电致化学发光生物传感新技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
克隆羊的成功和人类基因组草图绘制完成,标志着生命科学的发展在经历了上世纪的分子生物学时代、结构基因组时代之后,正式进入了功能基因组时代,即后基因组时代。在这个年代,生命科学的主要研究对象是功能基因组学,其中包括了基因组研究和蛋白组研究等,而基因组学和蛋白质组学的最基本研究单位就是DNA和蛋白质。基因序列数据正在以前所未有的速度迅速增长。然而,怎样去研究如此众多基因在生命过程中所担负的功能就成了全世界生命科学工作者共同的课题。为此,建立新型杂交和测序方法以对大量的遗传信息进行高效、快速的检测、分析就显得格外重要了。
     电致化学发光(ECL)是利用电化学反应产生化学发光的现象,是电化学和化学发光相结合的产物,兼具二者的优点,例如光学器件简单,背景干扰低,反应易精确控制,具有灵活性等。因此,广泛应用于免疫测定、食品分析、水质分析和生物试剂的分析外,它也被成功做成检测器与HPLC, FIA及CE等技术联用。在电致化学发光物中,Ru(bpy)32+因为其具有良好的受激发性及超高的灵敏度受到广泛的关注。最近固相电致化学发光系统被成功的开发出来,相比于之前的液相电致化学发光系统,固相电致化学发光系统不但能增强发光信号,极大的降低Ru(bpy)32+试剂消耗,简化实验设计,还能实现修饰层的循环再生利用。
     本论文将纳米技术,电化学固定技术,阵列电极制作技术与电致化学发光检测技术相结合,研制具有高灵敏度,高选择性的新型电致化学发光阵列生物传感器和电致化学发光固相阵列传感器,成功的实现了对DNA, TPrA等目标物的测定。为固相ECL阵列电极。和ECL DNA芯片的制备提供了简单,快速,有效的方法。本论文共分六章。
     第一章绪论
     本章系统的介绍了电致化学发光的原理和特点,介绍了ECL中五大发光体系及其在分析检测的应用。针对现在应用范围最广的Ru(bpy)32+的特点及应用领域进行了重点介绍,此外还分析了ECL生物传感器的种类,特点及研究进展。介绍了ECL固相传感器的制备材料和方法。最后阐述了本论文的目的与意义。
     第二章基于电化学聚合固定抗体的电化学发光免疫检测人IgG
     基于电化学聚合在金电极表面固定兔抗人IgG抗体与人IgG及标记有Ru(bpy)32+的羊抗人IgG抗体之间发生特异性免疫反应,形成三明治结构,成功建立了用于测定人血清中IgG的电化学发光(ECL)免疫技术。利用此方法测定人IgG含量,浓度在50μg/L~2 mg/L范围内与电化学发光强度呈良好的线性关系。线性回归方程为y(a. u.)=48.41+0.09x(μg/L) (n=7),检出限为20μg/L (3σ)。测得正常人血清中IgG平均含量为11.2 g/L,结果令人满意。
     第三章基于重氮化反应修饰碳纳米管的电致化学发光免疫传感器研究
     报道了一种基于重氮化反应修饰电极的电致化学发光免疫传感器,首先通过电化学还原重氮盐对修饰有多壁碳纳米管的电极进行羧基化,然后通过酰胺反应将抗体连接到电极表面。利用三明治免疫检测反应对目标抗原人IgG进行检测,其中Ru(bpy)32+修饰的羊抗人IgG作为ECL信号源。电化学还原重氮盐修饰电极具有操作简单,反应迅速,易于控制等特点。我们对免疫反应的条件进行了优化,在优化后的条件下,利用修饰后的电极对人IgG进行检测,IgG浓度在2 ngmL-1到120 ng mL-1具有良好的线性,检测限可达0.5 ng mL-1。并成功实现人血清中人IgG的含量检测。
     第四章基于电沉积Ru(bpy)32+/AuNPs/chitosan复合物制备固相电致化学发光传感器
     介绍了一种利用电沉积Ru(bpy)32+/AuNPs/chitosan复合物制备固相电致发光传感器的方法。首先将Au nanoparticles (AuNPs)和Ru(bpy)32+在壳聚糖溶液中充分混匀,通过计时电流法将含有Ru(bpy)32+, AuNPs和chitosan的3D网状膜沉积到阴极上。电极上网状膜的厚度及Ru(bpy)32+的沉积量都是由施加的电流强度及时间所控制。实验表明包裹在网状膜中的Ru(bpy)32+仍然保持着良好的电化学活性和电致化学发光性质。将用此法制作的Ru(bpy)32+/AuNPs/chitosan修饰的电极成功的用于测定三丙胺,通过电致化学发光信号,检测限能到达5×10-10 M。
     第五章基于选择性固定联吡啶钌制备阵列固态电致化学发光传感器的方法研究
     介绍了一种基于电沉积二氧化硅包裹的联吡啶钌纳米粒子与壳聚糖共聚物薄膜技术,实现在阵列电极上选择固定电致化学发光物联吡啶钌的方法。通过这种方法联吡啶钌能被选择固定到四通道阵列电极任一通道上,实验结果证明了不仅能有效地将联吡啶钌(Ru(bpy)32+)选择性固定到阵列电极上,而且能选择性固定不同的复合膜,此方法在生物分析、毛细管电泳和药物筛选等领域都有广泛的应用前景。实验利用紫外可见光谱、场发射扫描电子显微镜(FE-SEM)和透射电子显微镜(TEM)对Ru(bpy)32+硅纳米颗粒(RuDS NPs)以及复合膜进行表征。基于电致化学发光复合膜修饰电极的传感器对三丙胺(TPrA)的检测呈现良好的重现性、稳定性和灵敏度,线性范围为1×10-10至1×10-6mol/L (R=0.9977),最低检测限为5×10-11mol/L
     第六章多分析物同时测定的电致化学发光DNA生物阵列传感器
     本文开发了一种新颖的同时测定多种分析物的电致化学发光阵列传感器。三种涉及不同疾病HCV, SARS和HIV的相关基因通过电沉积壳聚糖膜被固定到金阵列电极上指定的电极位置。通过三明治免疫组装检测,Ru(bpy)32+标记的DNA被用做信号产生源。因为固定和检测方法所具有独特的特点,ECL阵列传感器中电极与电极之间的交叉反应和交叉干扰的影响基本可以忽略。传感器在进行多目标序列同时测定是显示出良好的选择性和灵敏度。在临床医学,环境检测和生化反恐方面有广泛的应用前景。
With the success of dolly and the comletion of the human Genome project, we have entered in Post Genome Era after experienced molecule biology and Structural genomics era in last century. In this era, the major research focus on functional genomics, including genome and proteomic. The basic element for genome and proteomic are protein and DNA. The data of gene sequence is growing faster than ever before. However, How to figure out the function of all the gene during the life process has became the common topic for the scientific researcher all over the world. Therefore, it is extremely improtant to develop a new method for hybridization and sequence detection which can be used to assay and analyse a large number of genetic Information effectively and rapidly.
