.
    4. D. Y. Zhao, J. L. Huo, G. D. Stucky, Science 1998,279,548.
    5. U. Junges, W. Jacobs, I. Voigt-Martin, B. Krutzsch, F. Schuth, J. Chem. Soc., Chem. Commun.1995,2283.
    6. M. Hartmann, A. Poppl, L. Kevan, J. Phys. Chem.1996,100,9906.
    7. J. Han, P. Fang, W. Jiang, L. Li, R. Guo, Langmuir 2012,28,4768.
    8. C. G. Wu, T. Bein, Science 1994,264,1757.
    9. M. Fang, Y. Wang, P. Zhang, J. Lumin.2000,91,67.
    10. P. Zhang, J. H. Guo, Y. Wang, Mater. Lett.2002,53,400.
    11. W. Lisa, J. J. Victoria, J. B. J. Kenneth, J. Mol. Catal. B 2000,10,453.
    12. Y. J. Han, G. D. Stucky, A. Butler, J. Am. Chem. Soc.1999,121,9897.
    13. M. Ogawa, T. Nakamura, J. Mori, K. Kuroda, J. Phys. Chem. B 2000,104,8554.
    14. E. Bottinelli, I. Miletto, G. Caputo, S. Coluccia, E. Gianotti, J. Fluoresc.2011,21, 901.
    15. B. P. Sullive, D. J. Salmon, T. J. Meyer, Inorg. Chem.1978,17,3334.
    16. M. Slim, H. F. Sleiman, Bioconjugate Chem.2004,15,949.
    17. K. Binnemans, P. Lenaerts, K. Driesen, C. Gorller-Walrand, J. Mater. Chem., 2004,14,191.
    18. K. S. W. Sing, D. H. Everett, R. A. W. Haul, L. Moscou, R. A. Pierotti, J. Rouquerol, T. Siemieniewska, Pure Appl. Chem.1985,57,603.
    19. S. L. Burkett, S. D. Sims, S. Mann, Chem. Commun.1996,11,1367.
    20. Y. Shan, L. Gao, Mater. Chem. Phys.2005,89,412.
    21. J. W. Park, M. H. Kim, S. H. Ko, Y. H. Paik, J. Phys. Chem.1993,97,5424.
    22. L. Qian, X. R. Yang, Adv. Funct. Mater.2007,17,1353.
    23. J. Wheeler, J. K. Thomas, J. Phys. Chem.1982,86,4540.
    24. D. Meisel, M. S. Matheson, J. Rabani, J. Am. Chem. Soc.1978,100,117.
    25. K. Mori, M. Kawashima, K. Kagohara, H. Yamashita, J. Phys. Chem. C 2008, 112,19449.
    26. S. Campagna, F. Puntoriero, F. Nastasi, G. Bergamini and V. Balzani, Top. Curr Chem.2007,280,117.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700