     Electrochemiluminescence (ECL), which triggers optical signal by electrochemical reactions, offers the advantages of versatile employment, simplified optical setup, low background disturbance, and good temporal and spatial control. Therefore, it has been widely used in the field of immunoassay, food and water analysis and for the detection of biowarfare agents. it also has been used as a detector for HPLC, FIA and CE. Among the electrochemiluminescence compounds, the mostly used one is tris(2,2'-bipyridyl)ruthenium(Ⅱ) (Ru(bpy)32+), which excites more sensitive ECL signal. Recently, solid-state Ru(bpy)32+-ECL system has been developed. Compared with the solution phase-based ones, it has enhanced the ECL intensity as well as consumed less expensive Ru(bpy)32+, simplified experimental design, and created regenerable sensing component by recycling Ru(bpy)32+modified electrode.
     In this thesis, we had developed a novel ECL array biosensor and solid ECL array sensor with high sensitivity, specificity and selectivity which had been used to detect targets such as DNA and TPrA. It provided a simple, rapid and effecitve method for the fabrication of solid ECL array and ECL DNA chips. It would broaden the research field of ECL
     Chapter 1:Preface
     In this chapter, we elaborated review from the principles, characteristics of the electrochemiluminescence, the five most primary types of ECL reaction and their application in analytical chemistry field. We highlight the character and application of Ru(bpy)32+. Furthermore, we introduce the sort, character and research progress of ECL biosensor. Finally, expounded the aim and the significance, pointed out the research content and the innovation in this paper.
     Chapter 2:Electrogenerated chemiluminescence Immunoassay for Human IgG with Electrochemical polymerization-based immobilization method
     Rabbit-anti-human IgG was immobilized on gold electrode by electrochemical polymerization with pyrrole. An efficient immunoassay strategy for human IgG determine in human serum was developed based on the specific immunological reaction between the rabbit-anti-human IgG, human IgG and Ru(bpy)32+-labled goat-anti-human IgG, which forming sandwich-typed immunocomplex. Then the target IgG in the sandwich-typed structure was determined by electrogenerated chemiluminescence. The parameters of polymerization time, incubation time and the pH of detection solution were optimized. The protocol has been characterized with impendence, cyclic voltammogram and ECL. A good linear relationship between ECL intensity and human IgG in the concentration range between 50μg/L and 2 mg/L was obtained, and the detection limit was 20μg/L.
     Chapter 3:An electrochemiluminescence immunosensor based on diazonium reaction modified carbon nanotubes electrode
     An electrochemiluminescence (ECL) immunoassay biosensing strategy involving diazonium reaction modified carbon nanotubes electrode was developed. The multi-walled carbon nanotubes (MWCNTs) modified glassy carbon (GC) electrode was firstly functionalized with carboxyl groups by the electrochemical reduction of diazonium cation onto it, and then covalently linked antibody. The target antigen was then detected via a sandwich detection approach, in which the rabbit anti-human IgG modified MWCNTs/GC electrode was as the capture component, and Ru(bpy)32+-labeled goat anti-human IgG was as the signal producing element. Such immunoassay strategy was applied for the determination of human IgG. Due to the excellent electric conductivity of MWCNTs and strong covalent bond between antibody and electrode, a good linear relationship between ECL intensity and human IgG concentration in the ranging from 2 ng mL-1 to 120 ng mL-1 was obtained, and the detection limit was 0.5 ng mL-1.
     Chapter 4:Solid state electrochemiluminescence sensor through the electrodeposition of Ru(bpy)32+/AuNPs/chitosan composite film onto electrode
     Tris (2,2'-bipyridyl) ruthenium(Ⅱ) (Ru(bpy)32+) has been successfully immobilized onto electrode through the electrodeposition of Ru(bpy)32+/AuNPs/chitosan composite film. In the experiments, chitosan solution was first mixed with Au nanoparticles (AuNPs) and Ru(bpy)32+. Then, during chronopotentiometry experiments in this mixed solution, a porous 3-D network structured film containing Ru(bpy)32+, AuNPs and chitosan has been electrodeposited onto cathode due to the deposition of chitosan when pH value is over its pKa (6.3). The applied current density is crutial to the film thickness and the amount of the entrapped Ru(bpy)32+. Additionally, these doping Ru(bpy)32+ in the composite film maintained their intrinsic electrochemical and electrochemiluminescence activities. Consequently, this Ru(bpy)32+/AuNPs/chitosan modified electrode has been used in ECL to detect tripropylamine, and the detection limit was 5×10-10 M.
     Chapter 5:Selective immobilization of tris(2,2'-bipyridyl)ruthenium (Ⅱ) onto array electrode for solid-state electrochemiluminescene sensor fabrication
     An effective method for selective immobilization of tris(2,2'-bipyridyl)ruthenium(Ⅱ) (Ru(bpy)3+) onto one target electrode surface based on the electrodeposition of RuDS NPs (Ru(bpy)32+ doped silica nanoparticles)/chitosan composite film is presented in this paper. Ru(bpy)3+ was selectively deposited onto four individual electrodes in an Au electrode array. The results demonstrate the possibility of selective immobilization of Ru(bpy)32+ onto array electrodes and selective immobilization of different ECL composite. Therefore have potential applications in bioanalysis, capillary electrophresis and drug screening. RuDS NPs and the resulting composite film were characterized by UV-vis spectroscopy, transmission electron microscopy (TEM) and field-emitted scanning electro microscopy (FE-SEM). The electrochemiluminescence (ECL) sensor based on the composite film modified electrode exhibited excellent reproducibility, stability and sensitivity for the detection of tri-n-propylamine (TPrA). The linear range was from 1×10-10 to 1×10-6 M(R2=0.9954) with the detection limit of 5×10-11 M.
     Chapter 6:A Sensitive Electrogenerated Chemiluminescence DNA Biosensing Array for the Simultaneous Multianalyte Detection
     A novel electrogenerated chemiluminescence (ECL) array for simultaneous multianalyte assay is developed. Three different DNA target sequences, which were respectively related to the disease of HCV, SARS and HIV, were selectively immobilized onto one pointed electrode in one Au array electrode with the aid of electrodeposited chitosan film. Ru(bpy)32+-labeled DNA was used as the signal producing element to signal the target DNA sequences using sandwich detection format. Due to the special addressable immobilization method, the electrochemical and cross-reactivity between the neighboring electrode sites was negligible for the ECL array sensor, which showing good sensitivity and selectivity for multi-target sequence detection and thus having potential usage for clinical, environmental and biodefense applications.
引文
[1]R. T. Dufford, D. Nightingale, W. L. Gaddum J. Am. Chem. Soc,1927,49(8):1858
    [2]N. Harvey J. Phys. Chem.1929,33:1456
    [3]T. Kuwana, B. Epstein, E. Seo, J. Phys. Chem.1963,67:2243
    [4]L. R. Faulkner, A. J. Bard. Electroanalytical Chemistry. New York:1977
    [5]W. Y. Lee, Mikrochim. Acta,1997,127:19
    [6]R. D. Gerardi, N. W. Barnett and S. W. Lewis, Anal. Chim. Acta,1999,378,1
    [7]A. W. Knight, Trends Anal. Chem.,1999,18:47
    [8]K.A. Fahnrich, M. Pravda and G. G. Guilbault, Talanta,2001,54:531.
    [9]S. Kulmala and J. Suomi, Anal. Chim. Acta,2003,500:21.
    [10]W. J. Miao, Chem. Rev.,2008,108:2506.
    [11]C. A. Marquette and L. J. Blum, Anal. Bioanal. Chem.,2008,390:155.
    [12]P. Bertoncello and R. J. Forster, Biosens. Bioelectron.,2009,24:3191.
    [13]A. J. Bard Electrogenerated Chemiluminescence, New York,2004.
    [14]M. M. Chang, T. Saji and A. J. Bard, J. Am. Chem. Soc.,1977,99:5399.
    [15]I. Rubinstein, A. J. Bard, J. Am. Chem. Soc.,1981,103:512.
    [16]D. R. Deaver, Nature,1995,377:758-760.
    [17]J. K. Leland and M. J. Powell, J. Electrochem. Soc.,1990,137,3127.
    [18]J. B. Noffsinger and N. D. Danielson, Anal. Chem.,1987,59,865.
    [19]W. J. Miao, J. P. Choi and A. J. Bard, J. Am. Chem. Soc.,2002,124,14478.
    [20]W. Qin, Z. Zhang, H. Liu, Anal. Chem.,1998,70:3579.
    [21]R. Wilson, D. J. Schiffrin, Anal. Chem.,1996,68:1254.
    [22]Y. W. Wang, E. S. Yeung, Anal. Chim. Acta,1992,266:295
    [23]K. E. Haapakka, J. J. Kankare, Anal. Chim. Acta 1982,138:253.
    [24]K. E. Haapakka, J. J. Kankare, Anal. Chim. Acta 1982,138:263.
    [25]M. M. Collinson, R. M. Wightman, Anal. Chem.,1993,65:2576.
    [26]李超,刘树元,李媛媛.化学发光分析法的发展与应用.分析测试技术与仪器,2006,12:75.
    [27]F. Bolletta, M. Ciano, V. Balzani, N. Serpone, Inorgan. Clim. Acta,1982,62:207.
    [28]J. C. Luong, L. Nadjo, M. S. Wrighton, J. Am. Chem. Soc.,1978,100:5790.
    [29]M. M. Richter, A. J. Bard, Anal. Chem.,1996,68:15.
    [30]N. E. Tokel-Takvoryan, A. J. Bard, Chem. Phys. Letters,1974,25:235.
    [31]N. E. Tokel-Takvoryan, R. E. Hemingway, A. J. Bard, J. Am. Chem. Soc.,1973,95:652.
    [32]D. M. Hercules, F. E. Lytle, J. Am. Chem. Soc.,1966,88:4745.
    [33]H. Tachikawa, A. J. Bard, J. Chem. Phys. Lett.,1973,19:287.
    [34]I. Rubinstein, A.J. Bard, J. Am. Chem. Soc.,1981,103:512.
    [35]Y. B. Zu, A. J. Bard, Anal. Chem.2000,72:3223.
    [36]F. Li, Y. B. Zu, Anal. Chem.2004,76:1768.
    [37]F. Jameison, R. L. Sanchez, L. Dong, J. K. Leland, D. Yost, M. T. Martin, Anal. Chem.1996, 68:1298.
    [38]Z. H. Guo, Y. Shen, M.K. wang, S.J. Dong, Anal.Chem.,2004,76:184.
    [39]L. K. Leland, M. J. Powell, J. Electrochem Soc.,1990,137:3127.
    [40]J. B. Noffsinger, N. D. Danielson, Anal. Chem.,1987,59:865.
    [41]K. Uchikura, M. Kirisawa, Anal. Sci.,1991,7:971.
    [42]S. N. Brune, D. R. Bobbit, Talanta,1991,38:419.
    [43]L. He, K. A. Cox, N. D. Danieison. Anal. Lett.,1990,23:195.
    [44]K. Uchikura. Chem Pharm Bull (Tokyo),2003,51:1092.
    [45]J. B. Noffsinger, N. D. Danielson, Anal. Chem.,1987,59:865.
    [46]J.B. Noffsinger, N. D. Danielson, J. Chromatogr.,1987,387:520.
    [47]A. Arora, A. J. de Mello, A. Manz, Anal. Commun.,1997,34:393.
    [48]邢婉丽,晁福寰,蒋中华,马立人,《高等学校化学学报》,2000,21:873
    [49]Y. T. Hsueh, M. A. Northrup, R. L. Smith, Sens. and Actuators,1996,33:110
    [50]M. T. Carter, A. J. Bard, Bioconjugate Chem.1990,1:257.
    [51]M. Rodriguez, A. J. Bard, Anal. Chem.1990,62:2658.
    [52]T. Kuwabara, Anal. Biochem.2003,314:30.
    [53]D. R. Deaver, Nature,1995,377:758
    [54]N. R. Hoyle, Clin Chem,1996,42(9):1576
    [55]G. F. Blackburn, Clin Chem,1991,37(9):1534
    [56]G. M. Greenway,et al. Analyst,1995,120(11):2549
    [57]E. Moreau, et al. Clin Chem,1996,42(9):1450
    [58]A. J. Bard,et al. US Patent,1994,5310687
    [59]P. Bialk,et al. Clin Chem,1995,41(6):S60
    [60]R. J. Massy, et al.Electrochemiluinescent assays.PCT Int Appl WO,1987,87/06706
    [61]U. Mitschke, P. J. Bauerle, Mater. Chem.2000,10:1471.
    [62]W. J. Miao and A. J. Bard, Anal. Chem.,2004,76:7109.
    [63]W. Zhan and A. J. Bard, Anal. Chem.,2007,79:459.
    [64]N. Egashira, S. Morita, E. Hifumi, Y. Mitoma, T. Uda, Anal. Chem.,2008,80:4020.
    [65]N. Sardesai, S. Pan and J. Rusling, Chem. Commun.,2009,4968.
    [66]G. F. Jie, J. J. Zhang, D. C. Wang, C. Cheng, H. Y. Chen, J. J. Zhu, Anal. Chem.,2008,80: 4033.
    [67]W. Y. Lo, A. J. Baeumner, Anal. Chem.2007,79:1386.
    [68]W. Y. Lo, A. J. Baeumner, Anal. Chem.2007,79,1386.
    [69]J. G. Lee, K. Yun, G. S. Lim, S. E. Lee, S. Kim, J. K. Park, Bioelectrochemistry 2007,70: 228.
    [70]Z. Chang, J. Zhou, K. Zhao, N. Zhu, P. G. He, Y. Z. Fang, Electrochim. Acta 2006,52:575.
    [71]W. Miao, A. J. Bard, Anal. Chem.2004,76:5379.
    [72]Y. Li, H. Qi, F. Fang, C. Zhang, Talanta 2007,72:1704.
    [73]H. Wang, C. Zhang, Y. Li, H. Qi, Anal. Chim. Acta 2006,575:205.
    [74]C. Bertolino, M. MacSweeney, J. Tobin, B. O'Neill,; M. M. Sheehan, S. Coluccia, H. Berney, Biosens. Bioelectron.2005,21,565.
    [75]G. Firrao, Int. J. EnViron. Anal. Chem.2005,85,609.
    [76]J. H. Kenten, J. Casadei, J. Link, S. Lupold, J. Willey, M. Powell, A. Rees, R. Massey, Clin. Chem.1991,37:1626.
    [77]A. M. Siddiqi, V. M. Jennings, M. R. Kidd, J. K. Actor, R. L. Hunter, J. Clin. Lab. Anal.1996, 10,423.
    [78]J. G. Bruno, J. L. Kiel, Biosens. Bioelectron.1999,14,457.
    [79]R. Boom, C. Sol, J. Weel, Y. Gerrits, M. de Boer, P. Wertheim-van Dillen, J. Clin. Microbiol. 1999,37,1489.
    [80]L. Zhang, G. Schwartz, M. O'Donnell, R. K. Harrison, Anal. Biochem.2001,293,31.
    [81]W. J. Miao and A. J. Bard, Anal. Chem.,2004,76,5379.
    [82]J. Zhang, H. L. Qi, Y. Li, J. Yang, Q. Gao, C. X. Zhang, Anal. Chem.,2008,80:2888.
    [83]D. B. Zhu, D. Xing, Y. B. Tang, L. Zhang, Biosens.Bioelectron.,2009,24:3306.
    [84]J. G. Lee, K. Yun, G. S. Lim, S. E. Lee, S. Kim, J. K. Park, Bioelectrochemistry,2007,70:228.
    [85]W. D. Cao, J. P. Ferrance, J. Demas, J. P. Landers, J. Am. Chem. Soc.,2006,128:7572.
    [86]X. Y. Wang, W. Yun, P. Dong, J. M. Zhou, P. G. He, Y. Z. Fang, Langmuir,2008,24:2200.
    [87]A. D. Ellington, J. W. Szostak, Nature,1990,346:818.
    [88]M. Famulok, J. S. Hartig and G. Mayer, Chem. Rev.,2007,107:3715.
    [89]J. W. Liu, Z. H. Cao and Y. Lu, Chem. Rev.,2009,109:1948.
    [901]C. Tuerk and L. Gold, Science,1990,249:505.
    [91]J. G. Bruno and J. L. Kiel, Biosens. Bioelectron.,1999,14:457.
    [92]J. G. Bruno and J. L. Kiel, BioTechniques,2002,32:178.
    [93]L. Y. Fang, Z. Z. Lv, W. H. and E. K. Wang, Anal. Chim. Acta,2008,628:80.
    [94]H. P. Huang, G. F. Jie, R. J. Cui and J. J. Zhu, Electrochem.Commun.,2009,11:816.
    [95]H. P. Huang, J. J. Zhu, Biosens. Bioelectron.,2009,25:927.
    [96]J. G. Bai, H. Wei, B. L. Li, L. H. Song, L. Y. Fang, Z. Z. Lv, W. H. Zhou, E. K. Wang, Chem.-Asian J.,2008,3:1935.
    [97]W. W. Guo, J. P. Yuan, B. L. Li, Y. Du, E. B. Ying, E. K. Wang, Analyst,2008,133:1209.
    [98]Y. Li, H. L. Qi, Y. G. Peng, J. Yang, C. X. Zhang, Electrochem. Commun.,2007,9:2571.
    [99]W. Yao, L. Wang, H. Y Wang, X. L. Zhang and L. Li, Biosens. Bioelectron.,2009,24:3269.
    [100]X. B. Yin, Y. Y. Xin and Y. Zhao, Anal. Chem.,2009,81:9299.
    [101]S. Liang and G. J. Connell, RNA,2009,15:1929.
    [102]J. F. Rusling, E. G Hvastkovs, D. O. Hull, J. B. Schenkman, Chem. Commun.,2008,141.
    [103]E. G. Hvastkovs, M. So, S. Krishnan, B. Bajrami, M. Tarun, I. Jansson, J. B. Schenkman, J. F. Rusling, Anal. Chem.,2007,79:1897.
    [104]S. Krishnan, E. G. Hvastkovs, B. Bajrami, I. Jansson, J. B. Schenkman, J. F. Rusling, Chem. Commun.,2007,1713.
    [105]S. Krishnan, E. G. Hvastkovs, B. Bajrami, J. B. Schenkman, J. F. Rusling, Mol. BioSyst., 2009,5:169.
    [106]S. Krishnan, E. G. Hvastkovs, B. Bajrami, D. Choudhary, J. B. Schenkman, J. F. Rusling, Anal. Chem.,2008,80:5279.
    [107]L. L. Zhao, J. B. Schenkman and J. F. Rusling, Anal. Chem.,2008,80:5279.
    [108]K. F. Chow, F. Mavre, R. M. Crooks, J. Am. Chem. Soc.,2008,130:7544.
    [109]K. F. Chow, F. Mavre, J. A. Crooks, B. Y. Chang, R. M. Crooks, J. Am. Chem. Soc.,2009, 131:8364.
    [110]S. Pal. M. J. Kim, M. J. Kim, J. M. Song, Biochip. Journal,2008,2:66.
    [111]X.H. Xu, A.J. Bard, Langmuir,1994,10:2409.
    [112]J. Premkumar, S.B. Khoo, Electrochem. Commun.,2004,6:984.
    [113]M.H. Xiang, R. Lei, N. Li, K.A. Li, J. Appl. Electrochem.,2009,39:921.
    [114]董绍俊,车广礼,谢远武.化学修饰电极,北京科学出版社,1995,310.
    [115]N. Oyama, F. C. Anson, Anal. Chem.1980,52:1192.
    [116]I. Rubinstein, A. J. Bard, J. Am. Chem. Soc.1980,102:6641.
    [117]J. Wang, T. Golden, Anal. Chem.1989,61:1397.
    [118]J. Wang, Z. Lu, J. Electroanal. Chem.1989,266:287.
    [119]董绍俊,田敏,刘柏峰.分析化学,1993,21:255.
    [120]W. J. Vining, T. J. Meyer, J. Electroanal. Chem.1985,195:183.
    [121]W. J. Vining, T. J. Meyer, Inorg. Chem.1986,25:2023.
    [122]M. N. Szentirmay, C. R. Martin, Anal. Chem.1984,56,1898.
    [123]I. Rubinstein, A. J. Bard, J. Am. Chem. Soc.1981,103,5007.
    [124]T. M. Downey, T. A. Nieman, Anal. Chem.1992,64:261.
    [125]A. F. Martin, T. A. Nieman, Anal. Chimica. Acta 1993,281:475.
    [126]A. J. Tudos, J. J. Ozinga, H. Poppe, W. T. Kok, Anal. Chem.1990,62:367.
    [127]A.F. Martin, T.A. Nieman, Biosens. Bioelectron.1997,12:12479.
    [128]L.H. Zhang, Z.H. Guo, Z.A. Xu, S.J. Dong,J. Electroanal. Chem.2006,592:63.
    [129]Y. Du, H. Wei, J.Z. Kang, J.L. Yan, X.B. Yin, X.R. Yang, E.K. Wang, Anal. Chem.2005,77: 7993.
    [130]Y. Du, B. Qi, X.R. Yang, E.K. Wang, J. Phys. Chem. B 2006,110:21662.
    [131]C. Tuerk, L. Gold, Science 1990,249:505.
    [132]Z. H. Guo, S. J. Dong Anal. Chem.,2004,76:2683.
    [133]X. P. Sun, Y. Du, S. J. Dong, E. K. Wang, Anal. Chem.2005,77:8166
    [134]W. Yun, P. Dong, Y. Xu, L. Yang, P. G. He, Y. Z. Fang, Sensors and Actuators B,2009,141: 244.
    [135]W. Yun, Y. Xu, P. Dong, X. X. Ma, P. G. He, Y. Z. Fang, Analytica Chimica Acta 2009,653: 58.
    [136]H. N. Choi, S. H. Cho, W. Y. Lee, Analytical Chemistry,2003,75:250,
    [137]H. N. Choi, S. H. Cho, W. Y. Lee, Analytica Chimica Acta,2005,541:47254.
    [138]H. N. Choi, S. H. Cho, W. Y. Lee, Analytica Chimica Acta,2006,565:48.
    [138]R. P. Bagwe, C. Yang, L. R. Hilliard, W. Tan, Langmuir 2004,20:8336.
    [140]X. J. Zhao, R. Tapec-Dytioco, K. M. Wang, W. H. Tan, Anal. Chem.2003,75:3476.
    [141]Z. H. Guo, Y. Shen, M. K. Wang, F. Zhao, S. J. Dong, Anal. Chem.2004,76:184.
    [142]L. H. Zhang, S. J. Dong, Electrochem. Commun.2006,8:1687.
    [143]S. J. Guo, E. K. Wang, Electrochem. Commun.2007,9:1252.
    [144]W. Gao, X. H. Xia, J. J. Xu, H. Y. Chen, J. Phys. Chem. C 2007,111:12213.
    [145]L. H. Zhang, B. F. Liu, S. J. Dong, J. Phys. Chem. B 2007,111:10448.
    [146]Roche Diagnostics Corp., www.roche.com. Note:The initial Igen International and then
    BioVeris Corp. have now been acquired by Roche Diagnostics Corp.
    [147]H. Yang, J. K. Leland, D. Yost, R. Massey, J. Biotechnology (N. Y.) 1994,12:193.
    [148]J. D. Debad, E. N. Glezer, J. K. Leland, G. B. Sigal, J. Wohlsadter, In Electrogenerated Chemiluminescence; Bard, A. J., Ed.; Dekker:New York,2004,8:359.
    [149]Meso Scale Discovery, www.mesoscale.com.
    [150]M. M. Richter, Chem. ReV.2004,104,3003.
    [151]C. K. Cote, C. A. Rossi, A. S. Kang, P. R. Morrow, J. S. Lee, S. L. Welkos, Microb. Pathog. 2005,38,209.
    [152]H. Schmidt-Gayk, E. Spanuth, J. Koetting, R. Bartl, D. Felsenberg, J. Pfeilschifter, F. Raue, H. Roth, J. Clin. Chem. Lab. Med.2004,42,90.
    [153]D. R. Shelton, J. A. Higgins, J. A. S. Van Kessel, Y A. Pachepsky, K. Belt, J. S. Karns, J. Microbiol. Methods 2004,58,223.
    [1]W. D. Smith, Anal. Chem.,2002,74(17):462A-466A
    [2]N.Christodoulides, M.Tran, P. N. Floriano, M. Rodriguez, A. Goodey, M. Ali, D. Neikirk, McDevitt J. Anal. Chem.,2002,74(13):3030-3036
    [3]S. Kosuke, O. Hiroshi, Y. Hisashi, S. Shinobu, U. Atsuo, A. Hiroshi, O. Yasuo, J. Agric. Food Chem.,2007,55(23):9345-9350
    [4]S. L. Lim, H. Ichinose, T. Shinoda, H. Ueda, Anal. Chem.,2007,79(16):6193-6200
    [5]J. Min, A. Baeumner, J. Anal. Biochem.,2002,303(2):186-193
    [6]C. N. Campbell, L. De, T. Woodyear, A. Heller, Fresenius' J. Anal. Chem.,1999, 364(1-2):165-169
    [7]J. C. Riboh, A. J. Haes, A. D. McFarland, Y. C. Ranjit, R. P. Van Duyne, J. Phys. Chem. B, 2003,107(8):1772-1780
    [8]H. C. Lu, H. M. Chen, Y. S. Lin, J. Wei. Lin, Biotechnology Progress,2000,16(1):116-124
    [9]O. Schaefer, R. Bohlmann, W. D. Schleuning, K. Schulze-Forster, M. Humpel, J. Agric. Food Chem.,2005,53(8):2881-2889
    [10]Wang J., G. Liu, M. H. Engelhard, Y. Lin, Anal. Chem.,2006,78(19):6974-6979
    [11]X. Y. Wang, J. M. Zhou, W. Yun, S. S. Xiao, Z. Chang, P. G. He, Y. Z. Fang, Anal. Chim. Acta, 2007,598(2):242-248
    [12]W. Zhan, A. Bard, J. Anal. Chem.,2007,79(2):459-463
    [13]Sai V V R, S. Mahajan, A. Q.Contractor, S. Mukherji, Anal. Chem.,2006,78(24):8368-8373
    [14]T. Fonong, G. Rechnitz, A. Anal. Chem.,1984,56(13):2586-2590
    [15]Liu Jiaming(刘佳铭),Fu Yan(付艳),Yu Bingbin(余冰宾), Li Longdi(李隆弟). Chem. J. Chin. Univ.(高等学校化学学报),2001,22:1645-1648
    [16]W. Miao, A. Bard, J. Anal. Chem.,2003,75(21):5825-5834
    [17]Li Yongfang(李永舫)Journal of Fudan University(Natural Science)(复旦学报(自然科学版)),2004,43(4):468-476
    [18]Z. Guo, Y. Shen, M. Wang, F. Zhao, S. Dong, Anal. Chem.,2004,76(1):184-191
    [19]S. Grant, F. Davis, J. A. Pritchard, K. A. Law, S P J. Higson, T. D. Gibson, Anal. Chim. Acta, 2003,495(1-2):21-32
    [20]W. Cao, J. P. Ferrance, J. Demas, J. P. Landers, J. Am. Chem. Soc.,2006,128(23):7572-7578
    [21]Y. B. Zu, A. Bard, J. Anal. Chem.,2000,72(14):3223-3232
    [1]J.B. Noffsinger, N.D. Danielson, Anal. Chem.59 (1987) 865-868
    [2]I. Rubinstein, A.J. Bard, Anal. Chem.55 (1983) 1580-1582
    [3]H. Hosono, W. Satoh, J. Fukuda, H. Suzuki, Sens. Actuators, B 122 (2007) 542-548
    [4]T.M. Downey, T.A. Nieman, Anal. Chem.64 (1992) 261-268
    [5]L.H. Zhang, Z.A. Xu, S.J. Dong, Anal. Chim. Acta 575 (2006) 52-56
    [6]X.Y. Wang, W. Yun, P. Dong, J.M. Zhou, P.G. He, Y.Z. Fang, Langmuir 24 (2008) 2200-2205
    [7]W. Miao, A.J. Bard, Anal. Chem.75 (2003) 5825-5834
    [8]W. Yun, X.Y. Wang, P. Dong, J.K. Zhu, Y. Xu, P.G. He, Y.Z. Fang, Chin. J. Anal. Chem.37 (2009)8-12
    [9]H. Tang, J.H. Chen, S.I. Yao, L.H. Nie, Y.F. Kuang, Z.P. Huang, D.Z. Wang, Z.F. Ren, Mater. Chem. Phys.92 (2005) 548-553
    [10]J.S. Ye, Y. Wen, W.D. Zhang, L.M. Gan, G.Q. Xu, F.S. Sheu, Electroanalysis 15 (2003) 1693-1698
    [11]L.M. Dai, A. Patil, X. Gong, Z. Guo, Y. Liu, D. Zhu, ChemPhysChem.4 (2003) 1150-1169
    [12]Z.Y. Lin, J.H. Chen, G..N. Chen, Electrochimica Acta 53 (2008) 2396-2401
    [13]G.F. Jie, L.L. Li, C. Chen, J. Xuan, J.J. Zhu, Biosens. Bioelectron.24 (2009) 3352-3358
    [14]R.F. Huang, X.W. Zheng, Y.J.Qu, Anal. Chim. Acta 582 (2007) 267-274
    [15]J. Wang, Carbon-Nanotube Based Electrochemical Biosensors, Electroanalysis 17 (2005) 7-14
    [16]E. Katz, I. Willner, Biomolecule-Functionalized Carbon Nanotubes:Applications in Nanobioelectronics, Chemphyschem 5 (2004) 1084-1104
    [17]M. Delamar, R. Hitmi, J. Pinson, J.M. Saveant, J. Am. Chem. Soc.114 (1992) 5883-5884
    [18]J. Pinson, F. Podvorica, Chem. Soc. Rev.2005,34,429-439
    [19]B.P. Corgier, C. A. Marquette, L. J. Blum, J. Am. Chem. Soc.127 (2005) 18328-18332
    [20]J.K. Kariuki, M.T. McDermott, Langmuir 17 (2001) 5947-5951
    [21]J.K. Kariuki, M.T. McDermott, Langmuir 15 (1999) 6534-6540
    [22]W. Yun, Y. Xu, P. Dong, X.X. Ma, P.G. He, Y.Z. Fang, Anal. Chim. Acta 635 (2009) 58-62
    [23]T. Fonong, G.A. Rechnitz, Anal. Chem.56 (1984) 2586-2590
    [1]M.M. Richter, Chem. Rev.,104 (2004) 3003.
    [2]K.A. Fahnrich, M. Pravda, GG Guilbault, Talanta,54 (2001) 531.
    [3]J.B. Noffsinger, N.D. Danielson, Anal. Chem.,59 (1987) 865.
    [4]H. Hosonoa, W. Satoha, J. Fukudaa, H. Suzuki, Sens. Actuators, B,122 (2007) 542.
    [5]Z. Chang, J.M. Zhou, K. Zhao, N.N. Zhu, P.G. He, Y.Z. Fang, Electrochim. Acta,52 (2006) 575.
    [6]N.E. Tokel, A.J. Bard, J. Am. Chem. Soc.,94 (1972) 2862.
    [7]X.Y. Wang, W. Yun, P. Dong, J.M. Zhou, P.G He, Y.Z. Fang, Langmuir,24 (2008) 2200.
    [8]C.H. Lyons, E.D. Abbas, J.-K. Lee, M.F. Rubner, J. Am. Chem. Soc.,120 (1998) 12100-12107.
    [9]X.P. Sun, Y. Du, S.J. Dong, E.K. Wang, Anal. Chem.,77 (2005) 8166.
    [10]Z.H. Guo, Y. Shen, M.K. Wang, F. Zhao, S.J. Dong, Anal. Chem.,76 (2004) 184.
    [11]X. Zhang, A.J. Bard, J. Am. Chem. Soc.,111 (1989) 8098.
    [12]X.P. Sun, Y. Du, L.X. Zhang, S.J. Dong, E.K. Wang, Anal. Chem.,79 (2007) 2588.
    [13]M. Rinaudo, G. Pavlov, J. Desbrieres, Polymer,40 (1999) 7029.
    [14]P. Sorlier, A. Denuziere, C. Viton, A. Domard, Biomacromolecules,2 (2001) 765.
    [15]C.Z. Zhao, N. Egashira, Y. Kurauchi, K. Ohga Analytical Sciences,14(1998) 439.
    [16]A. Doron, E. Katz, I. Willner, Langmuir,11 (1995) 1313.
    [17]H. Li, L. Rothberg, J. Anal. Chem.76 (2004) 5414.
    [18]W. Yun, X.Y. Wang, P. Dong, J.K. Zhu, Y. Xu, P.G He, Y.Z. Fang, Chin. J. Anal. Chem., (accepted)
    [19]L.H. Zhang, S.J. Dong, Electrochem. Commun.,8 (2006) 1687.
    [20]A.N. Khramov, M.M. Collinson, Anal. Chem.,72 (2000) 2943.
    [21]H.N. Choi, S.-H. Cho, W.-Y. Lee, Anal. Chem.,75 (2003) 4250.
    [1]W. Miao, Chem. Rev.2008,108:2506.
    [2]K.A. Fahnrich, M.Pravda, GG Guilbault, Talanta 2001,54:531.
    [3]N.E. Takvoryan, A.J. Bard, J. Am. Chem. Soc.1972,94:2862.
    [4]J.B. Noffsinger, N.D. Danielson, Anal. Chem.1987,59:865.
    [5]I. Rubinstein, A.J. Bard, Anal. Chem.1983,55:1580.
    [6]H. Hosono, W. Satoh, J. Fukuda, H. Suzuki, Sens. Actuators B:Chem.2007,122:542.
    [7]T.M. Downey, T.A. Nieman, Anal. Chem.1992,64:261.
    [8]X.Y. Wang, W. Yun, P. Dong, J.M. Zhou, P.G. He, Y.Z. Fang, Langmuir 2008,24:2200.
    [9]Y. Tao, Z.J. Lin, X.M. Chen, X.I. Chen, X.R. Wang, Anal. Chim. Acta 2007,594:169.
    [10]H. Wei, Y. Du, J. Kang, E.K. Wang, Electrochem. Commun.2007,9:1474.
    [11]X.P. Sun, Y. Du, S.J. Dong, E.K. Wang, Anal. Chem.2005,77:8166.
    [12]H. Wei, E.K. Wang, Trends Anal. Chem.2008,27:447.
    [13]P. Sorlier, A. Denuziere, C. Viton, A. Domard, Biomacromolecules,2001,2:765.
    [14]X.Y. Wang, J.M. Zhou, W. Yun, S.S. Xiao, Z. Chang, P.G. He, Y.Z. Fang, Anal. Chim. Acta 2007,598:242.
    [15]M.M. Richter, Chem. Rev.2004,104:3003.
    [16]L.H. Zhang, S.J. Dong, Electrochem.Commun.2006,8:1687.
    [17]A.N. Khramov, M.M. Collinson, Anal. Chem.2000,72:2943.
    [18]H.N. Choi, S.-H. Cho, W.-Y. Lee, Anal. Chem.2003,75:4250.
    [1]R. B. Stoughton, Annual Review of Biochemistry,2005,74:53.
    [2]R.A.Young, Cell,2000,102(1):9.
    [3]A.Schulze, J. Downward, Nature Cell Biology,2001,3:E190.
    [4]G Ramsay, Nature Biotechnology 1998,16:40.
    [5]D. D. Shoemaker, P. S. Linsley, Curr. Opin. Microbiol.2002,5:334.
    [6]J.A. Ferguson, F. J. Steemers, D. R. Walt, Anal. Chem.,2000,72:5618.
    [7]J. Cha, J. I. Han, Y. Choi, D. S. Yoon, K. W. Oh, G Lim, Biosensors and Bioelectronics,2003, 18:1241.
    [8]E. G. Hvastkovs, M. So, S. Krishnan, B. Bajrami, M. Tarun, I. Jansson, J. B. Schenkman, J.F. Rusling, Anal. Chem.,2007,79:1897.
    [9]J. Wang, A. Ibanez, M.P. Chatrathi, A. Escarpa Anal. Chem,2001,73:5323.
    [10]J. Wang, M. P. Chatrathi, B. Tian Anal. Chem.,2001,73:1296.
    [11]K. A. Fahnrich, M. Pravda, G. G Guilbault, Talanta,2001,54:531.
    [12]Z. Chang, J.M. Zhou, K. Zhao, N.N. Zhu, P.G He, Y.Z. Fang, Electrochim. Acta,2006,52: 575.
    [13]X.Q. Liu, L. H. Shi, W. X. Niu, H. J. Li, G B. Xu, Angewandte Chemie,2007,119:425.
    [14]W. Miao, A. Bard, J. Anal. Chem.,2003,75(21):5825.
    [15]J. Zhang, H. Qi, Y. Li, J. Yang, Q. Gao, C. Zhang, Anal. Chem,2008,80(8):2888.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700